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Abstract

Characteristic properties of the medium-range central attraction of the
nucleon-nucleon and hyperon-nucleon interactions are studied in the (3¢)-(3¢)
resonating-group formulation. The SUs properties of two-baryon systems are
extensively incorporated with the explicit flavor symmtry breaking of the full
Fermi-Breit residual interaction. It is found that, for a realistic quark-model
description of the hyperon-nucleon interaction compatible with the present
low-energy experimental data, it is necessary to introduce phenomenclogical
medium-range attraction which is reuch less than that for the nucleon-nucleon
system. Effective meson-exchange potentials from the scalar-meson nonet ex-
change in the Nijmegen model-F are conveniently employed to generate the
needed flavor-dependent central attraction with few parameters determined

for each flavor exchange symmetry.
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The study of the hyperon-nucleon (Y N) interaction has basic importance not only for
applications to hypernuclear physics,!’ but also for elucidating rich phenomena of the strong
interaction dominated by the quark-gluon dynamics through QCD. In contrast with the
nucleon-nucleon (VN) interaction, direct experimental analysis of elementary YN scattering
processes is not possible at present, resulting in very scarce experimental information of low-
energy cross-section data with large error bars. From the theoretical side, quite successful
meson-exchange description of the V.V interaction has been extended to the Y N interaction
recently, and several versions of the one boson exchange potentials (OBEP), such as the
Nijmegen models®™® and the Jiilich potentials, 9 are already available. As a common
feature of these models, a large number of baryon-meson coupling constants are constrained
by the use of the SUj relations, in which several SU; parameters are determined in the NN
sector, supplemented with the low-energy cross-section data for the Y NV scattering. Since
the short-range repulsion, well established in the NNV interaction, is now believed to have
its origin in the quark-gluon dynamics, the treatment of this short-range part in the above
OBEP’s is more or less phenomenological.

The most successful quark-model study of the baryon-baryon interaction is carried out
in the resonating-group method (RGM) applied to the (3¢)-(3¢) system, in which the gluon
effect is incorporated through the color analog of the Fermi-Breit interaction in the one-
gluon exchange approximation and a simple power-law confinement potential put in by
hand. The conclusion of such calculations for the NN interaction® can be summarized
as follows: The phase-shift equivalent effective local potentials derived from the (3¢)-(3¢)
models of VN scattering are short-ranged, strongly energy dependent and purely repulsive.
The repulsive core of several hundred MeV is determined largely by the color-magnetic
term of the Fermi-Breit interaction. The coupling to other channels of the (3¢)-(3¢) variety
such as the A-A and the so-called hidden color channels has been found not to play a

prominent role, but only leads to small refinements. Since the simple (3¢)-(3¢) RGM cannot



account for the medium- and long-range attraction of the NN interaction, effective meson-
exchange potentials are usually introduced to achieve a realistic description of the NNV
interaction. In the recent quark-model analysis of the NNV interaction by Takeuchi et al.,”
the central attraction originating from scalar-meson exchange potentials is introduced for
each of the 1E. 3B, 10 and 30 states. as well as the spin-spin and the tensor forces of the
one-pion exchange potential. Another attempt to incorporate the meson-exchange effects
is the explicit introduction of (qq) and (g§)* excitations. Without introducing any extra
meson parameters, this extended quark model® was quite successful in reproducing the
main features of the NN interaction, leading to the first step toward the conventional meson-
exchange description through the possible mechanism of (¢g) exchanges between nucleons.

The extension of the (3¢)-(3g) RGM study of the NN interaction to the YV interaction
is not trivial particularly with respect to the central force. The reason is the following: 1)
The lack of the medium-range attraction in the quark model leads to too much ambiguity in
the way of supplementing the effective meson-exchange potentials. 2) In the Y N interaction,
the flavor-symmetry breaking (FSB) should be naturally introduced even though we choose
the spin-flavor SUs symmetry as the starting point. For example, Oka, Shimizu and Yazaki®
have studied only the short-range repulsion originating from the color-magnetic piece and
discussed the correlation of the repulsion with the eigen-values of the (3¢)-(3¢) pormalization
kernel for octet- and decuplet-baryon systems. The work by Straub et al'® bas dealt with
the low-energy cross sections by incorporating effective meson-exchange potentials. Unfortu-
nately, their fit to the experimental data is obtained by a large number of phenomenological
parameters introduced both in the quark sector and in the effective meson-exchange sector,
and gives little information about characters of effective meson-exchange potentials put in
by hand. We believe that this is caused by the way they treat the FSB in the quark sector.
The paper by Zhang et al.1V) is an attempt to find a set of common meson-exchange param-
eters for the NN and YN systems by employing meson-exchange potentials constrained by
the chiral symmetry requirement.

Our viewpoint for applying the RGM formalism to the YN interaction is based on the
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premise that the SUs quark model with some realistic modification like peripheral mesonic

r (qq) effects can essentially reproduce the whole low-energy hadronic phenomena. As
long as the low-energy observables are concerned, predictions of the Fermi-Breit interaction
have no obvious disagreement with experiment except for the = and 7/ properties and the
so-called “missing LS force problem” of P-wave baryons. The extremely small mass of the
pion is due to its Goldstone-boson aspect associated with the spontaneous breaking of the
chiral symmetry at the quark level, and the abnormally large mass of 7 is related to the
typical multi-gluon effect called U4(1) anomaly. In the recent work'® by one of the present
authors, it is found that a long-standing problem of the missing LS force of the Fermi-Breit
interaction in the excited states of baryons can possibly be resolved by a proper treatment of
a compact {3q) structure embedded in the (3q)(¢qg) continua. In a separate paper,'® we have
shown that the same Fermi-Breit LS force has almost right order of magnitude compatible
with the experimental information on the YNV spin-orbit interaction. It is important to note
that these conclusions are obtained by keeping the Galilean non-invariant terms contained
in the Fermi-Breit interaction. Since the momentum-dependence involved in these terms can
be properly treated in the RGM framework, we should not throw these terms away simnply
because they do not fit the non-relativistic framework.

In this paper we discuss characteristics of the medium-range attraction required in the
overall description of the NN and Y NV interactions in terms of the (3¢)-(3¢) RGM. Since
our purpose is to study the missing part in the quark model, it is essential to deal with the
quark sector very carefully and to minimize the theoretical ambiguity related to the pure
quark-model potentials. This can be achieved by making the most of the spin-flavor SUs
symmetries of the octet-baryon (Bs) systems, as well as by correct treatment of the FSB.
Two- By systems are classified in terms of the flavor symmetry with respect to the interchange
of the two baryons, by which the discussion of the FSB becomes very transparent owing to
the generalized Pauli principle. The FSB due to the mass difference between the strange and
up-down quarks is explicitly introduced in the nonrelativistic kinetic-energy term and the

residual Fermi-Breit interaction without any approximation. The spin-flavor factors of the
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quark exchange kernels are analytically evaluated by using an extended operator formalisim,
which is particularly developed for this application.

It should be noted that we choose a rather simple modet space for the two- Bg system with
respect to the spatial and spin-flavor degrees of freedom. The spatial extension of the quark
distribution in cach baryon is controlled by a common harmonic-oscillator constant &, which
is supposed not to be much different among members of each SUs supermultiplet. To scale
b by the strange quark mass is sometimes used in the literature,'” but such a preseription
causes a serious problem that an uncontrollable FSB ensues from the confinement potential
which is originally assumed to be flavor independent. Instead, we take a perturbative view-
point by using the pure SUs-model wave functions, though we introduce the explicit FSB
in the quark-model Hamiltonian.

We should keep in mind that application of the RGM formalism to the {3¢)-(3¢) system
is not actually straightforward, since the system we are dealing with is essentially relativis-
tic. The standard non-relativistic RGM formulation should be augmented with some new
features which are best tailored to the phenomena under consideration and are guided by
the physical intuitions.'¥) For example, the separation of the center-of-mass (c.m.) motion is
uo longer a simple task when relativistic corrections are introduced into the kinetic-energy
operators and/or the momentum-dependent retardation terms are taken into account. The
non-relativistic definition of the e.m. coordinate for the systems involving unequal quark
masses is not the best choice in this situation, since the inertia mass for the system is not
simply give by the sum of the constituent quark masses. What we have to do is to go back
to the original definition of the relative motion and consider the realistic situatuion of the
scattering that two (3¢) clusters are colliding with the incident momentum k and —k. Here
we also come across the problem that the inertia mass of the (3q) system is not properly
reproduced in any kind of the quark models, even if we succeed in fitting the energy splitting
of the octet baryons. The reduced mass employed in the RGM equation should be, therefore,
readjusted to the experimental value in some way, in order to ensure the correct scattering

kinematics. We will present in this paper a nice prescription to do this without breaking
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the Pauli principle.

A similar situation also takes place when we supplement the meson-exchange effect to
the {3¢)-(3¢) RGM. The meson-exchange effect is essentially relativistic phenomena related
t0 the creation and annihilation processes of the (¢g) pairs. Although the (qq) description of
the meson-exchange effect in the YNV interaction is attempted in Ref. 15), it is still restricted
to the simple (gq) exchange processes, where correspondence to the meson-exchange poten-
tials 1s best seen. The exchange kernels generated from more complicated quark-exchange
diagrams are not fully analysed even at the phenomenological level. We will, therefore, adopt
in this paper an intermediate step to introduce the effective meson-exchange potentials as
employed by several authors.® 19 There are still many possibilities of how to generate these
effective meson-exchange potentials. The simplest method is to use effective local potential,
Veff at the baryon level, which is determined from the existing OBEP’s or in a rather
arbitrary way to fit the experimental data. Since the correspondence between the RGM
formalism for composite particles and the ordinary Schrédinger equation for structurcless
particles implies the renormalization of the relative-motion function multiplied by v N fac-
tor, with N being the normalization kernel, the nonlocal kernel of the form v NV VN is
usually introduced in the RGM equation. A nice point of this prescription is that we only
need the normalization kernel to generate the exchange terms.

In order to make the analysis of the medium-range attaction of the YV interaction as
transparent as possible, we will apply in this paper the semi-classical Wigner-transform
WKB technique!® to the RGM equation. In this technique, the necessary momentum-
dependent Wigner-transforms are analytically derived from the explicit expressions of the
RGM kernels,'” and the phase-shift equivalent local potentials are easily obtained by solving
a self-consistent transcendental equation which determines a local momentum for the relative
motion. In particular, the effective nonlocal potential, VN Ve// /N, is simply reduced to
the algebraic multiplication of V*// and the Wigner transform of the normalization kernel
within this approximation.

The organization of this paper is as follows. In the next section we first discuss some
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properties of the spin-flavor symmetry of Bs-By systems, which are shared by both quark
model and OBEP’s. The isospin basis with definite flavor symmetry introduced in this sec-
tion facilitates a convenient scheme for state-classification of the Y'N system in a similar way
to the NN system. The phase shift behavior of empirical OBEP’s is discussed in conjunction
with the SU; content of the YN system with respect to the central part of the potentials.
A brief formulation of the model is given in Section 3, by paying a special attention to
the Galilean non-invariant term of the Fermi-Breit interaction, as well as the reduced mass
of the kinetic-energy term. In Section 4, we examine the effect of the Pauli principle in a
simple model in which the exchange kernels of the kinetic-energy and momentum-dependent
terms are retained. We find that characteristic features of the central phase shifts for all
the NN, AN and IN channels are already understandable in this simple model. A realistic
analysis with all the quark-model potentials and the effective meson-exchange potentials is
carried out in Section 5. It is found that the central attraction which leads to the empirical
phase-shift behavior of the ANV and LN potentials inevitably needs to be smaller than that

for the NN system. The last section is devoted to a brief summary and future directions.

II. SPIN-FLAVOR SYMMETRIES OF Bz-Bs SYSTEMS

As a system of two unidentical particles, the Y N interaction has several new features
which are not shared with the NN interaction. These are mainly related to the rich flavor
contents of the Bg-Bjg system constrained by the spin-flavor SUs symmetry and the general-
ized Pauli principle. Since these features are common in both OBEP and quark-model, we
will use baryon’s degree of freedom as long as possible.

Let us use the Elliott notation to specify the SU3 quantum numbers of Bg, and let B)a
with @ = YI denote a flavor function N (YI =11), A (YJ =00}, Z(YI =01)or E
(YT = —1}). The SUs-coupled basis of two octet baryons is defined by

[B(u)B(m]WW = [B(lx)(l)B(u)(Q)]um;p

= ¥ <(a(1)a | (u)a > [Bune (1) Buna(@)],, . (21)

ana2
where the last square brackets denote the isospin coupling. We assume that the first By,
always refers to particle 1 and the second to particle 2. A set of the internal quantum
numbers, a (@ = al,), stand for the hypercharge ¥ = Y] + Y}, the total isospin I and its
z-component I,, which are all conserved quantities if we assume the isospin symmetry and
the charge conservation Q/e = Y/2 + I,. The flavor symmetry phase P of the two-baryon
system is defined by the flavor exchange operator P and is determined from the symmetry

of the SU; Clebsch-Gordan coefficients through

Pf; [BayBu) =P [BayBay)

(waip

, (2.2)

(Au)aip
with

~1)***  in multiplicity-free case with (A 11
- (~1) plicity (Aw) # (11) 23)
+1 for (/\p.)p = (11)(:) .

It is important to maintain the definite flavor symmetry even in the isospin-coupled basis,

since the flavor symmetry is related to the total spin S and the parity through the generalized

Pauli principle;
(~D)HSp =1, (2.4)

where L is the relative orbital angular momentum. For the NN system with Y = 2, the
total isospin I is good enough to specify P; Le., P = (=1)!1, so that Eq. (2.4) becomes
the well-known rule (—1)**5+ = —1. Let us introduce a simplified notation B; = B(11)q,
(i =1 ~ 4 in general) with a; = Y;I;. The isospin basis used in this paper is the one with

the definite flavor symmetry P, and is defined through

(B\Ba)]), {(B.Bal,, + P(—1)1+5! (BB, }

1

21+ 8a8)
)

= ‘/—_'m“z < {11)a1{11)as || (Aps)a >, [B(U)B(”)](,\;‘)a;p ) (2.5)
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where the sum is over (Ay)p compatible with Eq. (2.3). As is apparent from the construction,
the basis in Eq. (2.5) is naturally an eigen-state of the flavor exchange operator PEL with
the eigen-value P.

It is now straightforward to incorporate the spin degree of freedom in the above formula-
tion and extend the whole arithmetics to the spin-flavor SUs wave functions of the (3¢)-(3¢)

system. In the quark model, the isospin basis of the spin-flavor funetions is given by

1 { [ A3l /131
seo 1 [wf (23w 456]
v 2(1 + 6a1a2) 3ttt ) 7(”)“2( ) S$S,11;

o
(o]

(1)as jn

+ P(=1)ta-d {Wm (123) Wi o (456)] } , (
1 S8,11,

where the totally symmetric SUs wave function WE’(],W“(H?») for the (3¢) system '™ is

1
wll | (123) = 3 —
e S(w)=0(01), 1(20) V2

X [ [ F(IO)(I)F(‘AO)(Q) ](Ap) F(m)(3) ](11)« {

[Twy(Dwi(2) s wi(3) 1y

2

[
=1

with wy being the spin wave function and Fiig) the flavor wave function. The subscript

in Eq. (2.6) specifies a set of quantum numbers of the channel wave functions;
1 1 . \
a =[50, §(11)a2] SSYIL:P . (2.8)

The basis of Eq. (2.6) is the eigen-state of the core-exchange operator Py¥ = P PR" PyF
with the eigen-value (—1)!~5P, where PS¥ = P7Pf is the quark exchange operator in the
spin-flavor space.

Table I shows the relationship between the isospin basis and the flavor-SU; basis given
through Eq. (2.5) with respect to the NN and YN systems. In the following we always
assume that the second particle is the nucleon, since we only discuss in this paper ¥ =
Y; +Y; = 2 and 1 cases. From this table we can obtain some interesting findings with
respect to the characters of the YN interaction. For the flavor symmetric configuration
with the singlet-even (LE) or the triplet-odd (*0) spin-space structure, the I = 1 state

of NN and the I = 3/2 state of TN have the same SU; content (22). Therefore, if the

Hamiltonian for the Bg-Bg system is flavor singlet, both configurations yield exactly the
same potential. Similarly, AN and EN(I = 1/2) interactions should be equal in the flavor
antisymmetric configurations involving the triplet-even (3E) or the singlet-odd (10) state,
because the cross term contribution between (11), and (03) SU; states vanishes for the SUs-
scalar Hamiltonian. These features are, in fact, approximately observed in the phase-shift
behavior of the OBEP’s for the N¥ and YNV interactions. Figure 1 shows the phase-
shift behavior calculated with the central potentials of the Nijmegen model-F which fits
well the NN phase shifts and the low-energy YN scattering data. As is expected, the 'S
phase shifts of the NV and ZN(I = 3/2) channels are both attractive and rather similar
except for the low energy region. The difference of the S phase shifts of the AN and
SN(I = 1/2) systems is within several degrees in the whole energy range. As is discussed
in the introduction, the meson-baryon coupling constants in the Nijmegen potentials are
constrained by the SUs relations and the flavor symmetry is explicitly broken only through
the hadron masses and possibly through hard-core radii. This meauns that even in the OBEP
description the Hamiltonian is approximately SUs scalar. In the quark model the FSB is
naturally introduced through the fact that the strange quark mass m, is heavier than the
up-down quark mass m,q. There is 00 other origin of the FSB, since gluons have no flavor
degree of freedom. Thus, if we set the mass ratio A = m;, /M4 equal to unity and reduce
the mass difference of octet baryons to zero, the above relations should be strictly satisfied
in the present SUs quark model.

The nice feature in the SU; limit discussed above is not restricted to the central force.
In the YN interaction, the spin value is oot a conserved quantity unlike the NN system.
The parity conservation in Eq. (2.4) shows that the transition from the spin S=0to1l
or 1 to 0 is possible at the cost of the flavor-symmetry change, which leads to the well-
known antisymmetric LS (LS(™) force discussed in Ref. 13). However, the LS~ force for
LN(I = 3/2) system connecting *O and 'O states is very weak, since these states belong to
the different SU, symmetry (22) and (30), respectively. On the other hand, this is not the

case for AN and SN(I = 1/2) systems, where very prominent contribution comes from the
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cross term of (11), and (11), components with the same SUj label (11).

The SU; contents of the YV systems are in fact widely employed in the literature for the
discussion at the baryon level. For example, in the Nijmegen model-F the hard core radii
are determined by assuming that they are the same within the same SU; representations.®
This is rather plausible assumption to make, since the quark-model Hamiltonian are approx-
imately tlavor singlet. As a natural consequence, we can easily expect that the quark-model
potentials are more favorably compared with the model-F than with the modei-D which
does not have this constraint. This is indeed found to be the case in Ref. 13) for the LS and
LS¢) forces. The agreement between the quark-model potentials and the Nijmegen modeis
is generally very reasonable. However, when the model-D and model-F give different pre-
dictions for the characteristic behavior, our quark model apparently supports the model-F.
We will show in the following sections that the same situation is true for the central force
of the Y ¥ interaction.

The SUs symmetry is a natural symmetry in the quark-model description of the Y.V
interaction, and it can be best studied if onc starts from the symmetric quark Hamiltonian
and introduces the FSB step by step. As the first step of such an approach, we discuss here
an interesting correlation between the behavior of the central phase shifts in Fig. 1 and the

spin-flavor-color factors of the exchange normalization kernel defined by
Xy =(-9)5 <& 1P 165> (29)

As is well-known in the nuclear cluster study of light nuclei, the eigen-values of the normaliza-
tion kernel is conveniently classified by the SU; irreducible representations, which is nothing
but the consequence of the SUj scalar property of the antisymmetrization operator.!® If we
neglect the small off-diagonal components with different cluster configurations o # o, we
can use Xy as a measure of attraction needed in each of the 16 phase shifts shown in Fig. 1.
This idea is further prompted by observing the explicit expressions of the p = 0 Wigner
transform for quark-exchange kernels given in Eq. (21) of Ref. 15) (See also Ref. 17}.). If the

FSB is neglected, all the spin-flavor factors of the quark central kernels are propotional to
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Xy except for the spin-dependent color-magnetic term. Therefore, it is indeed instructive
to examine Xy in order to understand the gross features of the 16 spin-flavor states of the
NN and YN systems. The behavior of central phase shifts shown in Fig.1 is summarized
in Table II together with the values of Xy. We find that, in each group of the even- and
odd-state phase shifts, the larger value of Xy corresponds to the stronger attraction. In the
even-parity states there are three cases with Xy = 1/9 that correspond to the attractive
phase shifts with the maximum values 60°, 36° and 19°in NN 'S, EN(I = 3/2) 'S and NN
45 chanuels, respectively. In three Xy = 0 cases, the maximum values are given by 23° for
AN 'S5, 6° for AN 35 and 4° for SN(I = 1/2) 2S. On the other hand, the strong repulsive
phase shifts in SN (I =1/2) 1S and EN(I = 3/2) 35 states have both large negative values
—~8/9 and —7/9, respectively. In the odd parity states the effect of X is somewhat weak-
ened due to the existence of the centrifugal barriers. Nevertheless, the same trend is almost
apparent; i.e.. the attractive phase shift up to 70° in TN(I = 3/2) 1P and that up to 9° in
TN(I =1/2) 3P have Xy = 1/3 and 5/27, respectively. The three states with Xy = —1
correspond to the weak repulsion observed in AN 3P, AN 'P and TN(J = 1/2) ' P. These
are almost degenerate with another group of NV 3P and EN(I = 3/2) 3P states, both
of which have Xy = —31/27. Finally, the P state of the NN system gives particularly
large negative value Xy = —7/3 and the strong repulsion. Since the eigen-values of the
normalization kernel in the single-channel systems with (0s)S or (05)3(0p) configurations are
given by u = 14 Xy (for even-parity states) or o = 1 + (1/3) Xy (for odd-parity states),
these features are nothing but the effect of the Pauli principle already discussed in Refs. 9)
and 20) for the S-wave states.

The above analysis strongly indicates that, as long as the FSB is neglected, our quark-
model description in terms of the Pauli principle and the short-range color-magnetic repul-
sion is on the right track for reproducing the gross features of the rich flavor dependence of
the Y’V interaction. In order to succeed in complete reproduction of the central phase-shift
behavior predicted by the Nijmegen potential, it might seem that one simply needs to sup-

plement the present quark model with almost state-independent medium-range attraction.
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We will see in the following sections that this is not entirely the case.

1. FORMULATION OF THE MODEL

Since the RGM formalism for the (3¢)-(3¢) system with simple harmonic-oscillator wave
functions is rather standard, we will mainly discuss in this section a couple of new features
that we need for an appropriate treatment of the ¢.m. motion in the Galilean non-invariant
intereaction and of the reduced mass.

The RGM wave function for the (3¢)-(3q) system can be written as

¥ =3 A {daxal(r)} (3.1)

where the channel wave function ¢, = ¢(“®€5¥¢C with a being specified by Eq. (2.8) is
composed of the spatial part of the internal wave function ¢(™® = p{e8)(123)¢(om)(456),
the color-singlet wave function £€ = C(123)C(456) and the isospin basis £5F of the spin-
flavor SUs wave functions defined by Eq. {2.6). The summation over a in Eq. (3.1) is
needed for the channel-coupling problem of AN and £N(I = 1/2) systems, which is not
actually discussed in this paper. For ¢{°"(123) we adopt a simple (0s)* configuration with
a common harmonic-oscillator constant b and the c.m. motion is eliminated with the use
of the usual definition of the c.m. coordinate X¢ = (x| + 2 + €3)/3. Namely, the orbital
function for the (3¢) clusters is assumed to be flavor-independent and taken to be the same
for all the octet baryons. The relative coordinate between the two clusters is denoted by r.
The antisymmetrization operator 4’ in Eq. (3.1) makes ¥ totally antisymmetric under the

exchange of quarks between the two (3¢) systems and can be reduced to the simple form
, 1
A== S(1-9Pg)(1-Fy) (3.2)

in practical calculations. It is normalized such that the normalization kernel approaches the
unit operator in the limit of infinite cluster separation. The operator Py = Pic™ PSF PS,

exchanges the quarks 3 and 6, and Py = Py4PysPj is the core-exchange operator which
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interchanges the two clusters as a whole. The relative-motion function xo(r) is assumed
to be parity-projected in such a way that the parity is compatible with the spin value
S and the flavor-symmetry phase P through the generalized Pauli principle of Eq. (2.4);
Xal=1) = (=1)° P xa(r).

Our quark interaction consists of a phenomenological quark confinement potential of the
quadratic type and a one-gluon exchange potential of the Fermi-Breit interaction. For the
kinetic-energy part we employ a simple non-relativistic expression, T; = m; + p2/2m;, since
the higher-order terms are absorbed to the redefinition of the reduced mass in the framework
discussed in the next section. Thus the quark-model Hamiltonian we use for the (3¢)-(3¢)

system is expressed as

H-ST4 3 hlad) 63

i=1 i<j=1

where the gq interaction Hy, is in general composed of the following pieces:'5’
Hoy = Ul + U 4+ UMC 4 UCC 1 28 4 UetS + U7 (3.4)

In Eq. (3.4), the superscript Cf stands for the confinement potential or the —(\; - A2)a.r?
piece, CC for the color-coulombic or (A, - Az)/r piece, MC for the momentum-dependent
retardation term or (/\1~)\2){(p1 -p2)+r(r-p))-pz/rz}/(lemzr) piece, GC for the combined
color-delta and color-magnetic or (A; - A2} {1/(2m%) +1/(2m3) + 2/(3mimy)(o ¢ - ag)}é(r)
piece, sL.S for the symmetric LS, aLS for the antisymmetric LS and T for the tensor terms.
Here r is the relative coordinate between two quarks.

In Eq. (3.3) we note that the total kinetic-energy operator is not subtracted from the full
Hamiltonian. In fact, this is purposely done, since the Galilean invariance is not respected
in our formulation. As is discussed in the introduction, the appearance of the Galilean non-
invariant terms is a direct consequence of the more strict Lorentz invariance at the relativistic
level. We will also deal with these terms by calculating all the physical quantities at the
total ¢c.m. system. In the RGM formalism this can be done as follows. Let O be any kind of
many-body operators of the (3¢)-(3¢) system, usually involving the derivative oprerators and

permutations of quarks. The RGM kernel for O at the c.m. system is calculated through
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<¢ab(r—R)|Ol¢ar0(1‘—R’)>—<b( G)Pa 8(r—R)|O|1-¢. b(r-R)>

- (%) / da < Te(Xg,0)¢aé(r — R)| O | Te(X g, a)pwb(r - R) > . (3.5)

where I',(X,a) = (27/7)*4exp{~7(X — a)?} and X is the c.m. coordinate of the 6q
system.

As an example of the above prescription, we calculate the direct term of the kinetic-energy
kernel in the momentum representation for the relative motion. For the mass dependence

in T; = m; + p2/2m,, we can use the relationship like

1 1 1 1 1
L Lig ! - Ny, (3.6)
mi Mg {3 (2+ A) + (1 /\) Y:} ’ (3.6)

in order to take into account the FSB explicitly. Here, A = m,/m,q and Y, is the hypercharge

operator for the quark ¢. A straightforward calculation through Eq. (3.5) yields

6
TPk, k) = < 6(X6)0ae® | ST | 1+ pure®™

=]
= Gaoe (2m)°8(k — k) (B0 + B ) (3.7)

where E‘f_’;) is the energy of the 3¢ system moving with the momentum k and is given by

2
(K) _ (K R 2 .
E}) = E{ )+2Mé,‘.)k (3.3)
with
(K) . z? 1 1 3
ENY =my2+A+0 - Y]+ = 2+—+(1——)y]
2 A A
1 1
2 2 (1-—)1/] . (3.9
M = o ra+ (i3 59

Here ¢ = YT and the non-dimensional parameter £ = (1/mygb) (which is almost always

around 1) is employed. The transformation to the RGM kernel is easily carried out, yielding

MEP(R,R) = < §(Xc)pad(r - R |2T |1 gub(r — R) >
(K) | (K hz 2\’
=6aa’ [(Eal +Ea2 ) - 2“5’1\) (’BT{') }6(R“ R’) . {3.10}
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where 4"/ is the reduced mass defined through 1/u{%) = 1/MK) 4+ 1/ME).
The momentum-dependent retardation term UMC in Eq. (3.4) can be similarly treated,
since this term has the structure of the two-body kinetic-energy term. The energy of the 3¢

system moving with the momentum k is now given by
ey _ 25 2w [y 200 :
EL = —‘/;Clsl mudgfa [1'“ ‘9‘(bk) ) (3.11)

where s is the quark-gluon coupling constant and the spin-flavor factor f¥° normalized

to unity for the nucleon is given by

fe 3/\} Kl + ;) _ (1 _ %) y] . (3.12)

The direct term of the RGM kernel for ¥2;_; UMC(i, j) is given by

MUEP(R,R) = o (EMO) + EMOY) {1 + 2 ( aiz) } SR-R) . (3.13)

where E(MC) = E(MC) in Eq. (3.11). Thus the internal-energy contribution from the U¥¢
term is naturally defined through the expectation value at the rest frame. [t is instructive
to compare the result of Eq. (3.13) with the direct RGM kernels for the other pieces of the
Fermi-Breit interaction; Q@ = Cf, CC and GC. These are given by

MEP(RR) = $6(R—R) (ED + EP)  for Q=Cf, CCand GC . (3.14)

By combining the results in Eqgs. (3.10}, (3.13) and (3.14), the direct part of the RGM kernel

is given by

Mga'(R’ R’) = 60&’

o GNEAY
(E.',’,” + E;',") TR (—Bﬁ) J SR-R) . (3.15)

where the internal-energy contribution E"! and the reduced mass p, are given by

int (92)
Ea - Z Ea '
O=K,Cf,CC,MC,GC

T S B GRIRT RS IR

16



If we set A = 1 and neglect the MC contribution in Eq. (3.18), we recover a simple result
= (3/2)myq. The MC term has a role to reduce the value of fha

We can now write down the RGM equation for the relative-motion function XolT) 88

m o\’
{50 + ™ <ﬁ—) } Xo(R) = Z/dR’ Gow(R.R') xo(R') . (3.17)

where the relative energy =, in the channel ¢ is related to the total energy E of the system

through ¢, = E — E;* — E" and the exchange kernel Goo{R. R} is given by

Goo (R, R) = ZM S R R)—eq ML (R R) . (3.18)

The summation in Eq. (3.18) is over Q = K, CC, MC, GC, sLS. aLS and T of Eq. (3.4),
among which the central components @ = K, CC, MC and GC need subtraction of the

internal-energy contributions through
MENR R = MR R - (B + E) MY RRY (3.19)

In Egs. (3.18) and (3.19) MY (R, R') and M2™*(R R') are the exchange normalization
and interaction (of the type ) kernels, respectively, and the internal energies are subtracted
in the prior form. The exchange kernel in Eq. (3.19), which is derived analytically for each
piece of the interaction, has the advantage that it is free from the internal-energy contri-
bution. In particular, the mass term of the kinetic-energy operator T, and the confinement
potential with Q = C'f exactly cancel out between the exchange part and the internal-
energy contribution in Eq. (3.19). We consider the latter feature one of the advantages of
the present RGM formalism, in which the baryon-baryon interaction is independent of the
strength of the confinement potential and is insensitive to the details of the confinement
phenomenology.

In order to apply the WKB-approximation'® to the RGM equation in Eq. (3.17), we
need to simplify the present coupled-channel formulation by neglecting the AN-IN(/ =
1/2) channel-coupling effect and the noncentral forces. The single-channel exchange kernel

Gaol R, R) for the (3¢)-(3¢) system is converted to the corresponding Wigner transform

through

17

ig. P 8 8
G¥.(R, P) = [ds P G, (R— SR+ 5) . (3.20)

The effective local potential, U;//(R). follows from G¥,(R, P) = G¥ (R%: P%(R- P)?) via

the transcendental equation

U (R) = G¥, (32 2o [ra = U (R)) 5 2B [0~ UH(R) - 22 (L4 5)) :

where L=0 or 1 for S- or P-wave.

IV. A SIMPLE ANALYSIS BY SAITO MODEL

The effect of the Pauli principle on the interaction between composite particles was
first studied by Saito in the case of the interaction between two a-particles.2!) What he
found is that, the most important role of the Pauli principle is taken into account as the
orthogonality condition on the relative motion with respect to the Pauli-forbidden states.
This leads to the almost energy-independent nodal behavior of the relative-motion function
in the overlapping region, which is interpreted as the origin of the phenomenological repulsive
core. To demonstrate the essence of this Pauli effect, Saito calculated the S-wave phase shift
in the RGM framework by retaining only the exchange kinetic-energy kernel. The resulting
phase shift at the low incident energies has shown such a behavior as is expected from the
hard-sphere scattering.

In this section we apply the Saito model to the (3¢)-(3q) system, and try to see if the
qualitative analysis in Section 2 can be extended to more realistic situation in which some
of the quark exchange kernels with the FSB is explicitly incorporated. We solve the RGM
equation with all the gq interactions turned off, except for the U™ term which gives the large
contribution to the reduced-mass term. Since the inertia mass is not correctly reproduced
in the usual non-relativistic quark model, it is essential to introduce a nice prescription to
reproduce the correct kinematics for the baryon-baryon scattering in such a way that the

reduced mass becomes exactly the empirical value, the Pauli principle is strictly respected
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and the flavor-symmetry content of each system is well reserved even in the realistic case with
the FSB. For the single-channel systems the above requirement is satisfied by multiplying
the Saito equation by the factor u,/ut*? with u&” being the empirical reduced mass, and by
redefining €qpt./ P as the physical relative energy £, corresponding to the wave number

k. through &, = (h*k2/ 2/4"?’) The Saito equation we solve is given by

fut 3 w (2 R)= [aR { L5 [ME(R.R) + MUORR)|
a e:p aR ezp 1 on

- é‘cx Mga(RvR’)} Xa(R,) - (41)

In other words, what we need is to replace the exchange kernel MX/{R,R’) and

MMO(R R')in Eqs. (3.17) and (3.18) by
MS’B(R R)= M(ﬁi (R,R)) for Q=K and MC . (4.2)

and at the same time to use the empirical reduced mass for p, and the physical relative
energy for ¢, in Eq. (3.17).

Before solving Eq. (4.1), we give the input parameters used in our model. The input
parameters of our model consist of the harmonic-oscillator constant b, the up-down quark
Mass M.q, the quark-gluon coupling constant s and the ratio of the strange to up-down
quark mass A\ = m,/m.e. The quadratic-type confinement potential has a special feature
that it does not contribute to the exchange kernel. We may take any arbitrary value for the

strength of the confinement potential. The numerical values of the other parameters are
b=06 fm, T.=313MeV, as=15187, A=12 , (4.3)

where the value of ag is determined so as to reproduce the N-A mass splitting correctly
through the color-magnetic term : i.e., {/2/Tasz®m,g = 440 MeV.'3) Since our purpose
is not to find the best fit to the experiment but to understand the global structure of the
phase-shift behavior in the NN and YN systems, the above standard values of b, m.q, and
ag are fixed in the following discussion. The value of X is tentatively chosen to be 1.25

unless otherwise specified. From the study of hadron spectroscopy assuming the pure (3¢)
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configuration, the strange quark mass is estimated to be about 150 MeV heavier than the
up-down quark mass, which leads to the value around A=1.6. The mesonic effect is expected
to reduce the value of X into around A = 1.25.*), With the quark parameters in Eq. (4.3)
the reduced mass p, of Eq. (3.16) for the LN system, for example, turns out to be 232 MeV,
which is only half of the empirical reduced mass ps#?=525 MeV. If the UM“ term is turned
off, the calculated value u, would be 485 MeV, which is still smaller than the empirical
value by 40 MeV. As a general feature of the present quark model, both kinetic-energy and
momentum-dependent terms have almost the same order of magnitude in the contribution to
the reduced mass, resulting in a rather pathological situation where the calculated reduced
mMass (i, is significantly smaller than the empirical mass. From the explicit expression in
Eqg. (3.16), one may think that this difficulty can be overcome by assuming almost twice
of the present up-down quark mass. This spoils, however, the simple picture of interacting
non-relativistic quarks nicely built so far in describing the hadron structure and various
low-energy hadron phenomena.

Fortunately, the above prescription largely cures this situation. In order to demonstrate
that this procedure indeed yields a very reasonable result, we compare in Table III the S-wave
phase shifts calculated for three typical groups with different X values; namely, attractive
ones with Xy = 1/9, almost zero with Xy = 0 and repulsive ones with Xy = ~8/9.
In this table the columns denoted by K + MC indicate results including both exchange
kinetic-energy and UMC terms. To examine the A-dependence of the phase shifts, we here
purposely employ two extreme values, A=1 and A=1.69. The latter value was chosen in our
previous study of the YN spin-orbit forces."¥ The columns denoted by K indicate that the
UMC interaction is aiso turned off. We find from Table III useful information concerning the
roles of the UMC term and the effect of the FSB in the exchange kinetic-energy and UM<
kernels. First of all it is remarkable that the effect of the UM term is rather moderate in
spite of the large variety of the factor { = p,/uc from about 0.4 to 1. The value one in
the NN case is simply because we have chosen the up-down quark mass as just one third

of the nucleon mass. In the NN system with Xy = 1/9 the effect of the U™ interaction
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is to reduce the attractive phase-shift values at most by 2 ~ 3 degrees. On the other hand.
in the repulsive phase shift in the SN(J = 1/2) 15 state with Xy = —3/9, the UM< term
plays the role of reducing the repulsion a little bit; i.e., about 5 degrees in the phase shifts at
Dias = 600 MeV /¢, for instance. This feature of reducing the Pauli repulsion turns out to be
favorable in the more complete calculation including the other quark-model kernels and the
effective meson-exchange potentials, since the Pauli repulsion of the quark-model potentials
is usually too strong. However, the most prominent feature of the present prescription is in
fact its amazing stability with respect to the introduction of the momentum-dependent non-
Galilean-invariant term UMC. Quite clearly, this is because the contribution of the exchange
kernel MPM)(R, R') in Eq. (4.1) is largely cancelled by the change of u, /1E%P which tesults
from the exact treatment of the direct contribution under the same approximation. Now
it is almost apparent that, even if we introduce the higher-order terms of the relativistic
corrections in the single-particle kinetic-energy operator, such a effect should be rather
minor as long as we deal with the direct term and the exchange term consistently.

We also stress that the present prescription is suited to study the FSB since it is based on
the strict RGM formulation where the reduced mass is calculated from the same Hamiltonian.
This means that, if we set A = 1 and choose the same incident wave number k,. the
degenerate SUs state like (22) in NN 'S and EN(I = 3/2) 'S channels yields exactly the
same values of the phase shift, in spite of the fact that we use the experimental reduced
mass. The small discrepancy of the phase-shift values between NN 15 and TN (I=3/2y's
channels with K + MC and A = 1 in Table II1 merely implies small difference of the incident
c¢.m. momentum k, between these two channels. We can thus study the effect of the FSB by
changing the value of A from unity to a some appropriate value while fitting the calculated
reduced mass to the correct empirical mass. In fact, the effect of the FSB in the exchange
kinetic-energy and momentum-dependent kernels themselves is usually rather moderate as
is seen from Table III, except for just one case. This exception includes AN 1S and 3S
channels with Xy = 0, in which the null phase-shift value at A = 1 decreases 1o about —6

degrees at pas = 400 MeV/c. The other phase shifts in N(J = 3/2) 'S and EN(I =1/2)
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35 states gain weak attraction of the order of g couple of degrees as A increases. However,
this does not mean that the effect of the FSB is weak in these channels when the other
quark-model potentials and the effective meson-exchange potentials are incorporated. In
this realistic situation, we will find in the next section that the effect of the large empirical
reduced mass in the ©N channel makes the phase shift of the IN(I = 3/2) 'S channel
strongly attractive compared with that of the NN 1§ channel, when a common effective
meson-exchange potential is introduced.

We show in Fig. 2 the 16 phase-shift curves calculated in the Saito model with the value
of A set equal to unity and with the '™ term turned off. In this particular case the model
becomes entirely parameter-free except for just one parameter b. As is already discussed
with Table III, characteristic behavior shown here is almost preserved even if we incorporate
the "M term and use the more realistic value A = 1.25. Since there is no need to repeat
the characteristic features of the phase-shift behavior discussed in Section I1, we give here
only a couple of comments related to the nature of the FSB observed in each system.

First, in the even-parity states of the NV system it is interesting to note that the Pauli
effect works attractively, since the eigen-value of the mormalization kernel is 10/9 which
exceeds unity. Thus the repulsion comes from the color-magnetic interaction for the even
partial waves, while it comes from the Pauli principle for the odd partial waves. Furthermore
the degeneracy of the 'S and S states in the Saito model is quite accidental, since they
belong to the different SU; representations (22) and (03), respectively. In fact the effect of
the color-magnetic interaction splits this degeneracy, but in the opposite direction to the
one expected in the empirical phase shifts in Fig. 1. This causes a serious problem that we
caunot use a common attractive potential even for the NN system. We have to introduce
stronger attraction for the 1S state than the 3§ state.

The next difficulty shows up in the TN(J = 3/2)1S channel. Since the SU; content
of this channel is (22) and is the same as that of the NN 15 channel, the spin-flavor-color
factors of the color-magnetic interaction for these cannels are the same as long as we assume

A = 1. This implies that a common central attractive potential for these channels with
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different reduced masses inevitably leads to more attractive phase-shift behavior for the
L N(I = 3/2) 'S channel than that for the VN 1S channel, which is again in the opposite
direction to the behavior in Fig. 1.

A similar situation to the one discussed above is also observed in the AN 35 and SN(/ =
1/2) *S channels. As is seen in Table I, these are the combinations of {11), and {03) SU3
states with the equal weight but the opposite sign. Therefore, if we again assume the
SUs limit and a common attractive potential, the LN channel should give slightly larger
attraction in the phase shift than the AN channel does, since the reduced mass in the TNV
channel is slightly larger than that of the ANV channel. This direction is further amplified by
the FSB already discﬁssed in Table III and also by that contained in the exchange kernel of
the color-magnetic term U/° in Eq. (3.4). Apparently, this is the opposite direction to the
phase-shift behavior seen in Fig. 1. There the AN 3$ phase shift is slightly more attractive
than that of the SN(I = 1/2) 3S system, although the difference is less than 5 degrees.
We should not overtrust the predictions by the central potentials of the Nijmegen model-F,
since these phase shifts should be modified by the noncentral (mainly tensor) forces and
the AN-EN(I = 1/2) trapsition potentials. In general, the model-F introduces stronger
AN-ZN(I = 1/2) coupling than the model-D does, so that the central phase shifts of the
present channels predicted by the model-D are about 11 ~ 12 degrees more attractive than
the corresponding ones in Fig. 1. Nevertheless, they are very much degenerate. This implies
that it is very dangerous to conclude that the FSB is negligible even if the two phase-
shift curves with the same SUj; content are almost equal to each other. We need careful
examinations of the FSB not only in the whole quark-model potentials, but also in the
effective meson-esxchange potentials introduced by hand in the next section.

Finally a short comment follows as to the P-wave phase shifts. Due to the centrifugal
barrier effect, the role of the FSB in the odd partial waves is generally rather modest.!® We
can therefore safely discuss the effect of each component of the exchange kernels in the SUs
limit of A = 1. In Fig.2 the SN(I = 3/2)! P phase shift is more attractive than that of the

LN(I = 1/2)3P state corresponding to Xy = 1/3 and Xy = 5/27, respectively. However,
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once the exchange kernel of the USC term is incorporated, it turns out that the latter one
becomes more attractive than the former one.

In summary, the present prescription is the most favorable one to study the FSB in
the RGM framework. We remark that the momentum-dependent retardation term U/MC
is treated differently from the other pieces of the Fermi-Breit interaction. We believe that
this is inevitable if we try to extend the non-relativistic RGM framework to the basically
relativistic system by retaining many nice features of the RGM. The most important finding
in this section is that the present quark model can explain the basic features of the NN
and YN phase-shift behavior even in its simplest version of the Saito model. We stress that
this clearly reveals the essential role of the Pauli principle and that the proper treatment

of the reduced mass as is done here is of prime importance to extract reliable and useful

information.

V. A REALISTIC ANALYSIS WITH EFFECTIVE MESON-EXCHANGE
POTENTIALS

Before proceeding to detailed discussions of the effective attractive potentials needed for
the realistic deseription of the NN and YV interaction, we briefly summarize the charac-
ters of the quark-model potentials except for those discussed in the preceding section. As
to the central potentials, these are the ones from the color-Coulombic term UCC and the
color-magnetic contact term U%C. The color-Coulombic term does not play any important
role in the baryon-baryon interaction, since this piece of interaction is just a small modi-
fication of the confinement potential with respect to the radial form. On the other hand,
the spin-dependent color-magnetic term is the origin of the short-range repulsion of the
NN interaction especially for the even-parity states. We therefore only need to discuss the
spin-flavor dependence of this repulsion for various channels of the NN and Y N systems.
The values of the Wigner transform with P = 0 and A = 1 at the most important distance

{R| =1 fm are classified into three groups for each parity state, depending on the magni-
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tudes of the repulsion. The NN 1§, EN(I = 3/2)!3S and AN 'S channels have 60 ~ 70
MeV, the NN3S has 38 MeV, and the TN(I = 1/2) 136 and AN 3S have about 20 MeV.
The NN L3P, SN(I = 3/2)3P and AN 3P have 60 ~ 80 MeV, the ' P states of AV and
TN(I=1/2 and 3/2) have 30 ~ 45 MeV, and the N(I = 1/2)32 has only 8 MeV. From
this comparison we can confirm that the splitting of the NNV 1S, 35, and TN(/ = 3/2) s
phase shifts shown in Fig. 1 is not possible if we dwell on a common attractive potential, the
finding already discussed in the preceding section.

Next we discuss the effective attractive potentials adopted in this investigation. Asis
already discussed in the introduction, we generate the effective local potentials ¥'*// through
the meson-exchange potentials between quarks without calling for their microscopic origin
and foundations. The reason for doing this is of course to reduce the number of parameters
introduced in these phenomenological ingredients, and to gain the insight into the minimum
augmentation of the cffective meson-exchange potentials. It has also an advantage that we
can use the rich knowledge accumulated so far with respect to the roles of mesons with full of
variety. For example, the OBEP’s for the NN interaction are generally characterized by the
scalar-mesons responsible for the medium-range attraction, the pseudo-scalar mesons for the
tensor and spin-spin central forces, and the vector mesons for the short-range repulsion and
the spin-orbit force. Among these the effect of vector mesons is particularly short-ranged
and is expected to be accounted for by the quark-model potentials. We have examined
the spin-spin central components predicted by the quark-model potentials in the present
Wigner-transform RGM techniques, and found that they have very nice flavor dependence
similar to that of the Nijmegen model-F potentials with respect to the NV and Y NV systems.
We therefore omit vector mesons with the reservation that they may somehow modify the
conclusion obtained by using only the scalar and pseudo-scalar mesons. Furthermore, the
effect of spin-spin part of the pseudo-scalar mesons is rather weak compared with the very
strong cental force afforded by the scalar mesons. Although the spm-spin part of the long-
range one-pion exchange potential is of course very important in the detailed description of

the low-energy phase shifts in high partial waves, we consider that the incorporation of this
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type of component is the next step to refine the present result. After all, we adopt only the
spin-independent central force originating from the scalar mesons, in order to make a step
toward the understanding of the basic features of the central attraction for the NN and YN
systems.

The effective local meson-exchange potential is constructed by folding the OBEP with
the density distribution of the (3q) clusters, which is equivalent to using the form factor
exp{~(bg)?/6} in the momentum space. Then V57 of the BN channel for a scalar meson

3 =€, S*. 6 or k with the mass mg is given by

N =€ S, ¢
Vi (R) = ~ fanofus ms Y (z)  for B ‘ (5.1)
fenafang B=kK .

where © = mg|R|, a9 = (m3b)2/3 and Y,(z) is the modified Yukawa function defined by

Yalz) = %{e" [1+erf(%— a)] — e [1 —erf(Q—j—c_y+ \/a>] } . (5.2)

As is seen from Eq. (5.2), the asymptotic behavior of Y,(z) for z — oo is not the simple
Yakawa function Y(z) = Yo(z) = e™®/z but e* Y(z). The factor e* becomes fairly large
for heavy mesons; for example, it increases from 1.06 for 7 to about 6 for ¢« meson with the
mass m, ~ 760 MeV. This factor is sometimes absorbed into the definition of the coupling
constants, in order to ensure the correct asymptotic behavior of the one-pion exchange po-
tential with the empirically determined value of the NN coupling constant.”) We, however,
keep this factor as it s, since in any case the overall strength of the effective meson-exchange
potentials should be readjusted to reproduce the NN phase shifts.

In Eq. (5.1), the formulation is given for any kind of mesons of the scalar-meson nonet
components, and fppp are the baryon-meson coupling constants determined from the stan-
dard SUs relations. The reason why we have to use the scalar-meson nonet as in the
Nijmegen model-F is almost clear from the discussion given at the last part of the preceding
section. The introduction of only the flavor-singlet ¢ meson as in the Nijmegen model-D
cannot reproduce the characteristic features of the NNV and Y NV phase-shift behavior shown

in Fig. 1. In fact, if we introduce the central attraction generated from the ¢ meson of the
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model-D and adjust the strength to fit the NN 'S phase shift following the procedure de-
scribed below, we find that the same attraction applied to the ZN(I = 3/2) 1S channel gives
the phase-shift values of 61.7° for A=1 and 70.4° for A=1.25 at pre» = 200 MeV /¢, which is
too large as is seen from Fig. 1. The increase of the attraction from A = | to A = 1,25 is due
to the weakening of the repulsion of the color-magnetic term. To seek a central attractive
potential with suitable flavor dependence, we inevitably need to employ the OBEP with the
scalar-meson nonet. We show in the following that the scalar-meson nonet of the Nijmegen
model-F potential gives exactly the desired feature. To determine the coupling constants
fpes through the SUs relations, we need four SU; parameters, « (the F/F+D ratio}, § (the
mixing angle between singlet and octet isoscalar mesons), f; (the singlet coupling constant)
and fs (the octet coupling constant). These parameters and the meson masses my are taken
from the Nijmegen model-F without any alteration.

We first determine the effective local potential by solving the transcendental equation
given in Eq. {3.21) and then calculate the phase shifts with this potential. The Wigner
transform of the exchange kernel of Eq. (3.20), for the single-chanuel RGM equation with

the modification of the effective meson-exchange potentials is given by

G¥ (R, P) =GIV(R, P) + GMW(R,P) + GO (R, P) + GCOW (R, P)

—ea GUW(R, P)+ (Y Vs (R) 1+ GEV(R.PY) . (53)
B

where the summation of 3 is over ¢, $*, § and k. The multiplicative factor Cp controls the
balance of the interaction between the (3¢)-(3¢) quark-model contribution and the effective
meson-exchange contribution. It is chosen to be the same for all the nonet mesons but
may depend on the flavor symmetry phase P. This flavor-symmetry dependence turns
out to be inevitable to simultaneously fit the central phase shifts of the 'S and 35 states
of the NN system with the effective meson-exchange potentials generated only from the
scalar mesons. Furthermore, a better fit of the phase shifts is obtained by allowing a slight
energy-dependence in Cp. In general, the effective meson-exchange potentials constructed

by the folding procedure turns out to be fairly attractive at the short distances, and to
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reduce the repulsion of the quark model significantly. The physical reason for weakening
the contribution of the mesonic part by this energy-dependence is that the short-range
part described by the quark model must be more important as the energy increases. The
parameters of Cp determined by fitting the S-wave phase shifts (1S and %S} of the NN

system are

C =056e c®k? | =033 0k (5.4)

where k% = (2uqa./h°) With p, being the empirical reduced mass.

Since the nonlocal RGM kernel of the form vN V¢//\/N is reduced to the algebraic
multiplication in the WKB-approximation, we can dispense with the complexity arising from
the square root of the normalization kernel. This WKB-RGM formalism further enable us to
define the phase-shift egivalent local potentials, if the solution of the transcendental equation
is obtained. It sometimes happens, however, that a real solution cannot be obtained because
the local momentum turns into complex.'” This usually takes place when the repulsion
due to the effect of the Pauli principle is too strong and the semi-classical approximation
fails to simulate such purely quantum-mechanical phenomena. Due to this restriction, the
numerical result will be shown below ounly for the following NN and YNV channels; ie.,
NNL3§ AN13S, TN(I =3/2)1S, EN(I = 3/2)'P and ZN(I =1/2)3P channels.

Figure 3 displays the S- and P-wave phase shifts calculated in the WKB-RGM formalism
with respect to these solvable cases. The 'S phase shifts of the flavor-symmetric channels
are generally in good agreement with the predictions by the Nijmegen model-F. Owing to
the SUj relations of the coupling constants and the singlet-octet meson mixing, the splitting
of the NN and TN(I = 3/2) phase shifts is naturally explained. In addition to this, the
AN phase shift has the right order of magnitude without any adjustment of the parameters.
In the case of 35 states the phase-shift difference between the NV and AN systems agrees
well with the prediction of the Nijmegen model, although the fall-off of the phase shifts at
high energies is still a little too slow. Since these channels are subject to be improved by the

tensor force, we postpone the detailed discussion of the energy dependence. The equivalent
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local potential for the £N(I = 1/2) *S channel cannot be obtained for A = 1.25. However,
if we choose a little smaller value A = 1.1, we can obtain a solution of the transcendental
equation. The resultant phase shifts calculated with this potential agree with those of the
AN 35S channel within a few degrees and show slightly more repulsive behavior than the
laster in accordance with the Nijmegen result.

In contrast to the S-wave cases, there arises a conspicuous difference in the behavior of
the P-wave phase shifts between the present model and the Nijmegen model, especially in
the LN(J =3/2) 'P channel. The EN(] = 1/2) 3P phase shift indicates that the potential
in this channel is more attractive than that in the EN(J = 3/2) ' P channel. This is opposite
to the phase-shift behavior shown in Fig. 2, where only the effect of the Pauli principle is
incorporated through the kinetic-energy type exchange kernels. This inversion took place
from two reasons. The first one is that the repulsion from the color-magnetic term is stronger
in the TN(I = 3/2) 'P channel than in the TN(J = 1/2) *P channel, as is shown in the
beginning of this section. The second reason is that the central attraction from the effective
meson-exchange potentials is stronger in SN (I = 1/2) P channel than in IN(I =3/ 'P
channel, since C) is larger than C_;. On the other hand, the Nijmegen model-F suggests that
the potential in the TN(I = 3/2) ' P channel is strongly attractive, showing a resonance-like
behavior. In the Nijmegen model-F, the hard-core radius of the Y N potential is determined
for each SUj representation of the two-baryon configurations. Since the SU; content of the
LN(I = 3/2) ' P system is (30) and has no direct connection to any other VN, AN and ¥~
channels, the hard core radius of this channel is not well determined. The Nijmegen group
determined the radius by fitting the low-energy St+p scattering differential cross sections of
large error bars. We will show in a separate paper?® that our phase shifts reproduce the
low-energy E*p cross sections equally well, but do not give a big rise in the cross sections
around py ~ 450 MeV /¢ unlike the Nijmegen hard-core models. The T+p experiments will
be very useful in this respect.

Figure 4 exhibits the equivalent local potentials for the NN and YN 'S channels at

two incident momentums pias = 200 and 600 MeV/c. The potential depth at 1 fm and at
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Piap = 200 MeV /¢ is 61, —45, and ~33 MeV for the NN, EN(I = 3/2), and AN systermns,
respectively. It decreases when the energy increases. The core height at the origin is fairly

low.

VI SUMMARY

A resonating-group (RGM) formulation of the (39)-(3¢) system in the SUs quark model
is presented to study the central part of the hyperon-nucleon (V' N) interaction. The quark-
quark interaction taken from the Fermi-Breit interaction includes the color-Coulombic term,
the momentum-dependent retardation term and the color-magnetic contact term. The con-
finement potential put in by hand plays no active role in producing the YN interaction.
Since the physics of YN properties is basically the study of the favor symmetry breaking
{FSB). it is important to use such a formalism that makes the consequence of the breaking
as transpafent as possible. For this purpose we have extensively used the spin-flavor SUs
symmetries of the Y'V systems. Assuming that the spatial part of the octet baryon is flavor
independent, we have introduced the FSB through the mass difference of the strange and up-
down quarks and the mass difference among the octet baryons: The former appears through
the mass term of the Fermi-Breit interaction, while the latter gives substantial effects on the
phase-shift behavior via the reduced mass of the Y’V relative motion.

We have pointed out that the basic features of S- and P-wave YNV interaction exempli-
fied by the Nijmegen models can be best understood in the classification of the spin-flavor
symmetry of the Y’V system. It is possible not only to clarify the close relationship Between
the quark Pauli effect and the phase-shift patterns, but also to correlate the qualitative
nature of the interaction strength among the ¥ N systems. This important result has been
demonstrated by solving the RGM equation with the quark-quark interaction turned off.
This analysis is further extended to show two characteristic properties of the medium-range
central attraction which is missing in the (3¢)-(3¢) quark model: One is that the needed

attraction must be stronger in the falvor symmetric channels than in the antisymmetric

30



channels. The other is that the needed attraction must have proper dependence on the YNV
channels, because otherwise one cannot reproduce the splitting of the phase shifts of the
Y N systems. We stress that this conclusion can be reached only when proper care is taken
of the reduced mass of the YN system. Since the momentum-dependent retardation term
gives a large contribution to the reduced mass, it is important to calculate the direct and
the exchange terms of this piece of interaction exactly in the total center-of-mass system.
The exchange kernel is then renormalized such that the whole momentum-dependence from
the direct terms takes the form of the standard non-relativistic kinetic-energy term with
the correct empirical reduced mass. This procedure utilizes the advantages of the RGM
framework that a particular contribution of the quark-model Hamiltonian can be isolated in
the analytic form and enables us to temper rather drastic effect of the relativistic correction
in the present non-relativistic framework.

The flavor-dependent medium-range effective attraction has been conveniently con-
structed from the scalar-meson nonet exchange potentials of the Nijmegen model-F. The
spatial structure of the octet baryon is taken into account in constructing the effective at-
tractive potentials through the form factor of the (3q) clusters. We have applied the WKB
approximation to the RGM equation with this effective meson-exchange potentials to caleu-
late the phase shifts and the phase-shift equivalent local potentials. Two parameters which
determine the strength of the effective attraction are fixed to fit the NN 'S and %S phase
shifts. With only these two parameters, various YV phase shifts have exhibited a nice corre-
spondence with those given by the Nijmegen model-F. The resultant YV central potentials
are found to be less attractive than the NN potential, which leads to the splitting of the ¥ NV
and YN phase shifts. The FSB of the medium-range attraction dominantly originates from
both the singlet-octet meson mixing and the mass difference in the scalar-meson nonet. An
only noticeable disagreement is the TN({ = 3/2) }P phase shift: The Nijmegen hard-core
model shows a resonance-like behavior at py ~ 450 MeV /¢, while our model gives rather
moderate attractive phase shifts.

There remain a few problems for further studies. One is concerned with the fact that
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the reduced mass is not correctly given in the RGM framework. The procedure given in the
present paper can be applied to a single-channel case, but is not straightforwardly applicable
to coupled-channel problems such as AN and IN(J = 1/2) systems. The second is that
we have to go beyond the WKB-RGM formalism. This is obviously necessary since in
some channels we do not have physical solutions of the transcendental equation. To avoid
this situation, we have to solve the RGM equation directly for the systems in which the
medium-range attraction emerges from some appropriate quark-quark interaction. As we
have found in this paper, the medium-range attraction must have proper flavor dependence.
It is not, however, apparent nor unique how such flavor dependence should be realized from
the underlying quark-quark interaction. The third is that we have to calculate cross sections
to have more complete understanding of the Y'N interaction. Obviously, we have to consider
non-central parts of the interaction. As we have discussed in Ref.13), the spin-orbit force
can be accounted for by the quark model. It is clear that the tensor component is not given
sufficiently in the quark model. In the fortcoming papers,?? we plan to extend the present
model by including the spin-spin central and tensor terms from the pseudo-scalar #- and

K-meson exchanges.
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Table IT1I. The S-wave phase shifts caluculated in the Saito model for channels with
three different Xy values. The simbol K stands for the calculation including only the
kinetic energy term, and K + MC both of the kinetic-energy and U*€ terms. The
parameter X denotes the ratio of the strange to up-down quark mass my/muqe. The

Table I. The SUs content of the isospin basis By Ba with the definite flavor symmetry
P. See Eq.{2.5). The SU; label (Au) or {11}, denotes the SUs-coupled basis in Eq.(2.1}.

P = +1 (symmetric) P = —1 (antisymmetric) ratio ¢ = fio/pE7 in Eq. (4.1) or (4.2) is also shown.
! ‘Eoor 30 3 or 10
0 - NN = (03) Xv=3 Xyv=0
1 NN =(22) - Dlab NN 135 NS AN 135 | ©N(L)3s
1/2 | AN = Jal(11), + 3(22)] AN = 2[~(11), + (03)] (MeV/c) K K+MC K +MC K+MC | K+MC
1/2 | BN = Js(3(11), - (22)] SN = J5[(11)a +(03)] - - A=1 A=169 | A=169 | A=169
3/2 TN = (22) TN = (30) ¢ =1.000 | ¢ =04691 | ( =0.4192 | ¢ = 0.4679 | ( = 0.4822 | ¢ = 0.4679
200 10.49 8.18 7.52 9.61 —4.45 0.91
400 12.15 9.98 10.09 12.23 —6.16 1.19
600 8.78 7.54 8.60 9.93 —4.63 0.88
300 4.62 4.12 5.59 6.17 —-2.05 0.42
1000 1.39 1.24 2.62 2.79 -0.51 0.12
Table II. The S-wave and P-wave phase-shift behavior of the Nijmegen model-I central 0
potentials classified by the flavor exchange symmetry P and by the spin-orbital quan-
tum numbers 25+1L. The spin-flavor-color factors, X, of the exchange normalization
kernel are also shown for comparison.
XN = —3
P =41 P=_1 Plab EN($) 'S
BB, | I 5 ip 5g 5 (MeV/c) K K+ MC
A= A=1 A =169
phase shift | X | phase shift { Xy | phase shift | X» | phase shift | Xy
o - - - - o | swonE |1 ¢ =0.8935 | ¢ =0.4192 | { = 0.4679
Sl wesk | P | repulsion | 200 | -2410 | -2238 | -23.03
NN 11 <60 9 repulsion | ~ 27 - - - -
v Lol cor o | weak | 1| g o | weak 1 400 —46.90 | —43.45 | —44.72
2 repulsion repulsion | ©
on | 1| stomg | s o 5 e | o | weak X 600 | —67.19 | -6202 | —63.86
V13| repuision | Ts | < a N repulsion | 00 83.70 76.78 79.11
SN (3] <36 | 1| ek |_m| SUOBE ) 1| <700 | 4 5 e o o
2 o | repulsion | %7 ] repulsion | 91 = : 1000 | —92.81 | —8384 | -86.59




Figure Caption

Figure 1. The S- and P-wave phase shifts calculated with the central potentials of Nijmegen

model-F. The coupling potential between AN and ZN(I = 1/2) channels is turned off.

Figure 2. The S- and P-wave phase shifts calculated in the Saito model. The momeatum-
dependent retardation term U¥¢ is turned off. The value of A is set equal to unity. The
round brackets imply small difference of the phase shifts originating from the baryon masses

used in the c.m.-lab. transformation of the incident momentum.

Figure 3. The comparison of the phase shifts between the present model and Nijmegen
model-F. Closed circle(s), cross( x ), square(0) and diamond(®) denote VN, AN, EN(I =

3/2) and EN(I = 1/2) phase shifts of Nijmegen model-F, respectively.

Figure 4. The equivalent local potentials of the 1S channel at p, = 200 and 600 MeV/c.

Solid, dashed and dash-dotted curves correspond to NN, AN and IN{I = 3/2j cases,

respectively.
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