
PS/HP/Note 97-01
17 January, 1997

PSTOOL
a High Level Interface to CERN/PS Accelerator Control System

Reference Manual

Version 1.0

András Ster

Foreword

PSTOOL is a Fortran callable program interface to the CERN/PS Accelerator Control
System. It is based on the existing PS Equipment Access (EQP) and Pulse to Pulse
Modulation (PPM) libraries, written in C++ language, which contain the equipment
access and event synchronization functions, respectively. The package provides
simplified high level procedures for accelerator control operations described in this
manual. Due to the programming language, application programs can use it together
with CERNLIB library facilities, like advanced graphics functions, as well.

Table of Contents

1. INTRODUCTION...3

1.1 Motivation.. 3
1.2 Conventions.. 3

1.2.1 Terms..3
1.2.2 Parameter types... 3
1.2.3 Parameter identifiers.. 4

1.3 Remarks...4

2. CONTROL ROUTINES..5

2.1 PLSLNAME Return the line names in a PLS group...5
2.2 PLSUSER Return the number of the current active PLS user line................... 5
2.3 PLSUSERS Return the names of the current active user lines..........................6
2.4 XEVTCB Initializes-terminates event processing... 6
2.5 RFLIN Read a Linac2 radio frequency parameter... 7
2.6 RFLINS Set a Linac2 radio frequency parameter.. 8
2.7 POW Read an equipment power supply parameter... 9
2.8 POWS Set an equipment power supply parameter.. 9
2.9 TRAFO Read a beam intensity transformer.. 10
2.10 EQPDATA Return information about an equipment...................................... 11
2.11 ERROR Return the latest error code...11

3. UTILITIES..12

3.1 WAIT_TIME Wait time... 12
3.2 KEY_CTRL_C Test termination request...12
3.3 UCASE Uppercase string converter.. 12
3.4 SCREEN_CLEAR Clear screen...13
3.5 SCREEN_HOME Move cursor home... 13

Acknowledgments.. 13

References...13

2

Preliminary remarks

Apart from the references listed in this manual further information concerning the PS
Accelerator Control System are available on the WWW under the divisional home
page.

This package is available from the PS Program Library. When compiling application
programs on the PS platform IBM AIX/6000 use the compiler option -qextname to be
compatible with this and other libraries.

In this document Fortran program code segments appear in Courier typographical
form. Where a routine or term is defined its name is in bold.

1. Introduction

1.1 Motivation

Years ago CERN/PS developed a special language, NODAL, with the intention of
creating a high level programmation tool and environment for equipment control.
Nowadays, except for special cases, its use is less preferred and several efforts have
been made to replace it with more advanced methods. The present idea was conceived
on the basis of the Linac 2 performance optimization initiative [1]. Accelerator
physicists have required a program that is flexible enough to be quickly adapted to the
continually changing conditions and other supported software packages can be used
with it. Hence the choice of the Fortran program development environment [2]. The
first version of the interface that provides some simple Fortran callable routines for
basic accelerator controls has been implemented.

1.2 Conventions

1.2.1 Terms

The term equipment in this manual means any accelerator element that is controlled
via the PS Equipment Access Library [3] of the PS Accelerator Control System.

The event synchronization is controlled through the Program Line Sequencer (PLS) of
the Pulse to Pulse Modulation Library [4]. The frequently used term PLS line
incorporates all the conditions that define a particular beam cycle.

1.2.2 Parameter types

The parameter types of the PSTOOL routines obey the standard Fortran rules, i.e., if
not stated explicitly they are integer if the initial letter is between I and N inclusively
and real otherwise. Character variables are always indicated by the key string that
has a variable length unless it is indicated explicitly. The length can not exceed 80
characters.

3

1.2.3 Parameter identifiers

In the context the parameter machine identifies an accelerator line and it may have
one of the three predefined values that follow the CERN/PS control accelerator
number convention:

0 : CPS (Cern Proton Synchrotron)
1 : PSB (Proton Synchrotron Booster)
2 : LPI (Lep Injector Linacs)

The argument eqp_property identifies an equipment parameter. Consult the WWW
pages for more details about properties. In this library 4 different parameter type codes
have been implemented according to the following cast:

0 : AQN (Γst acquisition value)
1 : AQN1 (2nd acquisition value)
2 : CCV (lsl current control value)
3 : CCV1 (2nd current control value)

In case of radio frequency the 1st parameters refer to the phase and the 2nd ones refer to
the power supply amplitude. When quadrupoles are tuned the power supplies are
controlled via the 1st parameters. To measure beam intensities the beam transformers
must be read with the option AQNL

1.3 Remarks

In case of errors the routines automatically send messages to the screen with a brief
explanation of the problem occurred. The present error function implemented here
returns a code that can be either -1 if fatal or 1 if non-fatal error occurs and 0 if there
is no problem.

4

2. Control routines

2.1 PLSLNAME Return the line names in a PLS group

FUNCTION PLSLNAME(MACHINE, GROUP_NAME, LINE_NAMES, LINES_NUM)

Action:

This function returns the line names of the PLS group for the requested machine.
The function value returns the index of the first name in the string array. The
number of line names in the name array is also returned. The index of a name is the
line number.

Input parameters:

machine Machine identifier
group_name PLS group name (string)

Output parameters:

line_names ArrayofPLSlinenames (string)
lines_num Number of line names
plslname Line number of the 1st name in the string array (integer)

Note:

If any problem occurs the function returns O.

Example:

N=O
Il = PLSLNAME(PSB, "USER", LINE_NAMES, N)
DO I = II, Il + N - 1

PRINT *, I, LINE_NAMES(I)
ENDDO

2.2 PLSUSER Return the number of the current active PLS user line

TION PLSUSER(MACHINE, CYCLE, SUPER)

Action:

This function returns the line number of the current active PLS user line for the
requested machine. The function returns the current cycle number in the supercycle
and the current supercycle number, too.

Input parameter:

MACHINE Machine identifier

5

Output parameters:

cycle The current cycle number in supercycle (integer)
super The current supercycle number (integer)
PLSUSER The current user line number (integer)

Note:

If any problem occurs the function returns 0.

Example:

CYCLE = 0
SUPER = 0
LINE_ACTIVE = PLSUSER(1, CYCLE, SUPER) !Current active line in PSB

2.3 PLSUSERS Return the names of the current active user lines

FUNCTION PLSUSERS(MACHINE, LINE_NAMES)

Action:

This function returns the names of the current active user lines for the requested
machine. The routine returns all the lines either in waiting or in operating state
which always depend on the current user requests.

Input parameters:

machine Machine identifier

Output parameters:

line_names Array of PLS line names (string)
Plsusers Number of names returned (integer)

Note:

If any problem occurs the function returns 0.

Example:

N = PLSUSERS(1, CYCLE_NAMES)
DO I = 1, N

PRINT *, I, CYCLE_NAMES(I)
ENDDO

2.4 XEVTCB lnitializes-terminates event processing

6

SUBROUTINE XEVTCB(ID, MACHINE, PULSE, PLSLINE, CB)

Action

This routine initializes or clears event-related internal variables. Its name and form
comes from the corresponding NODAL function for traditional reasons only and it
does not have any relation with Xwindows at all. The routine sets the current PLS
line as default for the requested machine and pulse if initialization is requested.
After termination request the PLS line condition becomes undefined. A pulse value
equal to O allows for PLS line events. It redefines the CTRL-C keyboard event
handling allowing to test this button action.

Input parameters:

id Process identifier
machine Machine identifier
pulse Pulsenumber(INTEGER)
PLSLINE PLS line number (integer)
CB Command flag. O value means initialization, non-zero value

means termination of event processing (integer)

Note:

id can be any identifier number. Don’t use any pulse number other then O in the
current version. A value of -1 for plsline ignores PLS line condition and a default
line is set.

Example:

MACHINE = PSB
CALL XEVTCB(1, MACHINE, O, -1, O) !Init and Ignore PLS line

2.5 RFLIN ReadaLinacZradiofrequencyparameter

FUNCTION RFLIN(EQP_NUMBER, EQP_PROPERTY, PLSLINE, COCO)

Action:

This function reads the corresponding Linac2 radio frequency parameter defined by
the equipment, the property and the PLS line. It also returns the current error code.

Input parameters:

EQP_NUMBER
EQP_PROPERTY
PLSLINE

Equipment identifier (integer)
Equipment parameter type (integer)
PLS line number (integer)

Output parameters:

7

COCO
RFLIN

Functioncompletioncode (integer)
Current equipment RF parameter value

Note:

To get the equipment number call the routine eqpdata with the standard name of
the equipment. The controllable parameters are those of the radio frequency phase
(1) and power supply (2).

Example:

!Read buncherl phase of Linac2 MEBT

PLSLINE = NUM_OF_SFTPRO
PHASEl = RFLIN(2002, 0, PLSLINE, COCO)

2.6 RFLINS SetaLinacZradiofrequencyparameter

SUBROUTINE RFLINS(EQP_NUMBER, EQP_PROPERTY, PLSLINE, COCO, PARAM)

Action:

This routine sets the corresponding Linac2 radio frequency parameter defined by
the equipment, the property and the PLS line. It also returns the current error code.

Input parameters:

EQP_NUMBER
EQP_PROPERTY
PLSLINE
PARAM

Equipment identifier (integer)
Equipment parameter type (integer)
PLS line number (integer)
New equipment RF parameter value

Output parameter:

coco Functioncompletioncode (integer)

Note:

To get the equipment number call the routine eqpdata with the standard name of
the equipment. The controllable parameters are those of the radio frequency phase
(1) and power supply (2).

Example:

!Set new buncherl phase in MEBT of Linac2

PHASEl = RFLIN(ID_BUNCH1, CCV, PLSLINE, COCO)
CALL RFLINS(ID_BUNCH1, CCV, PLSLINE, COCO, PHASEl * 1.05)

8

2.7 POW Read an equipment power supply parameter

FUNCTION POW(EQP_NUMBER, EQP_PROPERTY, PLSLINE, COCO)

Action:

This function reads the corresponding equipment power supply parameter defined
by the equipment, the property and the PLS line. It also returns the current error
code.

Input parameters:

EQP_NUMBER
EQP_PROPERTY
PLSLINE

Equipment identifier (integer)
Equipment parameter type (integer)
PLS line number (integer)

Output parameters:

coco
POW

Functioncompletioncode (integer)
Current equipment power supply parameter value

Note:

Call the routine eqpdata with the standard name of the equipment to get the
eqp_number identifier. Power supplies are controlled via the 1st equipment
parameter.

Example:

!Read 1st QUAD power in Linac2

CALL EQPDATA("LAI.QFN02", EQM_NAME, EQM_NUMBER, LA1_QFNO2, S, L)
POWERl = POW(LA1_QFN02, O, PLSLINE, COCO)

2.8 POWS Set an equipment power supply parameter

SUBROUTINE POWS(EQP_NUMBER, EQP_PROPERTY, PLSLINE, COCO, PARAM)

Action:

This routine sets the corresponding equipment power supply parameter defined by
the equipment, the property and the PLS line. It also returns the current error code.

Input parameters:

EQP_NUMBER
EQP_PROPERTY
PLSLINE
PAR-AM

Equipment identifier (integer)
Equipment parameter type (integer)
PLS line number (integer)
New equipment power supply parameter value

9

Output parameter:

coco Functioncompletioncode (integer)

Note:

Call the routine eqpdata with the standard name of the equipment to get the
eqp_number identifier. Power supplies are controlled via the 1st equipment
parameter.

Example:

!Set 1st QUAD power in Linac2

CALL EQPDATA("LAI.QFNO2", EQM_NAME, EQM_NUMBER, LA1_QFNO2, S, L)
POWERl = POW(LA1_QFNO2, CCV, PLSLINE, COCO)
CALL POWS(LA1_QFNO2, CCV, PLSLINE, COCO, POWERl * 1.05)

2.9 TRAFO Read a beam intensity transformer

FUNCTION TRAFO(EQP_NUMBER, EQP_PROPERTY, PLSLINE, COCO)

Action:

This function reads the beam intensity value from a beam transformer according to
the specified equipment, property and PLS line. It also returns the current error
code.

Input parameters:

EQP_NUMBER
EQP_PROPERTY
PLSLINE

Equipment identifier (integer)
Equipment parameter type (integer)
PLS line number (integer)

Output parameters:

coco
TRAFO

Function completion code (integer)
Current beam intensity

Note:

Call the routine eqpdata with the standard name of the equipment to get the
eqp_number identifier. Beam intensities are expressed in mA and are transferred
through the 2nd equipment parameter.

Example:

¡Beam intensity at the entrance of Linac2

10

INTENl = TRAFO(2002, AQNl, PLSLINE, COCO) ! Read TRAO6

2.10 EQPDATA Return information about an equipment

SUBROUTINE EQPDATA(EQP_NAME, EQM_NAME, EQM_NUMBER, EQPJSIUMj

Action:

This routine returns information about the equipment defined by its standard name.
It provides practical equipment identifiers for later use by the other interface
routines. The last two parameters are auxiliary ones and are intended to be filled in
with extra information for future version only.

Input parameter:

eqp_name Equipmentname(STRiNG)

Output parameters:

eqm_name Equipmentmodulename (string)
eqm_number Equipment module number (integer)
eqp_number Equipment number (integer)
s Equipment special info (string)
L Equipmentspecialinfo(INTEGER)

Note:

An equipment name is a character string according to the rules and conventions of
the accelerator control system (see an example below). Currently the only
meaningful parameter is eqp_number, however the parameters eqm_name and
eqm_number are also correctly returned but only experts can make use of them.

Example:

!Get the identifier of 1st Linac2 quadrupole and pass it further

CALL EQPDATA("LAI.QFN02", EQM_NAME, EQM_NUMBER, LA1_QFNO2, S, L)
PLSLINE = MEAPSB
AQN_POWER1 = POW(LA1_QFNO2, AQN, PLSLINE, COCO)

2.11 ERROR Return the latest error code

FUNTION ERRORO

Action:

This function returns the code of the latest error that occurred during a call to an
interface routine. Currently it indicates fatal or non-fatal errors by the codes -1 and
1, respectively. It returns zero if there is no problem.

11

Output parameter:

error Latesterrorcode (integer)

Example:

IF(ERROR() .EQ. -1) STOP

3. Utilities

3.1 WAIT-TIME Wait time

SUBROUTINE WAIT_TIME(TIME)

Action:

This routine waits the specified time then returns. In particular cases the program
must wait for the completion of an operation.

Input parameter:

TIME Time in seconds

3.2 KEY_CTRL_C Test termination request

FUNCTION KEY__CTRL-C ()

Action:

This function returns the status of the termination flag that show whether CTRL-C
button has been pressed since the last call of this routine.

Output parameter:

KEY_CTRL_C Status of pressed CTL-C button (logical)

3.3 UCASE Uppercase string converter

SUBROUTINE UCASE(STR)
' ' ⅛. ` ' ''y'∖ >>'K >~ , " 'i'''v'C''∖' ' i*v⅛>¾. '`ʃ" ∙∖>A*vS'⅞l'C'Vs c'∙,U $ ʌʃz ` ,-√ ' ` `s

Action:

Uppercase converter for FORTRAN character strings. A space character in the
string regarded as the text termination.

Input-Output parameter:

12

STR Character array to change the case of (string)

3.4 SCREEN_CLEAR Clear screen

SUBROUTINE SCREEN_CLEAR()

Action:

This routine clears the screen and moves the cursor to the Iefttop corner.

3.5 SCREEN_HOME Move cursor home

SUBROUTINE SCREEN_HOME()

Action:

This routine moves the cursor to the Iefttop corner of the screen.

Acknowledgments

Many thanks to Franck Di Maio of PS/CO who has introduced me into the secrets of
the PS Accelerator Control System and has provided me with all the right information,
documents and codes, very helpfully.

I also appreciate the technical help and advises of my colleagues Eugène Tanke and
Alessandra Lombardi during the test phase of the interface.

A special thank goes to my section leader Werner Pirkl who has encouraged me to
carry out this job.

References

1. A. Ster, Linac 2 performance optimization, CERN/PS 97-05 (HP) (1997).

2. A. Nathaniel, Interfacing Fortran and C, CERN Computer Newsletters, 217 July -
September (1994).

3. F. Di Maio and A. Risso, The CERN-PS Equipment Access Library, Software
specifications, version 3, CERN/PS/CO/Note 93-87 (1993).

4. Y. Pujante, PPM Classes: User Guide, PS/CO internal note, 3 December (1995).

13

