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We compute the spectrum of the low-lying mesonic states with vector, scalar and pseudoscalar quantum
numbers in QCD with one flavor. With three colors the fundamental and the two-index antisymmetric
representations of the gauge group coincide. The latter is an orientifold theory that maps into the bosonic
sector of N ¼ 1 super Yang-Mills theory in the large number of colors limit. We employ Wilson fermions
along with tree-level improvement in the gluonic and fermionic parts of the action. In this setup the Dirac
operator can develop real negative eigenvalues. We therefore perform a detailed study in order to identify
configurations where the fermion determinant is negative and eventually reweight them. We finally
compare results with effective field theory predictions valid in the large NC limit and find reasonably
consistent values despite NC being only three. Additionally, the spin-one sector provides a novel window
for supersymmetric dynamics.
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I. INTRODUCTION

Understanding the dynamics of strongly coupled gauge
theories, such as QCD, has motivated the construction of
several expansions complementary to the standard, pertur-
bative, weak coupling expansion. One of the most promi-
nent examples is the large NC limit (where NC is the
number of colors), introduced by ’t Hooft in Ref. [1]. In this
case one keeps quarks in the fundamental representation of
the gauge group SUðNCÞ and organizes an expansion in
1=NC using a diagrammatic approach. Several properties of
QCD can then be understood in a simple way, suggesting
that NC ¼ 3 is “large.” However, since quark loops are
suppressed in this expansion, the properties of the η0-meson
are not well reproduced in the ’t Hooft large NC limit.
Baryons also become increasingly heavy as NC grows.
Partly motivated by that, Corrigan and Ramond (CR)

introduced a different large NC expansion in Ref. [2], in

which quarks transform according to the two-index anti-
symmetric representation of the gauge group. While
’t Hooft and CR expansions coincide for NC ¼ 3, they
are very different in the large NC limit. Notably, in the CR
expansion, quark loops are not suppressed as NC → ∞.
A simple scaling of the dimensionality of the representa-
tions of the quark fields suggests that the CR large NC limit
may share nontrivial dynamical properties with supersym-
metric theories. This relation has been made precise by
Armoni, Shifman and Veneziano in Refs. [3,4], where a
connection between the mesonic sectors of the two-index
(anti)symmetric theories and of N ¼ 1 super Yang-Mills
theory (sYM) is established. The subtle issues of the
confinement properties and (in)equivalences at large NC

were investigated in Ref. [5]. Further developing the
correspondence, in Ref. [6] supersymmetry inspired effec-
tive Lagrangians have been constructed for gauge theories
featuring one Dirac fermion transforming either in the
symmetric or in the antisymmetric two-index representa-
tion of the gauge group SUðNCÞ (orientifold theories).
At leading order in the 1=NC expansion such effective
theories coincide with that of supersymmetric gluo-
dynamics restricted to its mesonic sector. These corre-
spondences imply that nonperturbative quantities computed
in orientifold theories can be related, up to 1=NC effects,
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to the analogous ones in sYM. By considering 1=NC

supersymmetry breaking effects, including the explicit
ones due to a finite quark mass, a number of predictions
are made in Ref. [6] concerning the spectrum of the low-
lying mesonic states.1 In this work we confront such
predictions with nonperturbative results produced by
means of lattice simulations. For simplicity, in this first
study we only consider NC ¼ 3, which corresponds to one-
flavorQCD.This has the advantage that available simulation
packages for lattice QCD can be used without having to
develop new code for handling representations of the
fermionic fields different from the fundamental one.
Future studies will be devoted to the extension to
NC > 3. Intriguingly, by flipping the point of view
(cf. Refs. [5,8]), we can use QCD results to learn about
the spectrum and dynamics of supersymmetric theories, in
particularN ¼ 1 sYM. Analytic and numerical studies can
now be employed to investigate several dynamical proper-
ties, including the theta-angle [6].
One-flavor QCD has been the object of several previous

lattice studies. The qualitative behavior of the theory has
been discussed in Ref. [9]. In Ref. [10] the quark con-
densate has been computed by comparing the density of
low-lying eigenvalues of the overlap Dirac operator to
predictions from random matrix theory [11,12]. The result
is consistent with the prediction for the gluino condensate
in sYM obtained in Ref. [13]. Using Wilson fermions,
Ref. [14] presents a computation of the low-lying hadronic
spectrum of one-flavor QCD. We improve here on that
computation by considering a finer lattice spacing, larger
volumes and a tree-level improved fermionic action. In
Ref. [15] the one-flavor SUð2Þ vector gauge theory with the
fermion in the fundamental representation is studied as a
possible composite model for dark matter (DM). The Dirac
operator is discretized using Wilson’s regularization. The
fundamental representation of SUð2Þ is pseudo-real mak-
ing the global symmetries and dynamics different from
three colors QCD. In particular, the dark-matter model of
Ref. [15] features a mass-gap with vector mesons being the
lightest triplet of the enhanced SUð2Þ global symmetry.
A similar DM model based on SUð2Þ gauge theory with
scalar quarks was proposed in Ref. [16].
Finally, in Ref. [17] the single flavor SUð2Þ theory is

considered with the fermion in the adjoint representation.
The goal in this case is to gain insights on the emergence of
the conformal window. Again the Wilson Dirac operator is
used in the numerical simulations. As is highlighted by this
brief review, one-flavor QCD is implemented on the lattice
by adopting either overlap (or more generally Ginsparg-
Wilson) or Wilson fermions. That is because in those cases
the single-flavor lattice Dirac operator can be rigorously
defined. Wilson fermions are computationally cheaper but

in such regularization the spectrum of the Dirac operator
may contain real negative eigenvalues for positive (but
small) quark masses. That might cause a sign problem as
the fermion determinant may become negative on some
configurations. Following Refs. [18–21] we discuss in
detail how we monitor such cases.2

Earlier numerical investigations of orientifold theories
[23,24] used the quenched approximation where the sign
problem is absent.
Directly simulating supersymmetric gauge theories on

the lattice has been an active research field for many years.
Since the literature is vast we refer the reader to the recent
review in Ref. [25] and references within for a discussion of
the status and open problems.
A preliminary account of the results we present in

this paper appeared in Refs. [26,27]. The latter in
particular contains some algorithmic exploratory studies
for NC ¼ 4, 5, and 6.
The remainder of this paper is organized as follows. In

Sec. II we describe our computational setup and provide
algorithmic details. In Sec. III we investigate the conse-
quences of the sign problem in our simulations. In Sec. IV
we report on the correlation function fits required to extract
the spectrum at nonzero quark masses, before extrapolating
the meson spectrum to vanishing quark masses in Sec. V.
Finally, in Sec. VI we confront the effective field theory
predictions with our results and provide an outlook.

II. SIMULATION SETUP

For the gauge part of the action, we employ the
Symanzik improved gauge action [28] with a fixed value
for the gauge coupling of β ¼ 4.5. As fermion action we
use one flavor of tree-level improved Wilson fermions [29]
and set the parameter of the clover term to 1. The Wilson-
Dirac operator D in clover improved form is defined as
follows

Dðm0Þ ¼
1

2

X3
ν¼0

ðγνð∇�
ν þ∇νÞ − a∇�

ν∇νÞ

þ acSW
X3
ν;ρ¼0

i
4
σνρF̂νρ þm0; ð2:1Þ

where a is the lattice spacing,m0 is the bare quark mass and

∇ð�Þ
ν denotes the covariant forward (backward) derivative.

The hopping parameter κ is related to the bare mass m0

by 1=κ ¼ 2ðam0 þ 4Þ.
In order to map out the relevant parameter space we

generated 19 gauge field ensembles covering different
hopping parameters κ between 0.1350 and 0.1410 and

1A string theory dual of orientifold theories has also been used
in Ref. [7] to make predictions in the massless limit.

2An alternative approach relying on the Arnoldi algorithm to
compute the eigenvalues of the non-Hermitian Wilson Dirac
operator has been introduced in Ref. [22].
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volumes ranging from 123 × 64 to 323 × 64. An overview
of the simulation parameters can be found in Table I.
We measure the topological charge Q by integrating the

Wilson flow [30] using a third-order Runge-Kutta scheme
with a step-size of ϵ ¼ 0.01 and 1600 integration steps. The
topological charge at the largest flow time (t=a2 ¼ 16) is
shown for all ensembles in Fig. 19 in Appendix A. The
topological charge behaves as expected: its distribution is
narrower for lighter quark masses and broader for larger
volumes [11]. The Wilson flow further allows us to
estimate the lattice spacing (via the reference flow scale
t0) by studying the Yang-Mills gauge action density as a
function of flow-time [30]. Since our goal is to determine
dimensionless quantities, we only quote the lattice spacing
in order to enable qualitative comparison with other lattice
calculations. As there is no reference scale for a single
flavor (Nf ¼ 1), we use the average of t0 from Nf ¼ 0 [30]
and Nf ¼ 2 [31] as an estimate for the lattice spacing with
Nf ¼ 1. In practice, we use a value of

ffiffiffiffiffiffi
8t0

p ¼ 0.45 fm.
This allows us to obtain an indicative value for the lattice
spacing of a ≈ 0.06 fm.
All configurations are generated using the OPENQCD

software package [32]. Since we only simulate a single
fermion in the sea, it is necessary to use the rational
hybrid Monte Carlo (RHMC) algorithm [33]. In the rational
approximation we adopt a Zolotarev functional of

degree 10. In the absence of prior knowledge about the
optimal Zolotarev approximation—in particular for just one
flavor—we choose a conservative range of 0.002 and 9.0 as
a lower and upper bound for the position of the poles. In
comparison with Ref. [21] this is a rather loose approxi-
mation, which is relevant for the tunneling between regions
of configuration space with positive and negative determi-
nants of the Dirac operator. In addition, we include
frequency splitting, i.e., we factorize the Zolotarev rational
into two terms, where the first factor contains the poles 1 to
5 and the second term the contribution from poles 6 to 10.
Throughout the entire generation, we adopt three levels of
integration schemes. The outermost employs a second-
order Omelyan integrator [34] with λ ¼ 1=6, which is used
for the contributions from poles 6 to 10. For the inner two
levels we use fourth-order Omelyan integrators, where the
remaining fermion force is calculated in the second, and
the gauge forces in the innermost level. We tune the number
of fermion integration steps (ML steps) in the different
levels to achieve a high acceptance (between 84%
and 99.9%, c.f. Table I). The pseudofermion actions and
forces are obtained using a simple multishift conjugate
gradient solver. For ensembles with a lighter quark mass,
i.e., with larger values of κ, we take advantage of the
deflated SAP [35,36] preconditioned solver given in the
OPENQCD framework. The trajectory lengths of our ensem-
bles are typically between 2 and 3 molecular dynamic
(MD) units. In our analysis, we use every 32nd (or 40th)
trajectory, which implies that configurations are at least
64 MD units apart from each other. For each ensemble the
resulting number of configurations Nconfig on which we
perform all measurements is listed in Table I. To increase
the amount of statistics and to utilize smaller computing
resources more efficiently, we branch our simulation stream
into multiple replicas after thermalization is reached.
Since the Zolotarev approximation in the RHMC is not

exact, we correct our observables by using a reweighting
scheme. To achieve this, on each configuration we compute
four estimators for the reweighting factors wi using code
from the OPENQCD package. The correctly reweighted
gauge average of an observable O is then given by

hOirew ¼ hwOi
hwi ¼ hw0Oi; ð2:2Þ

where we define w0 ¼ w=hwi. Figure 1 shows these
normalized reweighting factors w0 as a function of the
trajectory length (excluding any thermalization times) for
two representative ensembles (L=a ¼ 32, κ ¼ 0.1390 and
L=a ¼ 24, κ ¼ 0.1405). In Fig. 2 we show the variation
of the reweighting factors for all ensembles and observe
that the fluctuations increase with volume, but are insensi-
tive to the quark mass.
As the phase space of this theory in the regularization we

have chosen is a priori unknown, we computed the trace of

TABLE I. Overview of the lattice ensembles generated in this
study. All configurations are at a fixed gauge coupling of β ¼ 4.5
and a fixed temporal extent of T=a ¼ 64. The simulation
parameters were tuned to achieve a high acceptance with a large
trajectory length τMD. We refer the reader to the text for the
definitions of the parameters.

L=a κ ML steps τMD Δcfg (MDU) Nconfig Acceptance

12 0.1350 1,1,6 2.0 64 877 0.998
12 0.1370 1,1,6 2.0 64 778 0.997
12 0.1390 1,1,6 2.0 64 731 0.996
12 0.1400 1,1,6 2.0 64 674 0.996

16 0.1350 1,1,8 3.0 120 1512 0.999
16 0.1370 1,1,8 3.0 120 539 0.998
16 0.1390 1,1,8 3.0 120 1189 0.997
16 0.1400 1,1,8 3.0 120 959 0.994
16 0.1405 1,1,8 3.0 120 686 0.991
16 0.1410 1,1,10 3.0 120 989 0.957

20 0.1350 1,1,6 2.0 64 503 0.996
20 0.1370 1,1,6 2.0 64 180 0.993
20 0.1390 1,1,8 3.0 120 346 0.993

24 0.1350 1,1,10 2.0 64 360 0.999
24 0.1390 1,1,6 2.0 64 324 0.986
24 0.1405 1,1,6 2.0 64 286 0.966
24 0.1410 1,1,9 2.0 64 593 0.841

32 0.1390 1,1,6 2.0 64 180 0.979
32 0.1400 1,1,6 2.0 64 376 0.967
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the Polyakov loop. We find that the Polyakov loop vanishes
within errors on each ensemble, which indicates that we are
simulating in the confined phase.

III. EIGENVALUE ANALYSIS

The use of Wilson fermions for lattice QCD with an odd
number of quark flavors or with nonmass-degenerate (light)
quarks can introduce a sign problem. This occurs because
the configuration space is divided into two sectors, one
associated to a positive sign of the fermion determinant and
one to a negative sign. These sectors are separated by a zero
of the fermionic measure. Note that the latter translates into
a pole of the fermionic force in the molecular dynamics
algorithm. With exact integration and an exact expression
for the square root function, the negative sector cannot be
reached from the positive one. In practice the algorithmic
choices for the rational approximation yield a finite (rather
than infinite) barrier between the two sectors.
In the thermodynamic and continuum limit the trajectory

is expected to be constrained to the positive sector.
However, at finite volume, the presence of the negative
sector has to be accounted for by sign reweighting which
requires knowledge of the sign of the fermion determinant
detðDÞ. A direct computation is numerically (prohibitively)
expensive. Instead we follow a strategy in which the sign of
detðDÞ is inferred from computing a few of the lowest

eigenvalues of the Dirac operator. This can be achieved at a
cost linear in the lattice volume and using the approach we
will now sketch:
Due to γ5-Hermiticity of the Wilson-Dirac operator, i.e.,

D† ¼ γ5Dγ5; ð3:1Þ

the matrix Q ¼ γ5D is Hermitian and its spectrum is real.
Furthermore, it holds that detðDÞ ¼ detðγ5Þ detðDÞ ¼
detðQÞ and that a zero eigenvalue of D is also a zero
eigenvalue of Q. Recalling that the eigenvalues of D come
in complex conjugate pairs, for detðDÞ to be negative there
must be an odd number of negative real eigenvalues of D.
Since the fermion determinant detðDÞ is assumed to be

positive for large quark masses, we can infer that the
determinant at the unitary mass m�

0, used in the actual
simulation, is negative if and only if there is an odd number
of eigenvalues that cross zero as the mass is decreased from
large quark masses to m�

0. The idea is to locate (on each
gauge configuration) the largest valuemt of the quark mass
such that QðmtÞ, and therefore DðmtÞ, has a zero eigen-
value. If m�

0 is larger than this value mt then Dðm�
0Þ ¼

DðmtÞ þ ðm�
0 −mtÞI has no negative eigenvalues.

Conversely, if m�
0 < mt, we need to determine the number

of zero crossings of the lowest eigenvalue(s) λðm0Þ of
Qðm0Þ by varying the bare massm0 from abovemt down to
m�

0. To that end we combine the PRIMME package with
OPENQCD as mentioned in Ref. [21].
In practice we proceed in two steps: First we perform a

preselection to identify potential candidate configurations
with a negative fermion determinant and for this subset of
configurations we perform a tracking analysis to identify
the configurations that indeed display a negative fermion
determinant.
We start the preselection by measuring the lowest

O(10) eigenpairs ðλi;ψ iÞðm�
0Þ and their chiralities χiðm�

0Þ,
defined by

χiðm�
0Þ ¼ hψ ijγ5ψ iiðm�

0Þ ¼
dλiðm0Þ
dm0

����
m0¼m�

0

; ð3:2Þ

where the last equality follows from the Feynman-Hellman
theorem [20,21]. The chirality hence corresponds to the
slope of the eigenvalue function. This allows to categorize
the eigenvalues of Q into those which approach zero as m0

is increased and those which move away from it. In Fig. 3
we plot the results of the eigenvalue-chirality analysis for
the four lowest lying eigenvalues of the two L=a ¼ 16
ensembles with κ ¼ 0.1405 (left) and κ ¼ 0.1410 (right). If
a data point falls into the northeast or southwest quadrant,
the eigenvalue moves further away from zero when the
quark mass is increased, implying that there is no zero
crossing for values larger than m�

0. This is the case for all
configurations with κ ¼ 0.1405. Conversely, if a data point
falls into the northwest or southeast quadrant this implies

FIG. 1. Normalized reweighting factors on two example
ensemble.

FIG. 2. Typical spread of normalized reweighting factors as a
function of volume and quark mass.
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that the eigenvalue approaches zero as the quark mass is
increased and a zero crossing is possible. Configurations
with eigenvalues which display this feature can potentially
have a negative determinant and therefore require further
monitoring. As can be seen in Fig. 3, on the κ ¼ 0.1410
ensembles we find a small number of these cases for which
the second step, the tracking analysis, is performed.
We find that data points close to the horizontal axis but in

the “safe” quadrants, tend to occur only for comparably
large values of jλj. Under the assumption that the chirality
changes slowly in the range of masses explored, even if the
sign of χ were to change, the corresponding eigenvalues are
not expected to be at risk of changing sign. This assumption
is justified a posteriori in the tracking analysis.
On the configurations that displayed data points in the

northwest or southeast quadrants we now measure the
lowest 20 eigenpairs for several partially quenched masses
around m�

0. The eigenvalue functions λiðm0Þ and the
eigenbasis fψ ig are assumed to vary slowly and continu-
ously with m0. Assuming that the different partially
quenched masses are sufficiently close to each other it is
possible to track how a particular eigenvalue behaves as a
function of the quark mass as follows. For each set of
neighboring masses m0 and m0 þ Δm0 we construct the
matrix Mij ¼ hψ iðm0Þjψ jðm0 þ Δm0Þi of scalar products
between the ith eigenvector ψ iðm0Þ at m0 and the jth
eigenvector ψ jðm0 þ Δm0Þ at m0 þ Δm0. We determine
the largest entry Mij and interpret this to mean that the
eigenvalue i at m0 evolves to be the eigenvalue j at
m0 þ Δm0. We then remove row i and column j from
the matrix and iterate the procedure until each eigenpair at
m0 has been assigned a corresponding eigenpair at
m0þΔm0. Figure 4 displays a configuration of the L=a¼
16 and κ ¼ 0.1410 ensemble where a negative determinant

was detected. We observe that the line connecting the red
downward facing triangles does cross zero as the mass m0

is increased from m�
0 (highlighted as the vertical dashed

line). Since there is only a single eigenvalue crossing zero
in the region m0 > m�

0, we conclude that the fermion
determinant is negative on this particular configuration.
We see from the representative example shown in Fig. 4

that the assumption discussed above is indeed valid and the
derivatives of the eigenvalues change very little in the range
of masses explored. We also see that such derivatives are
either of Oð1Þ or small. This is expected and in agreement
with the discussion in Ref. [37], where approximate
relations are derived between the eigenpairs corresponding
to small eigenvalues ofQ and those ofD. The chiralities are
expected to be significantly different from zero (and in that

FIG. 3. Scatter plot of the lowest four eigenvalues and chiralities for L=a ¼ 16 and κ ¼ 0.1405 (left) and κ ¼ 0.1410 (right).

FIG. 4. Tracking analysis of the lowest 20 eigenvalues on a
L=a ¼ 16, κ ¼ 0.1410 configuration with a negative fermion
determinant.
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case close to �1) only for eigenvectors corresponding to
almost real eigenvalues of D.
We performed the above analysis for the two smallest

values of the quark mass corresponding to κ ¼ 0.1405
and 0.1410 for which we each have a L=a ¼ 16 and a
L=a ¼ 24 ensemble. As discussed above (cf. left panel in
Fig. 3) we did not observe any cases of a negative
determinant for κ ¼ 0.1405 on either of the two available
volumes. Since negative eigenvalues are expected to have a
higher likelihood to occur at small quark masses, we did not
perform this analysis for any of the remaining larger
masses. At κ ¼ 0.1410 we found 6 configurations with a
negative determinant for each of the two volumes.
Furthermore, we observed that the negative sector is visited
at most for the Monte Carlo time corresponding to two
consecutive measurements. This might be related to our
choice of parameters for the rational approximation offfiffiffiffiffiffiffiffiffiffi
D†D

p
yielding a relatively low barrier between the two

sectors. We conclude that in our computational setup the
sign problem for Nf ¼ 1 QCD is mild and the relative
frequency of a negative determinant of the Dirac matrix is
at the subpercent level.

IV. CORRELATOR ANALYSIS

In order to obtain the spectrum of one-flavor QCD, we
create mesonic correlation functions for states with a
variety of quantum numbers. We are particularly interested
in states with scalar (S), pseudoscalar (P) and vector (I)
quantum numbers. We employ the Laplacian Heaviside
(LapH) method [38,39] which allows us to efficiently
compute quark-line disconnected contributions that appear
in the computation of mesonic quantities with a single
flavor.

A. Construction of correlation functions

Following Ref. [38] and, where possible, using the same
notation we compute the Nv lowest eigenpairs ðλi; viÞ of
the three-dimensional gauge-covariant Laplacian using a
stout smeared gauge field. On each time slice t we arrange
these eigenvectors into a matrix Vs as

VsðtÞ ¼ ðv1; v2;…; vNv
Þ ð4:1Þ

from which we then define the Hermitian smearing matrix
as a function of the number of eigenpairs that were
computed as

SðNv; tÞ ¼ VsðtÞV†
sðtÞ: ð4:2Þ

Using a low number of eigenpairs corresponds to a broad
smearing profile, whereas using a large number of eigen-
pairs corresponds to “less” smearing and taking the limit
of all eigenpairs recovers the identity. Quark lines Q are
computed as

Qðt0; tÞ ¼ SðtÞðγ4DÞ−1Sðt0Þ
¼ VsðtÞ½V†

sðtÞðγ4DÞ−1Vsðt0Þ�V†
sðt0Þ: ð4:3Þ

The inversion ðγ4DÞ−1Vsðt0Þ is done by solving the
equation

ðγ4DÞαβðt0; tÞyiβðtÞ ¼ viðt0Þ ð4:4Þ

for yiβðtÞ. This is done for each eigenvector vi
(i ¼ 1;…; Nv), each spin component (α ¼ 1;…; 4)
and each time slice (t0 ¼ 0;…; T − 1), amounting to
Nt × Nv × 4 inversions per configuration.
In our simulation, we keep the number of eigenvalues

Nv ¼ 20 fixed for all ensembles. However, from these
inversions we can construct operators which use fewer than
20 eigenvalues by truncating the elements of the square
matrix V†

sðtÞðγ4DÞ−1Vsðt0Þ. Using this we compute meson
correlation functions for Nv ∈ f1; 2; 3; 4; 5; 6; 7; 8; 9; 10;
12; 15; 17; 20g, which describe the same spectrum but have
different smearing functions.
In all three channels (P, S, I), we use the appropriate

interpolation operator (P, S, I) in the finite volume
irreducible representation. For the S–channel we addition-
ally construct a purely gluonic operator G [40] which
induces the same quantum numbers as the S operator.3

We consider all mutual combinations of G and S in the
“scalar-glue” system.

B. Reweighting and vacuum expectation
value subtraction

The vacuum subtracted correlation function CXY can be
derived from the unsubtracted correlation function Craw

XYðtÞ
and the vacuum expectation values (vevs) vX and vY as

CXYðtÞ ¼ hCraw
XYðtÞi − hvX ihvYi; ð4:5Þ

where h·i denotes the gauge average. While the vev is
exactly zero for the P operator and numerically zero for the
I operator, it is sizable for the S and G operators. We find
that the statistical signal for correlation functions including
G or S deteriorates when reweighting (cf. Sec. II) is
combined with the naive vacuum expectation value sub-
traction defined in Eq. (4.5).
This is due to the fact that the product of the vevs is many

orders of magnitude larger than the exponentially decaying
part of the correlator and as a consequence even the little
noise introduced by the reweighting factors destroys the
signal for the latter almost completely.
Since the vacuum expectation value is time-independent,

an alternative way to perform the vev subtraction is to take

3To avoid confusion we use the calligraphic notation for
specific operators and Roman letters to indicate the induced
quantum numbers.
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the temporal derivative of the unsubtracted correlation
function. We find that this results in a significantly better
signal when combined with reweighting and are therefore
utilizing this.
Figure 5 displays the effect of reweighting for the

example of the Nv ¼ 20 correlation functions on the
L=a ¼ 20, κ ¼ 0.1390 ensemble. The figure shows
the relative uncertainties of the correlation function for
the PP (red), II (blue) and the time derivative of the
SS (cyan) operators. The dotted lines connect the unre-
weighted data points, while the solid lines connect the
reweighted ones. We observe that only for the earliest time
slices the uncertainty of the reweighted data is limited by
the accuracy of the reweighting factors.

C. Correlation function fits

For a given channel (P, I or S), the correlation functionC
of operatorsOn

X withX ∈ fS;P; I ;Gg using n eigenvalues
can be approximated by the first N states Xi as

Cn
XYðtÞ ¼

XN
i¼0

jðZn
X Þ�i ðZn

YÞij
e−m

X
i t þ e−m

X
i ðT−tÞ

2mX
i

; ð4:6Þ

where ðZn
X Þi ¼ hXijðOn

χÞ†j0i. We emphasize that the
induced masses mX

i depend on the channel X, rather than
the specific operator X, in particular all combinations of S,
G induce the same spectrum mS

i .
We extract the three lowest–lying states of the spectrum

by performing simultaneous correlated fits to the sym-
metrized correlation functions Cn

XYðtÞ for several choices
of n (between 2 and 4). We illustrate two such fits for the
example of the vector channel in Fig. 6. We defer the
discussion on the slow approach to the ground state for
the bottom panel to Sec. V B. In order to assess systematic
uncertainties associated with the choice of smearing radii,
we vary which n enter into a particular fit. In particular,

for the vector and pseudoscalar channels we perform three
different fits, simultaneously fitting Nv ¼ ð20; 12; 6Þ;
ð17; 10; 3Þ or (20,15,10,5) and labeled “fit1,” “fit2” and
“fit3,” respectively.4 For the scalar-glue basis we simulta-
neously fit Nv ¼ ð20; 3Þ or Nv ¼ ð17; 5Þ (“fit1” and “fit2”)
but jointly fitting CSS, CSG and CGG. In all cases, we fit
three states [N ¼ 2 in (4.6)], but only the lowest two
potentially enter any subsequent analysis. We list the
numerical results for the lowest two states (“gr” and
“ex,” respectively) in Table II in Appendix B. In all further
steps of the analysis we consider all choices of fit1, fit2 and
fit3 to propagate any systematic uncertainties.
Finally, we also compute the connected correlation

function for the pseudoscalar meson, which corresponds to
a nonexistent state in a Nf ¼ 1 theory and in the following
is therefore referred to as “fake pion.” As we will discuss in
the following section, mfake

π → 0 can be used as a proxy for
the massless limit (see also Ref. [15]). These correlation

FIG. 5. Impact of the reweighting on the relative uncertainties
of the correlation functions.

FIG. 6. Example fit for the vector two point function for the
L=a ¼ 32, κ ¼ 0.1400 (top) and the L=a ¼ 16, κ ¼ 0.1390
(bottom) ensembles. The data points show the effective masses
of the underlying correlation functions, while the correspond-
ingly colored bands show the effective mass obtained from the
results of the correlation function fits. Finally the magenta
horizontal band (dashed line) show the results for the extracted
ground (excited) state energies.

4One of the fit choices of the pseudoscalar meson on the
L=a ¼ 24, κ ¼ 0.1410 ensemble did not yield an invertible
covariance matrix and was therefore excluded. However, as will
be discussed later on, this ensemble does not enter the final
analysis.
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functions are generated from standard point sources and
follow the same functional form as Eq. (4.6) with the
replacement Zn

X → hπjðq̄γ5qÞ†j0i. For these states we
perform fits with N ¼ 0 and N ¼ 1. We note that for both
κ ¼ 0.1410 ensembles we expect large finite size effects as
mfake

π L < 3 and therefore discard them from the subsequent
analysis.

V. ANALYSIS OF THE SPECTRUM

The goal of this section it so extrapolate the results
for the meson spectrum (mP, mI and mS) to the chiral and
infinite volume limit to provide results for ratios of these
masses.

A. Defining the chiral limit

We start by determining what the best proxy for the
quark mass is. Figure 7 shows the lowest lying state for
the pseudoscalar channel. The left panel displays this as a
function of the bare quark mass, the right panel as a
function of the fake pion mass. By comparing the two
panels, it is evident that the fake pion mass is the more
suitable choice to define the massless limit as the bare
quark mass suffers from large finite volume effects. Those
are due to discretization effects in the computation of the
critical parameter κc entering the definition of the bare
subtracted5 quark mass (see Ref. [41] for a discussion in
the case of QCD). In addition, in Ref. [15] it has been
numerically shown, for the one-flavor SUð2Þ gauge theory,
that the definition of the massless point from the vanishing

of the fake pion mass is consistent with the rigorous
definition from the continuum relation between the topo-
logical susceptibility and the quark mass.6 In the following
we therefore choose the fake pion mass to define the
massless limit.

B. Assignment of states

To understand the behavior of the spectrum we induced
by means of our chosen interpolating fields, we investigate
how the hadron masses vary as a function of quark mass
and volume. We are predominantly interested in mesonic
states dominated by qq̄ contributions.7 These are expected
to display a strong quark mass dependence but at most a
mild dependence on the volume, whereas any glueball state
should only depend weakly on quark mass and volume.
Contrary to these, states that depend mildly on the quark
mass but strongly on the volume do not correspond to
physical states and might be interpreted to be torelon
states [42,43].
In Sec. VA we noted that the pseudoscalar mass is

largely volume independent, but depends smoothly and
strongly on the quark mass set by mfake

π . We therefore
identify this with the desired qq̄-state. In the case of the
scalar and vector channels, the situation is more compli-
cated. When comparing results of simulations at the same κ
but on different volumes, there are cases that display
significant volume dependence on smaller volumes.

FIG. 7. The spectrum of the pseudoscalar meson as a function of the bare quark mass (left) and as a function of the fake pion mass
(right). Here and in the following, shown triplets (or pairs) of points correspond to the fit results of “fit1,” “fit2,” and “fit3,” respectively.

5In other words we are saying that data should be compared at
fixed bare subtracted quark mass and that differs from the bare
mass by a constant related to κc, which has, at finite lattice
spacing, a rather strong dependence on the volume [41].

6In Ref. [11] the relation hν2i ¼ ΣVm is in fact established first
for one-flavor QCD and then for the case of several flavors. In the
equation hν2i is the topological susceptibility, Σ the fermion
condensate and V the four-dimensional volume. We see from the
plot in Appendix A that our data are in good qualitative
agreement with that relation.

7For the remainder of this work we refer to these as
“qq̄-states.”
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For example, the top panel of Fig. 8 shows the spectrum
as a function of the inverse spatial volume but at fixed
κ ¼ 0.1390. We observe that the three largest volumes yield
very consistent ground state masses. Contrary, for the two
smallest volumes, we see that a lighter state is present in the
spectrum, which displays a strong volume dependence. We
note that the first excited state on these two volumes is
numerically close to the ground state mass extracted on the
larger volumes. This picture is further substantiated by
investigating the behavior of the amplitude for the matrix
element as we will illustrate with the example of ðZ20

I Þi: In
the bottom panel of Fig. 8 we show these values for the
three states we are fitting. For the three largest volumes,
which are displaying a consistent ground state mass, we
find that the ground state matrix element (left three magenta
circles) is of similar size or larger than the other matrix
elements. In contrast to this, for the smallest two volumes

the situation is reversed and we find the matrix element
of the lowest lying state (right two magenta circles) to be
significantly smaller than that of the first and second
excited states. We further note that for these two smallest
volumes, the matrix element corresponding to the first
excited state (rightmost two red diamonds) shows a
qualitatively similar behavior to that of the ground state
for the larger volumes. In other words, for the smallest two
volumes, the correlation function couples more strongly to
the first excited state than the ground state. This is also the
reason for the slow approach to the plateau for example in
the case of the L=a ¼ 16 and κ ¼ 0.1390 ensemble
(cf. bottom panel of Fig. 6). The strong volume dependence
and qualitatively different behavior with respect to the
matrix element indicate that the lowest lying state for the
small volumes is not the qq̄-state we are interested in.
Instead, as indicated by the values of the mass and the
amplitudes we identify the first excited state with the
qq̄ state. In summary, for the vector channel at fixed
κ ¼ 0.1390, the qq̄ state corresponds to the lowest lying
state for L=a ¼ 32, 24, 20 and to the first excited state for
L=a ¼ 16, 12. Corresponding analyses for the other quark
masses yield a similar picture.
Figure 9 addresses the scalar channel. The top panel

shows the mass dependence at fixed volume L=a ¼ 16.
The lowest lying state is mass independent in the range of
masses we simulate, but the first excited state displays a
strong mass dependence. The bottom panel shows the
volume dependence at fixed κ ¼ 0.1390. Again, for small
volumes, we find a state whose energy increases as the
volume increases (lowest state at L=a ¼ 12, 16), as well as
a volume insensitive state (lowest state at L=a ¼ 32, 24, 20
and first excited state at L=a ¼ 16, 12). Furthermore, the
latter coincides with the state that displayed the strong mass
dependence in the top panel. In analogy with the discussion
of the vector meson, we conclude that those correspond to a
(mass dependent, volume independent) scalar meson state
and a (mass independent, volume dependent) torelon state.
By means of similar investigations of the volume and

quark mass dependence, we categorize the two lowest lying
states on each ensemble and in each channel into the lowest
quark mass dependent state (qq̄) and the remaining state,
which in principle can be a torelon, an excited qq̄ or a
glueball state. Figure 10 shows the state that has been
identified as the relevant qq̄ state for the vector (top) and
scalar (bottom) channels. For the large volumes, good
agreement is found for all quark masses, whereas for light
quark masses and small volumes finite size effects are
sizable. We therefore exclude the L=a ¼ 12 and L=a ¼ 16
from our subsequent analysis.
Summarizing the discussion in this section, the qq̄ states

we are interested in are easily identified at large volumes
and small quark masses as the lowest lying states in the
respective channels. Such determinations have the largest
impact in the chiral and infinite volume extrapolations we

FIG. 8. Volume dependence of the vector meson at fixed
κ ¼ 0.1390. The top panel shows the dependence of the spec-
trum, the bottom panel the dependence of the corresponding
matrix elements for the N ¼ 20 correlation function.
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discuss next. However, especially for small volumes, the
identification required a more detailed study of the volume
and mass dependence of both the energy levels and the
overlap factors describing the correlation functions. Those
are important lessons we will take into account for future
studies at large values of NC.

C. Extrapolation to zero quark mass

We are interested in the spectrum at vanishing quark
mass. Since we have not performed a scale setting analysis
we focus on ratios of masses in the chiral limit. As
discussed above, we will use the fake pion mass to define
the zero quark mass limit. A completely model independent
fit function would have to include even and odd powers of
the fake pion mass. To give a rigorous definition of the fake
pion correlator one would have to consider a partially
quenched theory constructed by introducing a quark field

with the same mass parameter as the original one and
quenching it away by a corresponding ghost field [44].
Such a theory would be invariant (at zero quark mass)
under transformations in an extended (graded) chiral
symmetry group. Depending on whether the symmetry
is realized à la Wigner-Weyl or à la Nambu-Goldstone,
one would obtain different relations between the fake pion
mass and the quark mass. In the second case (where the
symmetry is broken spontaneously by the vacuum and
explicitly by the quark mass) the quark mass would turn out
to be proportional to the fake pion mass squared. In this
case a fit in terms of only even powers of the fake pion mass
would be more appropriate.
Any such Gell-Mann-Oakes-Renner-like [45] relation is

valid at low energies or very close to the massless limit and
in the same limit the fake pion and the pseudoscalar masses
should differ significantly, as the first is expected to vanish
while the second not. Since in our data we only see small
differences between such masses we cannot claim with
confidence to be in the regime where such relations apply.

FIG. 10. Mass dependence of the states identified as qq̄ states
for the vector (top) and the scalar (bottom).FIG. 9. The spectrum of the scalar meson as a function of the

quark mass at fixed volume L=a ¼ 16 (top) and as a function of
the volume at fixed κ ¼ 0.1390 (bottom).
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We hence favor the more general fit function including even
and odd powers of the fake pion mass for our final results.
The fit functions we explore for this extrapolation are

Mðmfake
π ; LÞ ¼

�Xnpow
i¼0

ciðmfake
π Þi

�
ð1þ f0e−mPLÞ; ð5:1Þ

where M is either a mass (mP, mS, mI) or ratios thereof. In
line with what we discussed above, we separately consider
choices where i takes even and odd values or only even
values and in both cases either leaving f0 as a free
parameter or setting it to zero. In addition to varying the
fit function, we consider cuts to the data, in particular
removing the smallest volumes and/or the lightest and/or
heaviest masses.
An example fit for the case of the pseudoscalar mass

(top) and the scalar mass (bottom) is shown in Fig. 11.

In both of these cases we take the results obtained by fit1,
keep f0 as a free parameter and choose npow ¼ 2. Due to
concerns about the finite volume effects, we exclude the
smallest volumes (L=a ¼ 12, 16) and the lightest quark
mass (κ ¼ 0.1410).
We repeat all extrapolations for the various choices of the

correlation function fits, whether or not f0 is kept as a free
parameter and for different choices of npow. For the lowest
order polynomial we restrict the mass range that enters
the fit. The data points in Fig. 12 show the results for
these variations for the pseudoscalar (top) and the scalar
(bottom). Only fits with an acceptable p-value of p > 0.05
are shown. The green band in these plots is derived by
taking the 68th percentile of the distribution of the under-
lying bootstrap samples of all the fits which produced an
acceptable p-value. We interpret this number to be a good
approximation of systematic effects due to correlator fit
choices, variations of the chiral fit ansatz and the data
included in such a fit.
Ultimately we are interested in the ratio of masses in the

chiral limit. We can obtain this in two ways as we will
now illustrate on the example of the ratio of the pseudo-
scalar to the scalar mass: We can either build the ratio
mP=mS at finite mfake

π and then extrapolate this to the
massless limit (method 1), or we can separately extrapolate
the pseudoscalar and the scalar masses and then build

FIG. 11. Extrapolation to the chiral limit for a given fit ansatz
for the pseudoscalar mass (top) and the scalar mass (bottom).

FIG. 12. Comparison of the fit results when varying the
correlator fit choice and the fit ansatz for the pseudoscalar
(top) and the scalar mass (bottom).
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their ratio (method 2). One example fit of the former is
shown in Fig. 13. We observe that part of the mass
dependence cancels in the ratios, resulting in a less steep
curve than that observed in the individual fits (cf. Fig. 11).
The colored stars in the left panel of Fig. 14 show different
variations of the fit ansatz, analogous to Fig. 12. In addition
to the extrapolation of the ratio of masses (method 1), we
also show ratios of the chirally extrapolated values (orange
circles; method 2). Here we computed all mutual combi-
nations of acceptable fits displayed in Fig. 12. The green
(orange) band is the result of taking the 68th percentile of
all the bootstrap samples for the fits of method 1 (method 2)
that produced an acceptable p-value.
In general, we notice that the ratio of separate chiral

extrapolations leads to larger variations than the extrapo-
lation of the ratio of masses. This is unsurprising as,
ensemble by ensemble, the underlying data points are
statistically correlated, and therefore statistical fluctuations
are reduced for the individual ratios of data points.

Furthermore the extrapolation of the individual data points
is more difficult to control since the slope with the fake pion
mass is steeper. Our preferred number is therefore the direct
extrapolation (green band in Fig. 14) while the orange band
provides a sanity check.
We are now in a position to compare the results of the fits

including even and odd powers of mfake
π to those only using

even powers. These two choices are compared in the two
panels of Fig. 14 for the example of the ratio of pseudo-
scalar to scalar masses. The green bands of the two panels
are in ∼2σ agreement, lending confidence in the results.
However the error bands of the direct and indirect methods
do not overlap for the fit of the even powers only. This is
even more pronounced for the case of the ratio mP=mI
(cf. the bottom panel of Fig. 17). This numerical evidence
further supports our preference for the more conservative
fit ansatz including even and odd powers of mfake

π and
we therefore quote results from this choice as our final
numbers.
In addition to mP, mS we have data for the vector mass

mI . An example fit for the extrapolation of the vector mass
is shown in Fig. 15 (cf. Fig. 11) while different fit variations
are shown in Fig. 16 (cf. Fig. 12). Finally, we also construct
the ratios mP=mI (see Fig. 17) and mI=mS (see Fig. 18) in
the chiral limit via the two methods described above.

VI. DISCUSSION AND OUTLOOK

We have presented a detailed study of the spectrum of
one-flavor QCD using Wilson fermions with tree-level
OðaÞ improvement.
Results are obtained at one single lattice spacing

(approximatively 0.06 fm) for different volumes (up to
323 × 64) and several quark masses. After extrapolating to
the massless limit we obtain

mP

mS
¼ 0.356ð54Þ; ð6:1Þ

for the pseudoscalar to scalar meson mass ratio and

FIG. 13. Example extrapolation to the chiral limit of the ratio of
pseudoscalar to scalar mass via method 1.

FIG. 14. Comparison of fit results for different choices of the extrapolation of the ratio ofmP=mS. The left plot shows the extrapolation
results including even and odd powers in mfake

π the right plot for only even powers.
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mP

mI
¼ 0.489ð49Þ; ð6:2Þ

for the pseudoscalar to vector ratio. In Ref. [6] a prediction
using an effective field theory approach and a 1=NC
expansion was derived. In the massless limit this reads

mP

mS
¼ 1 −

22

9NC
−
4

9
β þO

�
1

N2
C

�
; ð6:3Þ

where β is a positive constant of order 1=NC. The equation
above therefore provides an estimate for an upper bound,
that for NC ¼ 3 reads

mP

mS
≲ 0.185; ð6:4Þ

up to higher order effects starting at 1=N2
C.

Our results are somewhat larger than this bound, but
considering their uncertainty and terms of size Oð1=N2

CÞ,
they are reasonably close. This might indicate that 1=N2

C
corrections and the parameter β are small. Obviously this
finding needs to be corroborated by extending our studies
to larger values of NC.
Those are further motivated, firstly, by the observation

about the slope in the mass for the extrapolation of mP=mS
having the opposite sign compared to the prediction

FIG. 15. Extrapolation of the vector mass to the chiral limit,
analogous to Fig. 11 for different choices.

FIG. 16. Variations of the extrapolation of the vector mass to
the chiral limit, analogous to Fig. 12.

FIG. 17. Variations of the extrapolation of the ratio of the
pseudoscalar and the vector mass using even and odd powers of
mfake

π (top) and only even powers of mfake
π (bottom).

FIG. 18. Results of fits to the ratio of the vector and the scalar
mass.
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in Ref. [6]. Corrections to that start at Oð1=NCÞ and can
therefore be quite large. Second, results at larger values of
NC will allow assessing the range of validity of the two
different theoretical predictions in Refs. [6] and [7]. The
latter predicts a value of 1=3 for the ratiomP=mS at NC ¼ 3
in the massless limit.
We have provided an improved estimate, concerning

cutoff effects and assessment of systematic errors, com-
pared to previous results that appeared as Proceedings in
Ref. [46] (based on Ref. [14]), where a value of 0.410(41)
was found for the pseudoscalar to scalar mass ratio.
Besides having tested the predictions made in Refs. [6,7]

for the spin-zero one flavor QCD mesonic state, we further
provided information on the vector spectrum that can be
interpreted as the leading order prediction for the N ¼ 1
super Yang-Mills vector states.
In order to assess the size of higher order effects we are

extending the computation considering NC ¼ 4, 5 and 6. A
preliminary account appeared in Ref. [27].
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APPENDIX A: DISTRIBUTION OF THE
TOPOLOGICAL CHARGE

In Fig. 19 we show the normalized distributions of the
topological charge on all ensembles. The number N
corresponds to the number of distinct configuration on
which all measurements have been performed and which
are spaced by a minimum of 32 trajectories (cf. Sec. II). We
clearly observe that the topological charge becomes more
peaked as the volume is decreased and as the quark mass is
lowered (larger values of κ) [11].

APPENDIX B: RESULTS OF THE
CORRELATION FUNCTION FITS

Table II shows the relevant results obtained by fitting the
reweighted and vacuum-subtracted correlation functions as
described in Sec. IV.

FIG. 19. Topological charge distribution for the various ensembles.
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APPENDIX C: DETERMINATION OF t0

Table III shows values obtained for t0 on each ensem-
ble. We use two different action densities to compare
systematic effects of setting the scale, i.e. the Wilson
plaquette action (tWilson

0 ) and the Yang-Mills action (tYM0 ).
As mentioned before, we quote these values only as

reference for other lattice simulations. The quoted uncer-
tainties originate from the numerical integration scheme
and are statistical only. As an example we show the
dependence of tYM0 on the fake pion mass in Fig. 20. We
note that tYM0 displays large finite size effects for the
smallest ensembles.

TABLE II. Fit results from correlation function fits for the pseudoscalar, vector and scalar channels as well as the fake pion mass. Only
statistical uncertainties are quoted.

L=a κ Pseudoscalar Vector Scalar mfake
π

fit1 fit2 fit3 fit1 fit2 fit3 fit1 fit2
12 0.1350 gr 0.6503(24) 0.6468(18) 0.6497(23) 0.1944(90) 0.1800(68) 0.1884(82) 0.2248(70) 0.2189(68) 0.6457(13)

ex 0.859(20) 0.787(29) 0.859(16) 0.6929(54) 0.6856(43) 0.6936(58) 0.739(10) 0.7632(88)
0.1370 gr 0.5250(23) 0.5202(28) 0.5239(23) 0.1500(66) 0.1663(71) 0.1367(53) 0.1987(76) 0.1957(81) 0.5207(21)

ex 0.794(12) 0.737(15) 0.7796(99) 0.5998(60) 0.6041(52) 0.5842(55) 0.6215(62) 0.6236(57)
0.1390 gr 0.4246(28) 0.4238(30) 0.4262(27) 0.1237(41) 0.1110(42) 0.1115(33) 0.2117(84) 0.2113(89) 0.4229(36)

ex 0.6845(87) 0.667(11) 0.7019(71) 0.5447(76) 0.470(10) 0.5091(61) 0.4613(37) 0.4809(39)
0.1400 gr 0.4028(35) 0.4026(39) 0.4097(34) 0.1081(39) 0.1209(48) 0.1101(31) 0.272(21) 0.283(23) 0.4008(45)

ex 0.6912(91) 0.683(14) 0.7198(87) 0.503(12) 0.530(11) 0.4916(86) 0.4307(50) 0.4432(58)

16 0.1350 gr 0.6371(25) 0.6367(31) 0.64301(92) 0.540(47) 0.370(43) 0.507(39) 0.352(14) 0.350(14) 0.64189(36)
ex 0.901(31) 0.859(34) 0.832(16) 0.6765(70) 0.6734(39) 0.6809(19) 0.7858(88) 0.7848(78)

0.1370 gr 0.5046(21) 0.5023(23) 0.5036(17) 0.356(41) 0.358(29) 0.396(31) 0.340(17) 0.374(22) 0.50102(84)
ex 0.763(26) 0.786(35) 0.794(18) 0.5568(66) 0.5561(48) 0.5590(24) 0.6655(74) 0.6557(81)

0.1390 gr 0.3506(21) 0.3517(21) 0.3506(20) 0.278(12) 0.309(11) 0.2782(96) 0.314(12) 0.320(13) 0.34695(93)
ex 0.619(20) 0.618(31) 0.621(18) 0.4611(60) 0.4796(96) 0.4551(46) 0.4879(65) 0.4890(55)

0.1400 gr 0.2782(34) 0.2798(35) 0.2777(33) 0.2118(76) 0.2134(69) 0.2203(60) 0.305(11) 0.318(13) 0.2623(17)
ex 0.510(18) 0.514(25) 0.516(16) 0.4186(66) 0.4122(56) 0.4199(53) 0.4014(88) 0.3972(84)

0.1405 gr 0.2419(36) 0.2418(46) 0.2398(36) 0.1768(74) 0.1819(70) 0.1872(58) 0.2856(56) 0.2977(77) 0.2239(38)
ex 0.554(18) 0.563(32) 0.554(15) 0.3985(90) 0.4000(79) 0.4100(62) 0.3638(93) 0.368(10)

0.1410 gr 0.1856(76) 0.173(10) 0.1760(65) 0.1595(78) 0.1520(61) 0.1554(66) 0.2639(78) 0.2651(87) 0.162(12)
ex 0.468(18) 0.427(25) 0.462(14) 0.422(11) 0.4194(99) 0.4108(89) 0.310(10) 0.313(11)

20 0.1350 gr 0.6375(50) 0.6451(46) 0.6419(39) 0.6705(38) 0.6735(18) 0.6746(21) 0.484(37) 0.500(40) 0.64106(34)
ex 0.815(36) 0.802(43) 0.805(76) 0.86(11) 0.936(40) 0.854(32) 0.8011(58) 0.7992(89)

0.1370 gr 0.4978(42) 0.4990(42) 0.5006(35) 0.5442(17) 0.5400(25) 0.5430(18) 0.309(51) 0.356(68) 0.49905(77)
ex 0.783(32) 0.777(21) 0.766(24) 0.737(19) 0.722(24) 0.711(19) 0.671(11) 0.6741(64)

0.1390 gr 0.3344(13) 0.3325(15) 0.3353(14) 0.4004(10) 0.3982(14) 0.3993(10) 0.452(30) 0.466(17) 0.33608(80)
ex 0.6757(92) 0.6686(70) 0.6683(90) 0.6387(73) 0.6030(92) 0.6193(70) 0.535(28) 0.596(49)

24 0.1350 gr 0.6484(25) 0.6488(15) 0.6480(22) 0.6777(15) 0.6759(11) 0.6757(12) 0.564(92) 0.71(13) 0.64141(26)
ex 0.862(25) 0.852(36) 0.866(24) 0.861(29) 0.933(25) 0.873(24) 0.798(20) 0.834(28)

0.1390 gr 0.3437(26) 0.3445(34) 0.3428(25) 0.39849(67) 0.39851(81) 0.39934(58) 0.443(24) 0.477(15) 0.33522(45)
ex 0.601(18) 0.596(24) 0.602(18) 0.6159(68) 0.604(11) 0.6234(68) 0.530(23) 0.583(36)

0.1405 gr 0.1930(30) 0.1942(33) 0.1957(29) 0.2791(15) 0.2804(16) 0.2815(14) 0.3649(51) 0.3553(51) 0.1691(14)
ex 0.525(10) 0.513(12) 0.515(11) 0.5108(78) 0.5078(86) 0.5172(73) 0.623(42) 0.571(40)

0.1410 gr … 0.120(21) 0.117(12) 0.2466(28) 0.2423(28) 0.2451(27) 0.302(11) 0.264(18) 0.0673(57)
ex … 0.501(70) 0.468(58) 0.503(11) 0.491(13) 0.498(11) 0.598(42) 0.559(52)

32 0.1390 gr 0.3363(38) 0.3383(34) 0.3387(31) 0.40116(57) 0.4004(17) 0.40054(42) 0.475(11) 0.4933(93) 0.33484(42)
ex 0.562(24) 0.556(34) 0.592(21) 0.585(23) 0.655(69) 0.616(16) 0.640(32) 0.691(49)

0.1400 gr 0.2380(22) 0.2372(22) 0.2379(17) 0.31966(59) 0.32121(45) 0.31876(50) 0.4019(71) 0.3963(63) 0.23229(39)
ex 0.541(18) 0.549(19) 0.553(12) 0.528(13) 0.640(20) 0.5240(98) 0.571(34) 0.564(26)
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TABLE III. Results for the t0 using the Wilson flow [30]. The quoted uncertainties are statistical only and discrete
by construction, as the Wilson flow is numerically integrated and saved every step of length 0.05. We quote two
estimates using the Wilson plaquette action (tWilson

0 ) and the Yang-Mills action (tYM0 ). The difference can be seen as
an estimate for systematic uncertainties of the overall procedure.

L=a κ tWilson
0 =a2 tYM0 =a2 aWilson aYM

12 0.1350 7.40(8) 7.10(5) 0.058(1) 0.060(1)
12 0.1370 8.25(8) 7.95(5) 0.055(1) 0.056(1)
12 0.1390 10.75(8) 10.40(15) 0.049(1) 0.049(1)
12 0.1400 12.55(8) 12.25(15) 0.045(1) 0.045(1)

16 0.1350 6.15(5) 5.95(5) 0.064(1) 0.065(1)
16 0.1370 6.60(5) 6.40(5) 0.062(1) 0.063(1)
16 0.1390 7.40(5) 7.20(5) 0.058(1) 0.059(1)
16 0.1400 8.10(5) 7.90(5) 0.056(1) 0.057(1)
16 0.1405 8.80(5) 8.55(5) 0.054(1) 0.054(1)
16 0.1410 10.10(5) 9.80(5) 0.050(1) 0.051(1)

20 0.1350 6.10(5) 5.85(5) 0.064(1) 0.066(1)
20 0.1370 6.50(5) 6.30(5) 0.062(1) 0.063(1)
20 0.1390 7.15(5) 6.95(5) 0.059(1) 0.060(1)

24 0.1350 6.05(5) 5.85(5) 0.065(1) 0.066(1)
24 0.1390 7.15(5) 6.95(5) 0.059(1) 0.060(1)
24 0.1405 8.05(5) 7.85(5) 0.056(1) 0.057(1)
24 0.1410 8.60(5) 8.35(5) 0.054(1) 0.055(1)

32 0.1390 7.10(5) 6.90(5) 0.060(1) 0.061(1)
32 0.1400 7.75(5) 7.50(5) 0.057(1) 0.058(1)

FIG. 20. Results for the tYM0 using the Wilson flow [30] as a function of fake pion mass. The equivalent plot for tWilson
0 displays the

same qualitative features.
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