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.ABSTRACT
Quite often, particle-beam monitors hâve not the same cross-section as the beam pipe or vacuum chamber in v/hich they are mounted. In that case, the electromagnetic field of the beam is distorted in the vicinity of the ed- ges of the monitor. We compute this field,at the jonction of two rectangular beam pipes of different dimensions, for a beam v/ith constant charge along its length. Solutions which are less accurate but easier to apply are obtained with a first order approximation. The results are extended to intensity-raodulated beams and circular or elliptical cross-sections. We compute the errors, due to the edge effect, for the electrostatic pickup and the v^all-current monitor. The final formulas are simple and easy to apply to nraotical cases.

To be published in Nuclear Instruments and Methods.
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1. INTRODUCTION

The electromagnetic field of a charged particle beam, in a cylindrical beam pipe with uniform cross-section, is well defined. If a beam monitor is mounted in such a beam pipe, without disturbing the profile of the pipe wall significantly, its response to the beam can usually be calculated with précision. Many practical beam monitors, however, do not conform to this idéal situation. An electrostatic pickup (ESPU), for instance, is often made slightly larger than the beam pipe, in order to protect it from the charge of stray particles (fig. 1). The reverse is true when the ESPU is mounted in a larger vacuum tank (fig. 2). An extreme case is an ESPU mounted on a beam in free air or around a glass or ceramic vacuum pipe. Discontinuities also occur when a wall-current monitor, with circuler cross-section is joined, on both sides, to an elliptical beam pipe (fig. 5)·In-ail these cases, the field is distorted near the transitions in cross-section, in a not very well controlled way. To prevent errors in the measurement of the intensity or position of the beam, the immédiate vicinity of the transition is not used for the measurement. For the ESPU, grounded guard rings are used and for the wallcurrent monitor, the gap can not be too close to a transition. Quite often, however, the longitudinal space is limited and the question is then: how long do we hâve to make theseguard rings?One way to answer this question is to build a prototype and test it by replacing the beam with a current flowing through a wire (see e.g. Baron and Vogel^). The wire, however, is a constant-potential surface while, for the beam, the potentiel along its length dépends on the charge of the beam and the cross-section of the beam pipe. The conséquence is, that the wire test underestimates the edge effect. Good results can be obtained by calibrating
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pthe monitor with a cathode ray beam (Simanton ). For this, however, we need an expensive installation and, even then, it is still a eut and try procedure.It would be useful to hâve some simple formulas for calculating the edge effect but, at first sight, it se^ms impossible to do this in a general way, due to the large number of possible configurations. In practice, however, the magnitude of the discontinuity is much more important than the exact configuration at the transition or the shape of the cross-sections at both sides. We will later see how we can replace circular or elliptical cross-sections by "équivalent" rectangular ones and then, most transitions more or less resemble the junction between beam pipes of different cross-section as shown on fig. 4;We usually do not want to correct the measurements for the edge effect but, rather we want to construct the monitor in such a way that the errors can be neglected. In that case, a knowledge of the perturbations to, let’s say +20% , is largely sufficient. This explains why a rather crude approximation can still give useful results. Our first step will now be, to compute the field in the vicinity of the junction of fig. 4 , for a beam, uniform in intensity along its length.

2; FIELD NEAR THE JUNCTION
We will compute the field in the vicinity of the junction between two rectangular beam pipes with different dimensions (fig. 4). We suppose the beam is thin, goes through (x0,y0 ), and has a uniform line charge of 1 Coulomb per meter. We suppose further that the pipe on the right has no dimension larger than the pipe on the left. The field, far from the junction, can be calculated with the help of conformai mapping (see e.g. . Kober^). We obtain ‰fp (x»y) for z»0 and (pRErM (x,y) for z«0 · The electrostatic potential, φ , near the
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junction, is then :

is the field that would exist , in each pipe, in the absence of the jonction. (ppeRτ is the perturbation, due to the junction. φ and ipREF are solutions of the Poisson équation and they are zéro at the walls of both pipes. Consequently, we find that φpεjξτp and are also zéro at the walls and they are solutions of the Laplace équation, each in its domain. It follows, that the perturbation field is completely defined by the potential in the plane z=0 . Because of the continuity of φ at z=0 , we hâve :

Ail this for |x|< a and ⅛y∣<b and with (pL à(p/à£ · We define now the potential
The perturbation field, at z=0 , can then be written in function of the known Vp)F and an unknown potential Vo :

We will compute successive approximations for Vo , beginning with :
With this value of Vo , we can express the perturbation field, at each side of the junction, in the form of a double Fourier expansion. For the positive side (z≥0), we find :
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By differentiating eq. (10) according to z, we find the z-gradient of the field. For z=0 , we hâve :

Now, we can find a better approximation for , through inversion of (15) :

with € a sufficiently small value.

The gradient on the négative side can be found by exchan- ging a*, b*, A** and (V0 -Vd,f ) for a, b1 Aiwand Vo . In general, φpefiτp will not be equal to (^PeRTrt , as required by eq.(4). We obtain a better approximation for φ' 0τp with: J i CK I r

and we find a better approximation for Vo , by putting the new values of A in eq.(10), for z=0 ;
With this improved value of Vo, we start a new itération and so on, until the required précision is attained.That is, when in every point in the plane z≡0 :
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The calculation of the potentiels in the cross- section was done on a grid of maximum 80x40 points. The smallest dimension was usually taken to be 20 points, sometimes 10 if some other dimension was too large. For <=0.01, we need 3 to ∣4 itérations. For calculations on the full grid of 80x40 points, this takes about 4 seconds on a CPC7600 computer. As a resuit, we obtain the matrices A and A* .

5. CHARGE ON THE WALL
Of spécial interest, for beam monitoring, is the charge, induced on the wall by the beam. By differentiat- ing eq.(lO), we obtain the charge induced by the perturbation field. For instance :

Finally, we can integrate (F over the width of the wall. We find the line charges :

and 7 similar formulas for the other sides. We can do the same for the reference field :



4. SOME RESULTS
Το get a feeling for how far the perturbations reach, a few configurations are shown on fig. 5· Ail dimensions are in meter. The beam has a uniform charge of IC/m · XO, YO indicates the position of the beam. ALARGE, BLARGE, ASiuALL, BSüALL, are^ihe dimensions of the large and small beam pipes. The sides are numbered as indicated. For each side, we calculate aLReF and :

5. INTENSITY MODULATED BEAil
We will now see what happens when the beam is not a uniform line charge. A diffuse beam can be calculated as if it was a line charge, going through the charge center. This gives good results when the diameter of the diffuse beam is smaller than the distance of the charge center to the nearest wall.A beam, varying in intensity aloug its leugth, can be expanded in its Fourier components, with Dλ the amplitude of the component cjlb , with wavelength X :

This dimensionless ratio is plotted in function of the distance from the junction: z= LxSTEPL . In exampleA, we plot from 0 to 2. In the other examples, only the more interesting région between 0.8 and 1.2 is plotted.

is the line charge of the Fourier component, V is the speed of the particles in the beam (with ω= 2irV∕x the angu- lar frequency) and 2iΓZ>∕χ is a phase angle.We limit ourselves to the case where XX is large with respect to 2a or 2b ( is the ratio of the mass of the
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particles to their rest mass). In that case the potential, far from the jonction, is given by the field of a uniform beam, modolated with qLB(Copéros^). VD1F at the jonction is then eqoal to VDlF for the oniform beam, modolated with qLB(z=O). This excites TM waves on both sides of thejunction. The relation between Ei,, En and Έ» for z=0 is : * a

H
with c the speed of light in vacoom.Beam monitoring is not possible at freqoencies where the waves can propagate in the beam pipe. We find, for the critical freqoency uυc (and a>b) :
ωc - ιrc /2α (??)The TEl0 mode is not directly excited at the jonction.For the TMl∣ mode, we find, forα>=0∙7⅜ and a=b :
Even in this unfavorable case, is not very different from ^l∣ . The correspondance is better for higher modes and lower freqoencies. We see that, at z≈0, the relation between transversal and longitodinal components of E is allmost independent of freqoency (bel0wα7ωc) and the solo- tion for the pertorbation field at z=0 is valid at ail usefol freqoencies. For z / 0 , we ose (18) and (20), where we sobstitote for (Yβm . So, even at z 0 , we can use the solotion for the oniform beam as a fair approximation. The pertorbation field, however, is modulated with qLl(z=O) while the reference field is modulated with qL£>(z).
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What is said above is, of course, also valid for the large beam pipe, provided we substitute a and b’ for a and b. In the remainder of this paper, we will slightly modify the notations: the monitor is now on the side z> 0, with beam pipe dimensions 2a and 2b. The beam pipe dimensions on the other side are2w and2h. w and h can now be smaller or larger than a and b. Ail field calculations will be made for z > 0 only.

6. CIRCULAR AND ELLIPTICAL CROSS SECTIONS
For the circuler cross-section, we can repeat ail the calculations. There are difficulties because of the concentration of grid points in the center. Also, the computations for Bessel functions are much longer than for trigonométrie functions. These difficulties can be over- come but, if we are content with good approximations, it is easier to replace the circuler or elliptical cross- sections by "equivalent" rectenguler cross-sections and to calculate everything as if the beam pipes and the monitor were indeed rectangular.The first two TM modes are the most important and, for the square cross-section with sides 2a, they decay with Allexp(-ιrχ∕y5a) and Alzexp(-τr∕5z∕2a). For the circuler cross-section, with radius 2R, this corresponds to Aojexp(-2.4Oz∕R) and Allexp(-3.85z∕R). The exponents in the corresponding modes are equal when a=0.925R and a≡0.916R. We define the "équivalent” square cross-section with:

cl = 0. 32 R (23)We can extend this resuit and replace the ellipse by an "équivalent" rectangle with sides 0.92 times the axes of the ellipse.
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7∙ SUM AND DIFFERERCE CHARGES

For practical applications, we are interested in the sum and différence of the perturbation charges on opposite sides of the beam monitor. For the vertical walls. we bave:

The total sum and différence charge that falls on thevertical walls for z ^g is :

Close to the junction, the higher order terms are important and the perturbation is very large. For g > l∕tf∣∣ , however, we can neglect the higher order terms. For a beam with uniform charge D (C/m), we find : 

and, for the horizontal walls :

and, with eq. (20) and similar formulas:
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F. , F19 and F9. are dimensionless and in value equal to :
II* ' 4»

8. CONFORMAI TRANSITION
By this, we mean a transition such that ixr∕α=⅛∕⅛ = F(| was calculated for a centered beam and several values of p . Table 1 gives a few results. A first conclusion is that Fl( does not change much with the ratio a/b.F∣1 was also calculated for other beam positions. We found that Fll changes little (+10%) with the position of the beam, when ρ<l. For p>l , F∣l varies by about +20% when the beam moves within a reference ellipse (defined as the ellipse with axes 0.8 times the dimensions of the smallest beam pipe), with a maximum when the beam moves to the middle of the largest side and a minimum towards the corners.Fi2 and F2( were calculated for several values of p ,x0 and yo . When the beam moves over the x or y axis, the results can be expressed by the empirical formulas:

9. TRANSITION FROM RECTANGLE TO SQUARE
We now consider the transition between a square beam monitor, with side2a, and a rectangular beam pipe

We will tabulate F for two common transitions, the "conformai” transition and the ”square to rectangle" transition.

with F(p) given by table 2. For a beam within the reference ellipse, these formulas, together with the table, give values for F12 and F2∣ , accurate within +15% .
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with height2h and width 2w=2a (see e.g. fig. 5D). The per
turbation field in the monitor is given by :F() = 0.56 for h = 0.50a ^2)F|( =0.19 for h = 0.66a (ι1^Fll goes to zéro when ∣x0∣ goes to a and ∣Fl∣∣ is about 2% higher than in the center, for ∣x0∣ = 0 and ∣yo∣ = 0.8h .^F21∣ is small. F∣z is approximative!;/ given by the empirical formulas;F∣z = O.55yo∕h for h = 0.50a (⅛⅛)Fιz = O.42yo∕h for h = 0.66a
10. EDGE EFFECT FOR THE ELECTROSTATIC PICK.UP

(as defined in §6)We use the "équivalent” rectangular cross-sections^ and suppose the transitions to be conformai with p1 on the left and on the right. p is smaller than 1 for the example of fig. 1 and larger than 1 for fig. 2.To reduce the effect of the transitions, we use guard rings with lengths g1 and g^ . We suppose the électrodes grounded and calculate the total charge that would fall on the électrodes E, and En in the absence of the junctions. For a uniform beam, with charge D Coulomb/m, we find : 
with L the length of the pickup électrodes. With the junc tions présent, the real charges on the électrodes are qEl + q and qβ + qpa . qp1 and qp2 are the perturoa- tion charges, due to the junctions. For intensity measurements, we are interested only in the sum of the charges on both électrodes and the relative error,y , due to the junctions is :
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and, v.,ith eq. (56) 3Jià (58) :
M)

This formula is accurate only when g4 and g2 are large enough, so that we can neglect the higher terms. As a practical rule, we can say that the exponents of e, in the formula above, must be larger than 1, in absolute value.As an example, we take 2a=2b≡12cm , L=10cm , pi≡p2≡2 . From table 1, we take Frt=-0.145 and (48) is then, for a centered beam :

10.1 Center Displacement
For the calculation of the center displacement, we can consider the right and left junctions separately. The total displacement is then the algebraic sum of the two displacements. For a configuration, symmetrical with respect to the center of the PU, both displacements neutralise each other and Py(0)=0. Z

For g∕j=gz=3cm , y is about %. The variation in the error is from 4 to 6% when the beam moves within the reference ellipse. We now want to study the position, measured with:
When the perturbation charges are zéro, we hâve, with the linear électrodes of figs. 1 and 2: Px(x0)=x0 (Sherwood^), We will now study the déviations from this linear response, due to the transitions.
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The configuration is asymmetrical, when p2 or 32 or when ^the θlθctrode configuration itself is not symmetrical (as can occur, for instance, when the électrodes for horizontal and vertical position measurement are brought together in one monitor with 4 électrodes). For a centered beam we find, for the center displacement 4x0 , due to the left transition :

If we want Axi> to be smaller than 1mm, g4 must be langer than 50mτn∙
10.2 Errors in the Scale Factor

We now suppose the configurations of figs. 1 and
2 to be symmetrical, with g1=g2=g » f-ι ≡(⅞ β(0 a∏dl consequen- tly, Δxo=0. Eq; (49) is then :

with

We suppose here, that q2-y falls entirely on electrode E√∣. This results in a slight overestimation of the edge effect.With (58), we find;
For example, with 2a=20cm, 2b=14cm, L=14cm and p1=1.5, we find from table 1 (interpolâting between the values for a=b and a=2b) : Fl∣=-0.108 and :

and the scale factor is
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and, with eq. (36) to (39) anà (41) :
For 5=0, the second term is already larger than the first, in absolute value. Moreover, the first decays faster with g. For gtfu>l , we can write :
For example, with 2a=20cm, 2b=14cm, L=14cm andp=0.9 , we find from table 1 (with interpolation): F =0.062 and:
If we want y to be smaller than 2% , g must be larger than 46mm.
11. WALL CURRENTS

The Fourier component, with wavelength A, of the beam current is :
This Fourier component induces, near the junction (at z = 0 ), a time-dependent perturbation charge q^p^RT . This causes an alternating current in the wall, approximatively in the z-direction. To simplify the calculations, we will suppose that the current does not cross the corners of the beam pipe. We can again calculate the sum and différence
of the perturbation currents on opposite walls, for z=g :
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And, with q5∙y and q given by (36) and (37): Λ Δα

with Iβ≡Dλ.V the amplitude of the Fourier-component of thebeam current. For the horizontal walls, we find:

12. EDGE EFFECT FOR THE WALL CURRENT MONITOR
A wall current monitor (Avery et al. ) is usually circular in cross-section. A junction with elliptical beam pipes causes perturbation fields. As discussed before, we can replace the circular and elliptical crosssections by "équivalent" rectangular cross-sections and then, we obtain the configuration of fig. 3· We suppose the shunt over the gap to be of low impédance. The total current, flowing over the shunt, is then-Io + Its with Lα the Fouriercomponent, with wavelength \ , of the beam and 1= cotnplex rthèvamplitude of the perturbation current, due to the junc- tions. With g,t=g2=g and eq. (60) and (62), we find (con- sidering that the perturbation fields due to the left and right junctions are out of phase by Wg∕λ) :

And the phase différence between Iβ and is 90°.For example, with a=b=w=8cm, h=4cm, f=200MHz andV=c, we find: A =l∙5mj Fj∣ «0*36 (with eq∙42) and



17

With g=8cm : Ip∕I^≡0.008. We see that, even for 200MHz, the error due to the transitions is small, at least for the common symmetrical configuration.For position measurements, the gap is divided in 4 sectors which we make correspond to the 4 walls of the beam pipe. The discussion is analogeous to that for the ESPU and will not be repeated here, because the errors are very small for the symmetric configuration.
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TABLE 1
c F∣∣ for a=b F∣∣ 'for a=2b or b=2a0.8 +0.151 +0.1220.9 +0.068 +0.0551.1 -0.057 -0.0521.2 -0.065 -0.0561.5 -0.112 -0.1042 -0.145 -0.1415 -0.182 -0.1804 -0.199 -0.200

TABLE 2
P H0

CO 
σ× 

r-4 
O

j 
• 

· 
· 

· 
·

O
O

r-lr-IrH
C

XJtC
s^-

+0.512 +0.127-0.050-0.076-0.116-O.I52 -0.140 -0.144
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FIGURE CAPTIONS

fig» 1 : Electrostatic position monitor, larger than the beam 
pipe, for protection against stray particles.

fig· 2 : Electrostatic position monitor, mounted in a large 
vacuum chamber.

fig. 3 : Wall current monitor of circuler cross section, 
joined to beam pipes with elliptical or rectangular 
cross sections.

fig. 4 î Junction between rectangular beam pipes with differe^nt 
dimensions.

fig. 5 : Charge on the wall of the beam pipe, normalised to 
the charge far from the junction. A and B are half 
the dimensions of the pipes and XO, YO is the beam 
position. z=LxSTEPL is the distance from the junction.
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