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Abstract

A treatment of multiple scattering for thick and thin scatterers is de
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derived for uncoupled beams, but is then extended to take coupling into 
account. Excellent agreement is demonstrated with Monte-Carlo data. 
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Introduction
Multiple coulomb scattering can be an important source of emittance blowup and betatron mismatch when considering stripping foils, semi-destructive monitors, beam scrapers and specialist applications such as hadron therapy. The thick-scatterer formulae derived in the present paper give a description of the beam envelope and the emittances after scattering by a uniform, isotropic absorber of arbitrary thickness. The derivation exploits the statistical description of the beam given by the well-known σ-matrix and the final expressions are written in terms of Twiss beam parameters. The modified Twiss parameters apply to the beam envelope and emittances and cannot be used for single particle tracking, since the concept of betatron phase advance for an individual particle is lost when crossing the scatterer. The more usual thin-scatterer formulae are shown to be consistent with the thick scatterer results and the thick scatterer formulae are shown to be in excellent agreement with Monte-Carlo tracking. Indications are also given for finding the energy loss and calculating emittance growth from the betatron mismatch caused by scattering.
The σ-formalism
The σ-matrix formalism is briefly reviewed following Buon [1], where the σ- matrix of the particles in a beam with transverse phase-space co-ordinates y→ is defined as:

where the {yy} and {yy'} denotes the variance and the co-variance of the phasespace co-ordinates of the particle beam.A linear transformation M which transfers an initial vector y→1, so that,
has the following effect on the σ-matrix:

and reveals that the σ-matrix transfers via
σ2 = Mσ1MT. (2)
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Thus, the knowledge of the σ-matrix at one point in a lattice is sufficient to calculate the σ-matrix at any other point, provided M is known.For an uncoupled beam, the co-variance terms between the planes disappear, so that

It is possible to link the elements of the σ-matrix with the Courant and Snyder invariants. Using the definition of the statistical emittanceϯ,

where α and β have their usual meanings as Twiss parameters and 7 = (1 + α2/β, 
σuc can be written as

Thick-Scatterer transformations for an uncoupled 
beam
Consider a particle with co-ordinates y→0 = (y0, y'0) at the entry to a Scatterer (see Figure 1). Multiple scattering will cause the particle to deviate from its original path. Instead of exiting the Scatterer of thickness L at co-ordinates (y1, y'1) the path will be perturbed and the particle will exit at the new co-ordinates (y2,y'2)∙ Compared to the unperturbed path the particle will have received an additional angular deflection θs and will have undergone a displacement δy.It is intuitively obvious that there is a correlation between ϴs and δy, since a particle which has received a large kick has also a higher probability of exiting the absorber with a larger displacement. This correlation is entirely geometric in origin [2] and can be calculated to be,

(5)ϯEmittance is here defined as an area in phase space, i. e. π is included inside Ex and Ez
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Figure 1: Effect of a thick scatterer

Furthermore, the variance of the displacement δy can be calculated to be
(6)

where ϴ0 = √(ϴ2s), the characteristic scattering angle, which can be calculated from Highland’s equation (19) as described in the Appendix A.Three relationships for the statistical effect of scattering can now be established. Firstly, the change in divergence,
(7)By squaring (7) and then averaging over the whole beam, the increase in divergence can be related to the characteristic scattering angle ϴ0 .

where 2{y'1θs} = 0 because y'1 and θs are uncorrelated since scattering is isotropic. Thus the new divergence is given by,
(8)
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Similarly with the use of (6),

Finally, the change in the cross-term yy' is given by,

Since scattering is isotropic and has no correlations with y1 or y'1, the last two terms in (10) are zero. The second term, however, makes a finite contribution, since there is a correlation between the displacement δy and the scattering angle θs, which is described by (5). Inserting (5) into (10) therefore leads to
(11)

The changes due to scattering are described statistically in equations (8), (9) and (11) and provide the three relationships needed to solve the Twiss functions after scattering. Thus, using the correspondences in the matrix equation (4),
(12)

The right-hand side of each equation in (12) is fully evaluated by conditions at the exit to the scatterer without scattering, and by the characteristics of the scatterer. Re-writing (12) with three constants

4

which can be evaluated to be



and substituting into the Twiss relation below leads to the solution of the three equations by

Consequently E2 can be evaluated as

Backsubstitution into (12) now yields the modified Twiss functions after the scatterer.
Extension to a coupled beam
The approach given in the previous section can now be generalised to coupled beams. The σ-matrix for a coupled beam contains additional elements:

By using the same technique as for the uncoupled beam — adding the scattering and then squaring and averaging over the beam — the overall effect of scattering can be evaluated. Since scattering is isotropic, the elements of the σ-matrix which do not describe the coupling remain the same. The only additional work to be done is to deal with the three coupled terms in the matrix.Starting with

which can be transformed to

resulting in no extra change, since scattering does not introduce any coupling between the x and z planes and all coupling terms cancel.Similarly,
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Finally the last term,

All coupled terms are unchanged after scattering and only the uncoupled elements change. Thus, it is possible to treat a coupled beam passing through a scatterer in the same way as an uncoupled beam, which is a welcome simplification, although at first, a little surprising.
Approximation for a thin scatterer
In practical applications it is often necessary to deal with thin scatterers, such as stripping foils. For such an application, it is possible to make a thin scatterer approximation. In a thin-scatterer, it is assumed, that the position of the particle remains unchanged when passing through the scatterer, and only the change in divergence has to be taken into account. Thus neglecting the terms depending on L in (12) leads to,

(16)
Equation (14) is still valid and yields,

(17)

Emittance dilution from betatron mismatch
As an application of the Twiss-Scatterer relations, consider the following example. For a luminescent screen introduced into a transfer line, the multiple scattering in the monitor will cause a betatron mismatch. If the beam then
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enters a ring, the mismatch will cause filamentation and hence an increase in emittance according to
(18)

which can be found in [3]. Here the index s denotes the Twiss parameters after scattering, while the index n denotes the non-scattered values, i. e. the values expected at the entry to the ring for the beam without beam monitors.By isolating α2 and β2 by dividing by E2 in equation (12) and inserting the new scattered values into equation (18) using the matched values for the line for α1 and β1 and using equation (14) to obtain the intermediate emittance blown-up by scattering (Es in (18)), it is possible to evaluate the emittance dilution of the mismatched beam due to scattering.
Comparison with a Monte-Carlo simulation

Table 1: Comparison of calculated beam parameters and those obtained by trackingA simple comparison with tracking shows the validity of (12). Using a code for designing passive spreading systems in hadron therapy [4], an uncorrelated Gaussian beam of 100 000 protons at 180 MeV with a momentum spread of 0.1% and a spatial cut-off at 2σ was generated and tracked through a copper foil of 3.67 mm thickness. The absorber adds an average angle ϴ0 = 20.4 mrad using Highland’s equation (19). The numerical data is collected in Table 1. The estimated Twiss parameters of the scattered beam obtained by statistical analysis of the distribution calculated by tracking agree extremely well with those calculated using the Twiss-Scatterer relations of equation (12).
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Appendix A. Multiple scattering
Multiple coulomb scattering of charged heavy particles is probably best described by the theory of Molière [5] which has been extended and corrected by Bethe [6], Fano [7] and Scott [8]. This theory describes the width and distribution of the projected scattering angle, which is not quite Gaussian. However, Molière’s theory is somewhat complicated and difficult to apply, it is fortunate that it is often possible to use a Gaussian approximation of the scattering distribution. Highland [9, 10] has developed such an approximation and he calculates the width by an astute observation that certain parameters in Molière’s theory occur in the same way as in the equation of the radiation length:

(19)
This equation is said to be accurate to 5% in the range 10-3 ≤ L/Lr ≤ 100, except for very light elements, where the accuracy is supposed to be better than 11% [11]. Note however, that there are a variety of similar equations quoted in the literature, which all deviate at the one to two percent level. Especially for low particle energies, such as those used in hadron therapy, the validity of (19) has to be questioned and it may be necessary to modify Highland’s equation.The Highland formula is a fit that takes into account the energy loss of the beam. Thus equations (12) and (14) give the Twiss functions and emittance at the new energy of the beam. To find the energy loss the well known Bethe-Bloch Formula can be used which can be found in [11]. It should be remembered that if the energy loss is not accounted for by a reduction in the focusing strength of the line, additional betatron mismatch will be created.The formulation of scattering in terms of Twiss functions is, however, independent of the method chosen to calculate the characteristic scattering angle. It is sufficient to be aware that Highland’s formula is an approximation and should be replaced by measured data when possible.
Conclusions

• An analytically rigorous approach has been developed for evaluating scattering in the context of the Twiss functions.• In particular, full account is taken for the geometrical correlation occurring between the scattering angle and the displacement of the scattered particle.• The resultant Twiss-Scatterer relations allow the Twiss functions to be calculated in a continuous manner through a lattice, which opens the way to incorporating scatterers into lattice programs and even using them for matching beam envelopes and emittances. This has already been implemented in WINAGILE[12].
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• Excellent agreement with the Monte-Carlo data is achieved and demonstrates the accuracy achievable.
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