PS/LIN/Note 77-14
25 July 1977

EDGE EFFECT IN BEAM KONITORS

J.H, Cupérus
CERN, 1211 Genéve 23

.ABSTRACT

Quite often, particle-beam monitors have not the
same cross-section as the beam pipe or vacuum chamber in
vhich they are mounted. In that case, the electromagrtic
field of the beam is distorted in the vicinity of the ed-
ges of the monitor. We compute this field,at the junction
of two rectengular beam pipes of different dimensions,
for a beam with constant charge along its length. Solutions
which are less accurate but easier to apply are obtained
with a first order approximation. The results are extended
to intensity-modulated beams and circular or elliptical
cross-sections, We compute the errors, due to the edge
effect, for the electrostatic pickup and the wall-current
monitor, The final formulas are simple and easy to apply

to vnractical cacses.

To be published in Nuclear Instruments and Methods.,



1. INTRODUCTION

The electromagnetic field of a charged particle
beam, in a cylindrical beam pipe with uniform cross-section,
is well defined. If a beam monitor is mounted in such a
beam pipe, without disturbing the profile of the pipe wall
significantly, its response to the beam can usually be
calculated with precision. Many practical beam monitors,
however, do not conform to this ideal situation. An
electrostatic pickup (ESPU), for instance, is often made
slightly larger than the beam pipe, in order to protect
it from the charge of stray particles. (fig. 1). The re-
verse. is true when the ESPU is mounted in a larger vacuun
tank (fig. 2). An extreme case is an ESPU mounted on a
beam in free air or around a glass or ceramic vacuum pipe.
Discontinuities also occur when a wall-current monitor,
with circular cross-section is joined, on both sides, to
an elliptical beam pipe (fig. 3).

In -all these cases, the field is distorted near
the transitions in cross-section, in a not very well con-
trolled way. To prevent errors in the measurement of the
intensity or position of the beam, the immediate vicinity
of the transition is not used for the measurement. For
the ESPU, grounded guard rings are used and for the wall-
current monitor, the gap can not be too close to a tran-
sition. Quite often, however, the longitudinal space is
limited and the question is then: how long do we have to
make theseguard rings?

One way to answer this question is to build a
prototype and test it by replacing the beam with a current
flowing through a wire (see e.g. Baron and Vogell). The
wire, however, is a constant-potential surface while, for
the beam, the potential along its length depends on the
charge of the beam and the cross-section of the beam pipe.
The consequence is, that the wire test underestimates the
edge effect. Good results can be obtained by calibrating



the monitor with a cathode ray beam (Simantonz). For this,
however, we need an expensive installation and, even then,
it is still a cut and try procedure.

It would be useful to have some simple formulas
for calculating the edge effect but, at first sight, it
seems impossible to do this in a general way, due to the
large number of possible configurations., In practice,
however, the magnitude of the discontinuity is much more
important than the exact configuration at the transition
or the shape of the cross-gections at both sides. We
will later see how we can replace circular or elliptical
cross-sections by "equivalent" rectangular ones and then,
most transitions more or less resemble the junction between
beam pipes of different cross-section as shown on fig. 4;

We usually do not want to correct the measure-
ments for the edge effect but, rather we want to construct
the monitor in such a way that the errors can be neglected.
In that case, a knowledge of the perturbations to, let's
say +20% , is largely sufficient. This explains why a
rather crude approximation can still give useful results,
Our first step will now be, to compute the field in the
vicinity of the junction of fig. 4 , for a beam, uniform
in intensity along its length.

2; FIELD NEAR THE JUNCTION

We will compute the field in the vicinity of
the junction between two rectangular beam pipes with dif-
ferent dimensions (fig. 4). We suppose the beam is thin,
goes through (xo,x,), and has a uniform line charge of 1
Coulomb per meter. We suppose further that the pipe on
the right has no dimension larger than the pipe on the
left.

The field, far from the junction, can be cal-
culated with the help of conformal mapping (see e.g. .
KoberB). We obtain Ypeep (x,y) for 2z)0 and Qgery (x,¥)
for 2«0 . The electrostatic potential, Y , near the



Junction, is then :

kp('Z}O)z Prere (’15@ + LPPERTP(Io‘éa’Z> (1)
W('K{O): (PREFH (Z.,%)"‘ LPPERTN(X)‘Wk) (2)

Yrer 1s the field that would exist , in each pipe, in the
absence of the junction. (@perr 1is the perturbation, due to
the junction. Y and Y are solutions of the Poisson
equation and they are zero at the walls of both pipes.
Consequently, we find thabt Qpeerp and Ypegpyy are also zero at
the walls and they are solutions of the Laplace equation,
each in its domain. It follows, that the perturbation
field is completely defined by the potential in the plane
z=0 . Because of the continuity of p at z=0 , we have

?REFP(Iﬁ%D'+(PPERTP(X7%7O) = LPREFH(lk%)4'?PERTH(X9390> (3)
w;ERTP (Iaj)0)==(9@ggrn (17%70) )

A1l this for |x|<a and |y|<b and with (p’, 3[10/37 . We
define now the potential
Viir (Xo%Q = Poeeny (19‘@ ~ Prery (17‘0 6)

The perturbation field, at z=0 , can then be written in
function of the known.VMF and an unknown potential V,

('PPERTP (17‘3705 = vo(x,‘é) (6)
Prerry <'17'~310>= v, (x,@ - VDN:(I,LJ) l<a aund \L&l<@ (3)
Pperrn (1"3"’)‘ “‘PRErH(Io@ Xlya o \y\»(’r )

We will compute successive approximations for V, , beginning

with :
Vo(xq‘a\) - Vyerr (2, ‘@ /2 6)

With this value of V,, we can express the perturbation
field, at each side of the junction, in the form of a dou-
ble Fourier expansion. For the positive side (zy0), we
find
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By differentiating eq. (10) according to z, we find the
z-gradient of the field. For z=0 , we have :

‘p;:etzw (x"é’()): —&2 i( L Afz xin| Ei(xcsa)| pen me [ﬂ%g“‘)] (43)

The gradient on the negative side can be found by exchan-
ging a*, bv*, AY and (V,-Vor) for a, b, Ay and V,. In
general, Ypeorp Will not be equal t0 Ypeery o @S required by

eq.(4). We obtain a better approximation for ¢}..., with:

Yoerre = i{(‘f’lpeaw + ‘P/PERTN> (14)

Now, we can find a better approximation for A&M, through
inversion of (13)

K&w““ / / 9 e D) & [M) ME&M . dta ()
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and we find a better approximation for V,, by putting the
new values of A in eq.(10), for 2z=0 :

x,0) = zz Ag... [wa} w[m%j_)] (1€)

B wel

With this improved value of V,, we start a new iteration
and so on, until the required precision is attained.
That is, when in every point in the plane z=0

\?QERTP" @éERTH\ < E)(P;EQTP\ U?)

with € a sufficiently small value.



The calculation of the potentials in the cross-
section was done on a grid of maximum 80x40 points. The
smallest dimension was usually taken to be 20 points,
sometimes 10 if some other dimension was too large. For
€=0,01, we need 3 to Y4 iterations. For calculations on
the full grid of 80x40 points, this takes about 4 seconds
on a CDC?7600 computer., As a result, we obtain the matrices
A and A¥ .,

3, CHARGE ON THE WALL

Of special interest, for beam monitoring, is the
charge, induced on the wall by the beam., By differentiat-
ing eq.(10), we obtain the charge induced by the perturba-
tion field. For instance :

-ay43 %)= - X‘bgopmp] ZZ Qwreorxqzw M[w_ﬂ(éi’)} & T

el wae|
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and 7 similar formulas for the other sides., We can do the

same for the reference field :

Orerr (< ?) = - &BE‘EP—} (19)
X=- Q&

Finally, we can integrate Q" over the width of the wall.

We find the line charges :

0o 00 62 - o, %
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4, SOME RESULTS

To get a feeling for how far the perturtations
reach, a few configurations are shown on fig. 5. All
dimensions are in meter. The beam has a uniform charge of
1C/m . XO, YO indicates the position of the beam. ALARGE,
BLARGE, ASnALL, BSWALL, aggiéhe dimensions of the large
and small beam pipes. The sides are numtered as indicated.
For each side, we calculate ILrer and

qupert + quRer 22)
qLREF

QeeL =

This dimensionless ratio is plotted in function of the dis-
tance from the Jjunction: z= LxSTEPL . In example
A, we plot g, from O to 2. 1In the other examples, only
the more interesting region between 0.8 and 1.2 is plotted.

5. INTENSITY MODULATED BEAii

We will now see what happens when the beam is not
a uniform line charge. A diffuse beam can be calculated
as if it was a line charge, going through the charge center.
This gives good results when the diameter of the diffuse
beam is smaller than the distance of the charge center to
the nearest wall.

A beam, varying in intensity aloug its leugth,
can be expanded in its Fourier components, with D, the
amplitude of the component Q5 , with wavelength PN

9Qup= DOx - m[%{f(v.wrz)—z)& (23)

IRY is the line charge of the Fourier component, V is the
speed of the particles in the beam (withcu:?ﬂ%& the angu-
lar frequency) and 2WZ>/& is a phase angle.

We limit ourselves to the case where J\ is large
with respect to 2a or 2b () is the ratio of the mass of the



particles to their rest mass). In that case the potential,
far from the Jjunction, is given by the field of a uniform
beam, modulated with qLB(Cupérusq). Vo e a2t the junction

is then equal to V, ¢ for the uniform beam, modulated with
q,«(2=0). This Vj; excites Ti waves on both sides of the

junction., The relation between E.y E, and E, for z=0 is :

d
X, E
Ex= - %M ' OF (24)
“&m 9ox
M E
SN s
X pm &

/ 2 z 2
o] = ((EW) ) _¢9_> %
with ¢ the speed of light in wvacuum.

Beam monitoring is not possible at frequencies
where the waves can propagate in the beam pipe. We find,
for the critical frequency w, (and a)b) :

Ww. = TC /2a (27)

The TE, mode is not directly excited at the Jjunction,
For the TM, mode, we find, forw=0.74 and a=b :

[ EE e e

2a Eﬂ; T 7 \2a

Even in this unfavorable case, m;is not very different
from “H . The correspondence is better for higher modes
and lower frequencies. We see that, at z=0, the relation
between transversal and longitudinal components of E is
allmost independent of frequency (belowdJw.) and the solu-
tion for the perturbation field at z=0 is valid at all
useful frequencies. For z # O , we use (18) and (20),
where we substitute aﬁm for (g, . So, even at z # O ,

we can use the solution for the uniform beam as a fair
approximation. The perturbation field, however, is
modulated with qw(z=0) while the reference field is modul-
ated with qu( z).



What is said above is, of course, also valid for
the large beam pipe, provided we substitute a* and v* for
a and b, In the remainder of this paper, we will slightly
modify the notations: the monitor is now on the side z > O,
with beam pipe dimensions?2a and2b. The beam pipe dimensions
on the other side arelw andih. w and h can now be smaller
or larger than a and b. All field calculations will be
made for z > O only.

6., CIRCULAR AND ELLIPTICAL CROSS SECTIONS

For the circular cross-section, we can repeat
all the calculations, There are difficulties because of
the concentration of grid points in the center. Also, the
computations for Bessel functions are much longer than for
trigonometric functions. These difficulties can be over-
come but, if we are content with good approximations, it
is easier to replace the circular or elliptical cross-
sections by "equivalent" rectangular cross-sections and
to calculate everything as if the beam pipes and the mon-
itor were indeed rectangular.

The first two TM modes are the most important
and, for the square cross-section with sides 2a, they
decay with A“exp(-ﬂ;ﬂ§é) and Amexp(-wfgz/2a). For the
circular cross-section, with radius 2R, this corresponds
to A,exp(-2.40z/R) and A exp(-3.8%z/R). The exponents in
the corresponding modes are equal when a=0,925R and
a=0,916R. We define the "equivalent" square cross-section
with:

a=0.92R 29)
We can extend this result and replace the ellipse by an
"equivalent" rectangle with sides 0.92 times the axes of
the ellipse.



7« SUM AND DIFFERENCE CHARGES

For practical applications, we are interested
in the sum and difference of the perturbation charges on
opposite sides of the beam monitor. For the vertical
walls, we have:

qux('z)z 9LperT (a,%) + QLpERT (-a,%) (30)
QLAX(Z)I ‘fLPERT(GaZ) = 9 LPerT (~a,%) D))

and, with eq. (20) and similar formulas:

oy o
Gusx (%) = - b (')r{{ g ha€ Trahye 3.”'3 )

- -y 2
qux M= b e fere™ rvng e e

The total sum and difference charge that falls on the
vertical walls for z }g is

o g o A 5% 3’3
‘]zx%ﬁ/%zx(ﬂ'd'zvl’&@ 3A 3 j+30( R E b9

13 X1
K Q, ’l Xz) "’j
qAX(cé) }qLAX Z).o[z_ % o{?—d_éz_'_.,ﬁ 7 o(q, égsj

i

Close to the junction, the higher order terms are important
and the perturbation is very large. For g>1/«, , however,
we can neglect the higher order terms. For a beam with
uniform charge D (C/m), we find

%tx(q)= & = DO(F" e %d (3¢)
_ & DE, - %a 37)
%X(%\)'Z"‘_;"e 3 (37
and, for the horizontal walls
e nE o3 &
Py Q=g 5t €
Goy (§)= 2. 2Fn o7 &

& Ay
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F F, and F, are dimensionless and in value equal to:

no
F": -L\"€OA“ ') FIZ = 8€0A|2 3 F?_l = 860 A2_| (L’O>

We will tabulate F for two common transitions, the
"conformal" transition and the "square to rectangle" tran-

sition.

8, CONFORMAL TRANSITION

By this, we mean a transition such that uv@==2/3=p.
F, was calculated for a centered beam and several values
of e - Table 1 gives a few results. A first conclusion
is that F, does not change much with the ratio a/b.

F, was also calculated for other beam positions.
We found that F, changes little (tlo%) with the position
of the beam, when p<l. For p>1 , F, varies by about +20%
when the beam moves within a reference ellipse (defined as
the ellipse with axes 0.8 times the dimensions of the
smallest beam pipe), with a maximum when the beam moves
to the middle of the largest side and a minimum towards
the corners,

F, and F, were calculated for several values of
fyX, and y,. When the beam moves over the x or y axis,
the results can be expressed by the empirical formulas:

e = = Fe) P o F0) )

with F(Q) given by table 2. For a beam within the refer-
ence ellipse, these formulas, together with the table,
give values for F, and F, , accurate within 115% .

9. TRANSITION FROM RECTANGLE TO SQUARE

We now consider the transition between a square
beam monitor, with side2a, and a rectangular beam pipe



with height ?h and width 2w=2a (see e.g. fig., 5D)s The per-
turbation field in the monitor is given by :

R

L}

0.26 for h

0. 508 <q2)

F, = 0.19 for h = 0.66a (43)

I

F, goes to zero when ixJ goes to a and SEJ is about 25%
higher than in the center, for |xJ = 0 and |y| = 0.8h .

\Fm\ is small. F, is approximatively given by

2
the empirical formulas:

F, = 0.555,/h for h = 0.50a (44)

Fj, = 0.42y,/h for h = 0.66a (43)

10, EDGE EFFECT FOR THE ELECTROSTATIC PICKUP

(as defined in §6)
We use the "equivalent" rectangular cross-sectionsY

and suppose the transitions to be conformal with ¢, on the
left and p, on the right. 0 is smaller than 1 for the ex-
ample of fig. 1 and larger than 1 for fig. 2.

To reduce the effect of the transitions, we use
guard rings with lengths g, and Bg We suppose the elec-
trodes grounded and calculate the total charge that would
fall on the electrodes E1 and E2 in the absence of the
junctions. For a uniform beam, with charge D Coulomb/m,
we find :

+q.. =-D.L (46}

Qgq €9

with L the length of the pickup electrodes. With the junc-
tions present, the real charges on the electrodes are

Qg + qpJ and Qe, + Qpp +  Qpy and Q,, are the perturpa-
tion charges, due to the junctions. For inteusity
measurements, we are interested only in the sum of the
charges on both electrodes and the relative erTOT, 7 4 due

to the junctions is

12
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~ du+dre o i[qzx (9) + Gy @) ¥ 92 (92) + 92y (32‘)} 47)

Jei +9e2
and, with eq. (36) and (38)

T/l + 5, T az .
gu -2t [ pe T P R T g

L

This formula is accurate only when g, and g, are large
enough, so that we can neglect the higher terms. As a
practical rule, we can say that the exponents of e, in the
formula above, must be larger than 1, in absolute value,

As an example, we take 2a=2b=12cm , L=1Ocm ,
O=0,=2 . From table 1, we take Fz=-0.145 and (48) is then,
for a centered beam :

?c 0.075 (8‘34/0.02? + 6—32/0.02?)

For gy=g,=3cm , vl is about 5%. The variation in the error
is from 4 to 6% when the beam moves within the reference
ellipse,

We now want to study the position, measured with:

P (z.) = Qe + 9p1) - (Gep + C?FZ) (

(9er + 9p0) + (qez + 9?2) 79)
When the perturbation charges are zero, we have, with the
linear electrodes of figs. 1 and 2! P, (x,)=x, (Sherwood?).
We will now study the deviations from this linear response,
due to the transitions.

10.1 Center Displacement

For the calculation of the center displacement,
we can consider the right and left junctions separately.
The total displacement is then the algebraic sum of the
two displacements. For a configuration, symmetrical with
respect to the center of the PU, both displacements neut-
ralise each other and P&(O)=O.



The configuration is asymmetrical, when P1# P2
or 31¢:32 or when the electrode configuration itself is
not symmetrical (as can occur, for instance, when the
electrodes for horizontal and vertical position measurement
are brought together in one monitor with 4 electrodes).
For a centered beam we find, for the center displacement
Ax, , due to the left transition :

Ax, ™ 9e1 — 9e2 + 9=y (ﬂ1) o iZ_Z’_@ o (50)
= +‘Qa24’?zx(y>+-qzy(gﬂ D.L

We suppose here, that qyy falls entirely on electrode E,.
This results in a slight overestimation of the edge effect.
With (38), we find:

Az, ¥ — 25 Fu e % (57)
b el

For example, with 2a=20cm, 2b=1l4cm, L=1l4cm and p1=l.5, we
find from table 1 (interpolating between the values for
a=b and a=2b) : F;=-0.108 and

- 0.03
AX, ¥ 0.00k0. € 31 /0.037
If we want Ax, to be smaller than lmm, g4 must be larger
than 50mm,

10.2 Errors in the Scale Factor

We now suppose the configurations of figs. 1 and
2 to be symmetrical, with g,=g,=g , 04 =F =P and, consequen-
tly, Ax,=0. Eq: (49) is then :

P, (Io) I e [ 29ax (g) « <5Z>
de1 + 9Gez + 25{2x(§>+ 295y (3)
and the scale factor is

Pl (o) = o{? (xo)/a(xo -1+ 3 (53)

with

3z ,)%[[a é_j_{%%@l - C]Zﬂﬁ) — JIsy @)} ()

14
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and, with eq. (36) to (39) and (41):
gx L[ ) e i g e (55)
J_/&2+ 4/62

For g=0, the second term is already larger than the first,
in absolute value. Moreover, the first decays faster with

g. For ga,>1 , we can write
_ Lh};l‘f‘ erz ““llg (5€>
= L Fi- ©

For example, with 2a=20cm, 2b=l4cm, L=14cm and(7=0.9 , We
find from table 1 (with interpolation): F =0.062 and:

7= = 0.0€3 6"3/0'037

If we want 3 to be smaller than 2% , g must be larger than
46mm,

11, WALL CURRENTS

The Fourier component, with wavelength A, of the
beam current is :

~ g V= Do o [ (e vz 7

This Fourier component induces, near the junction (at 2z=0 ),
a time-dependent perturbation charge q perr . This causes
an alternating current in the wall, approximatively in
the z-direction. To simplify the calculations, we will
suppose that the current does not cross the corners of the
beam pipe.

We can again calculate the sum and difference

of the perturbation currents on opposite walls, for z=g :

(9= {ﬂzx (9)- CmY—Zf\ir(\/.t +Z>)L1 (55)

Cax (9) = g& {qax(%). cm[zﬁl(v.u zk)] (59)



And, with qsy and QY given by (36) and (37):

(o=, %_;‘_ o %19 M[mr (Vb %ﬂ (60)
' ~ 0y :
Ly @)=-2C. I, %'%'6 d. M[Z}I—T(\/,t+zA)} 61)

with I.=D,.V the amplitude of the Fourier-component of the
beam current. For the horizontal walls, we find:

, - g -
Lry (cph‘ZTW.I;. % R e M M[Z;I(V,HM] (62)

-
yhis F 3 FII 't 63
y(%):.__;‘.. IE‘ a,2 € N S (V. +k,\§] ¢3)

12. EDGE EFFECT FOR THE WALL CURRENT MONITOR

A wall current monitor (Avery et al.6) is
usually circular in cross-section. A Jjunction with ellip-
tical beam pipes causes perturbation fields. As discussed
before, we can replace the circular and elliptical cross-
sections by "equivalent" rectangular cross-sections and
then, we obtain the configuration of fig. 3. We suppose
the shunt over the gap to be of low impedance. The total
current, flowing over the shunt, is then-I, +T with I, the
Fggilﬁfcomponent with wavelength ) , of the beam and IP
thevamplitude of the perturbation current, due to the Jjunc-
tions. With g, =g,=g and eq. (60) and (62), we find (con-
sidering that the perturbation fields due to the left and
right junctions are out of phase by 4Wg/&):

- A+ 4.
— LH/Q 2+ 42 . F,- € 1 az*”éz g_ 2%(2.1_;3-\) (6#)

IB
And the phase difference between I, and I is 90°.

For example, with a=b=w=8cm, h=licm, f=200MHz and
V=c, we find: X =1.5m, F,=0.36 (with eq.42) and

16
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5@ _ o.08. e g/o.ozg. 2 Aun (8/0.24)
Ip

With g=8cm : I,/I,=0.008, We see that, even for 200MHz,
the error due to the transitions is small, at least for
the common symmetrical configuration.

For position measurements, the gap is divided
in 4 sectors which we make correspond to the 4 walls of
the beam pipe. The discussion is analogeous to that for
the ESPU and will not be repeated here, because the errors
are very small for the symmetric configuration.
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TABLE 1
P F, for F, "for
a=b a=2b or b=2a
0.8 +0.151 +0.,122
0.9 +0.068 +0.055
101 -0.037 -00032
102 _00063 -00056
1.5 -0,112 -0.104
4 -0.199 -0,200
TABLE 2
P F(e)
0.8 +0.312
0.9 +0.127
lol -00050
102 —0.076
1.5 -0.116
2 -0.132
3 -0.140
4‘ "o. 14‘4
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FIGURE
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CAPTIONs

fig. 1

figo 2

fig. 3

figo I+

fig. 5

.e

Electrostatic position monitor, larger than the beam

pipe, for protection against stray particles.

Electrostatic position monitor, mounted in a large

vacuum chamber,

Wall current monitor of circular cross section,
joined to beam pipes with elliptical or rectangular

cross sections.

Junction between rectangular beam pipes with differegnt

dimensions.,

. Charge on the wall of the beam pipe, normalised to

the charge far from the junctions A and B are half
the dimensions of the pipes and XO, YO is the beam
position. 2z=ILxSTEPL is the distance from the junction.
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