
In honour of Nicola Cabibbo, father of flavour physics.
He introduced the idea of universality between the leptonic current and a single hadronic current, combination of the
SU(3) currents allowing ∆S = 0 and ∆S = 1 transitions. It was thus Nicola Cabibbo who reconciled strange particle
decays with the the universality of weak interactions paving the way to the modern electroweak unification within the
Standard Model.
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Flavour mixing and CP violation as measured in weak decays and mixing of neutral mesons are
a fundamental tool to test the Standard Model (SM) and to search for new physics. New analyses
performed at the LHC experiment open an unprecedented insight into the Cabibbo-Kobayashi-
Maskawa (CKM) metrology and new evidence for rare decays. Important progress has also been
achieved in theoretical calculations of several hadronic quantities with a remarkable reduction of
the uncertainties. This improvement is essential since previous studies of the Unitarity Triangle did
show that possible contributions from new physics, if any, must be tiny and could easily be hidden
by theoretical and experimental errors. Thanks to the experimental and theoretical advances, the
CKM picture provides very precise SM predictions through global analyses. We present here the
results of the latest global SM analysis performed by the UTfit collaboration including all the most
updated inputs from experiments, lattice QCD and phenomenological calculations.

I. INTRODUCTION

In this paper we enlarge and update the Unitarity Triangle Analysis within the Standard Model (SM) using the
most recent progress of the theoretical inputs and the latest measurements of the experimental observables. A more
general analysis beyond the SM, with constraints on new physics contributions, will be presented in a subsequent
publication.

The UTfit collaboration has been routinely updating the Unitarity Triangle Analysis (UTA) within and beyond the
SM via its online results (http://utfit.org/), regular presentations to topical conferences and continuous collaboration
with the flavour community, see [1–4] and references therein. Within the SM, the UTA is a fundamental tool to
determine precisely the SM parameters of the flavour sector, to test the compatibility of the experimental results with
the theoretical calculations and to predict yet unmeasured flavour SM observables. Beyond the SM a quantitative
evaluation of the degree of discrepancy between measurements and theoretical predictions offers the possibility of
discovering New Physics (NP) effects due to the presence of new particles or interactions at still unexplored energy
scales. In this respect, the UTA is complementary to the search of new particles at colliders working at multi-TeV
energies. For a recent discussion about predictions of rare decays in the SM see [5].

Within the SM, flavour mixing and weak CP violation are described by several free parameters, namely the quark
masses and the CKM matrix elements [6, 7]. Indeed these parameters can be reduced to only ten independent,
physically determinable quantities, that we choose to be the quark masses, mq, defined in a suitable scheme, and the
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value of the Wolfenstein parameters λ,A, ρ̄, η̄ [8, 9]. In addition, the SM is characterised by two important properties:
the absence of tree-level Flavour Changing Neutral Currents (FCNC) and the GIM suppression mechanism [10]. The
latter manifests itself either as mild GIM suppression, proportional to logm2

q/M
2
W , for QCD and radiative penguin

operators/amplitudes, or as hard GIM suppression, proportional to m2
q/M

2
W , for ∆F = 2 transitions. Thus, beyond

the SM, CKM and/or GIM suppressed processes are the most interesting quantities to study since they are highly
sensitive to NP contributions. Among them, ∆F = 2 transitions are the best cases since they are both CKM and
hard GIM suppressed. This is the reason why accurate SM estimates of CP violation in neutral meson oscillations is
a crucial ingredient of the UTA analysis that we will discuss in the following.

In the recent past, there has been a lot of excitement about apparent violations of Lepton Flavour Universality
(LFU). On the one hand, in the case of semileptonic decays, we have the so-called |Vcb| puzzle, i.e. the tension between
the inclusive [11–13] and the exclusive determinations of the CKM matrix element |Vcb| [14–21]. On the other hand,
a discrepancy exists between the theoretical expectation value and the measurements of R(D(∗)) [22], defined as the
ratios of the branching fractions of B → D(∗)τντ over B → D(∗)`ν` decays, ` = e, µ, performed by Belle, BaBar
and LHCb [23–31]. For |Vcb| we included in our analysis the latest experimental measurements and the results of a
new approach to evaluate the form factors based on unitarity and analyticity. Besides semileptonic charged-current
B decays, LFU seems to be violated by the ratios RK(∗) = BR(B → K(∗)µ+µ−)/BR(B → K(∗)e+e−) which are
sensibly lower than the value close to one expected if LFU holds [32–35]. Although the UTA is not able to shed any
light on the RK(∗) (and R(D(∗))) problem, it is very useful to clarify the issues connected to the |Vcb| puzzle, since a
determination of this CKM matrix element can be derived indirectly from the UTA when omitting the exclusive and
inclusive semileptonic B decays in the inputs. In addition to the new values for |Vcb| from exclusive decays, our updated
analysis is also based on the latest determinations of other relevant theoretical inputs and recent measurements of the
experimental flavour observables. The basic constraints used in the global fit and contributing to the sensitivity of the
CKM matrix elements are: |Vub| and |Vcb| from semileptonic B decays, ∆Md and ∆Ms from B0

d,s oscillations, ε from

neutral K0 mixing, the unitarity triangle angles α from charmless hadronic B decays, γ from charm hadronic B decays
and sin 2β from B0 → J/ψK0 decays. To these classical quantities, we added BR(B+ → τ+ντ ), BR(Bs → µ+µ−)
and the ratio ε′/ε for which a solid theoretical prediction now exists [36]. Although the present precision is not enough
to further constrain the parameters of the SM, we believe that is important to include this quantity in view of further
theoretical improvements and also because it can help to constrain the contribution of some operators present in
models of NP. In the present work we also included a new evaluation of long distance charm contributions to ε [37].

The values of most experimental inputs are taken from the Heavy Flavour Averaging Group (HFLAV) [22] and from
the online update. When updated individual results are available, however, the UTfit collaboration performs its own
averages. We also use the updates of the Particle Data Group 2022 [38]. On the theoretical side, the non-perturbative
QCD parameters are taken from the most recent Lattice QCD (LQCD) determinations: as a general prescription, we
average the Nf = 2 + 1 + 1 and Nf = 2 + 1 FLAG numbers [39]. The continuously updated set of numerical values
used as inputs can be found at the URL http://www.utfit.org/.

As for the output results of the UTA and their uncertainties, for all fits the quoted numbers correspond to the
highest probability intervals containing at least 68% and 95% of the sample. The 68% probability intervals are then
presented as V (EV ), where V is the center and EV the half width of the interval.

The main results of this work are the following: i) there is a general consistency, at the percent level, between
the SM predictions and the experimental measurements. Thus in order to discover new physics effects a further
effort in theoretical and experimental accuracy is required; ii) although the tension between exclusive and inclusive
determination of |Vcb| requires further investigation, in particular of the form factors relevant in semi-leptonic B →
D(∗)`ν` decays and of the fitting procedures of these processes, we find that the UT analysis strongly favours a larger
value of |Vcb|, close to its inclusive determination, and a smaller value of |Vub|, close to the exclusive value; iii) the
value of ε′/ε as predicted by using the weak Hamiltonian operator matrix elements computed in ref. [36] and the
Wilson coefficients computed within the general UT analysis are in very good agreement with the experimental value
whereas the UTfit prediction for ε is lower than its experimental value and a further improvement in the accuracy of
the theoretical calculation is welcome. The results of this work, written for the Rendiconti Lincei. Scienze Fisiche e
Naturali, will be combined with an UTfit analysis of D0-D̄0 mixing and of searches for physics beyond the Standard
Model in a paper to be submitted to a physics journal.

The paper is organized as follows: in sec. II we describe the theoretical and experimental inputs used in our analysis;
in sec. III we discuss the recent progress in the calculation of the CP violating amplitudes related to ε and ε′/ε, which
is included in our analysis for the first time; in sec. IV we present the results of our updated analysis in the Standard
Model. Finally, in sec. V we present our conclusion and an outlook for future developments.
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Input Reference Measurement UTfit Prediction Pull

sin 2β [22], UTfit 0.688(20) 0.736(28) −1.4

γ [22] 66.1(3.5) 64.9(1.4) +0.29

α UTfit 94.9(4.7) 92.2(1.6) +0.6

ε · 103 [38] 2.228(1) 2.00(15) +1.56

|Vud| UTfit 0.97433(19) 0.9738(11) +0.03

|Vub| · 103 • UTfit 3.77(24) 3.70(11) +0.25

|Vub| · 103 (excl) [39] 3.74(17)

|Vub| · 103 (incl) [22] 4.32(29)

|Vcb| · 103 • UTfit 41.25(95) 42.22(51) −0.59

|Vcb| · 103 (excl) UTfit 39.44(63)

|Vcb| · 103 (incl) [40] 42.16(50)

|Vub|/|Vcb| [39] 0.0844(56)

∆Md × 1012 s−1 [38] 0.5065(19) 0.519(23) −0.49

∆Ms × 1012 s−1 [38] 17.741(20) 17.94(69) −0.30

BR(Bs → µµ)× 109 [38] 3.41(29) 3.47(14) −0.14

BR(B → τν)× 104 [38] 1.06(19) 0.869(47) +0.96

Re (ε′/ε)× 104 [38] 16.6(3.3) 15.2(4.7) +0.27

φε [38] 0.7596 rad

ω [38] 0.04454(12)

δ0(s) ∗ [38] 32.3(2.1)◦ 32.3(1.7)◦ at s = 471.0 MeV [41]

δ2(s) ∗ [38] −11.6(2.8)◦ −7.96(37)◦ at s = 479.1 MeV [41]

Re (A2) [38]∗∗ 1.479(4)× 10−8 GeV 1.50(10)× 10−8 GeV

Re (A0) [38]∗∗∗ 3.3201(18)× 10−7 GeV 3.01(41)× 10−7 GeV

Im (A0) UTfit −6.75(86)× 10−11 GeV

Im (A2) UTfit −8.4(1.2)× 10−13 GeV

TABLE I. Full SM inputs with their predictions from the SM global fit. When the averages are made by us, using values and
errors from other calculations, the reference is denoted by UTfit and the procedure used to obtain the final value and uncertainty
is explained in the text. • These values have been obtained by combining the exclusive and inclusive values of |Vub|, |Vcb| and
|Vub|/|Vcb| reported in this table as explained in sec. II A. ∗ s denotes the c.o.m. energy of the two pions; ∗∗ Re (A2) is extracted
from the K+ → π+π0 decay widths; ∗∗∗ Re (A0) is computed using the K0 → π+π− and K0 → π0π0 decay widths as explained
in the text. The theoretical values of δ0,2(s) in the fourth column of the table have been taken from ref. [41].

Input Reference Measurement

τD0 · 1013s [38] 0.4101± 0.0015

τB0 · 1012s [22] 1.519(4)

τB+ · 1012s [22] 1.638(4)

τBs · 1012s [22] 1.516(6)

∆Γs/Γs [22] 0.112(10)

αs(MZ) [42] 0.11792(94)

mMS
t (mMS

t ) (GeV) [42] 163.44(43)

TABLE II. Extra inputs used in our UTA analysis. The quoted value of mMS
t (mMS

t ) corresponds to mpole
t = (171.79 ± 0.38)

GeV [40].

II. UPDATE OF THEORETICAL AND EXPERIMENTAL INPUTS

In this section we discuss the main experimental and theoretical updated inputs that have been used in our UTA
analysis. A list of the experimental inputs can be found in tables I and II. Most of the experimental inputs, as the
values of the CKM matrix elements |Vij |, are extracted from data using some theoretical calculation, e.g. the form
factors in the case of semi-leptonic decays. We will also present a discussion of the decay constants, form factors and
B-parameters used in this work with a comparison of the values used by other groups. Most of the inputs for these
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Input Lattice

B̂K 0.756(16)

fBs 230.1(1.2) MeV

fBs/fB 1.208(5)

B̂Bs 1.284(59)

B̂Bs/B̂B 1.015(21)

mMS
ud (2 GeV) 3.394(29) MeV

mMS
s (2 GeV) 93.11(52) MeV

mMS
c (3 GeV) 991(5) MeV

mMS
c (mMS

c ) 1290(7) MeV

mMS
b (mMS

b ) 4196(14) MeV

TABLE III. Full lattice inputs. The values of the different quantities have been obtained by taking the weighted average of the
Nf = 2 + 1 and Nf = 2 + 1 + 1 FLAG numbers [39].

non-perturbative QCD parameters are taken from the most recent lattice determinations and given in table III. As
already mentioned, our general prescription is to take the weighted average of the Nf = 2 + 1 and Nf = 2 + 1 + 1
FLAG numbers [39]. We will discuss in this paper only those cases where we followed a different procedure and explain
the reasons for the different choice.

In table I, the values denoted as UTfit prediction in the fourth column are obtained from the UT analysis by
excluding the quantity under consideration. Thus, for example, |Vcb| · 103 = 42.22(51) and |Vub| · 103 = 3.70(11) have
been obtained by excluding from the UT analysis the input values of these CKM matrix elements.

A. The CKM matrix elements

In this subsection we discuss the updated absolute values of several elements of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [6, 7].

1. |Vud| and |Vus|

|Vud| and |Vus| are determined from super allowed 0+ → 0+ nuclear β decays and from a combined analysis of Kµ2,
K`3 and πµ2 decays.

One possibility is the extraction of |Vud| and |Vus| from the lattice determination of f+(0) and fK/fπ using the
relations [38, 43]

|Vus|f+(0) = 0.2165(4) ,
|Vus|fK
|Vud|fπ

= 0.2760(4) . (1)

The lattice results for f+(0) or fK/fπ have been obtained averaging the results of lattice calculations performed either
within the four flavour, Nf = 2 + 1 + 1, or within the three flavour, Nf = 2 + 1, theory [39], the corresponding results
for |Vud| and |Vus| are given in table IV. The weighted average for |Vud| is

|Vud| = 0.974387(98) . (2)

In the past the super allowed nuclear β transitions provided the most precise determination of |Vud|. Its accuracy
is limited by the hadronic uncertainties of the electroweak radiative corrections, some of which are universal for all
the nuclei whereas others depend on the specific nucleus structure. A new critical survey which takes into account
the most recent experimental results and the new theoretical calculations of the radiative corrections [44–47] has been
presented in ref. [48]. The average of the data, including radiative and isospin-symmetry-breaking corrections, yields
the CKM matrix element

|Vud| = 0.97373(31) , (3)

the uncertainty of which is larger than the value quoted in Eq. (2). The value in Eq. (3) is lower than the previous
2015 result by one standard deviation and its uncertainty is increased by 50%. The variation is a consequence of new
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Reference |Vud| |Vus|
β decay [48] 0.97373 (31)

Nf = 2 + 1 [39] 0.97438 (12) 0.2249 (5)

Nf = 2 + 1 + 1 [39] 0.97440 (17) 0.2248 (7)

τ decay [22] 0.97561 (40) 0.2195 (19)

τ decay [52, 53] 0.97461 (43) 0.2240 (18)

TABLE IV. Values of |Vud| and |Vus| from different physical processes. For completenesss we also give the values obtained from
τ decays although they are not used in the present paper.

calculations for the radiative corrections and of the spread between different estimates of these corrections. Hopefully,
at least for the universal corrections, a new more accurate determination will come from lattice calculations. Indeed,
only the easiest cases, namely the radiative corrections to Kµ2 and πµ2 decays, have been computed so far on the
lattice from first principles and without any model assumption/approximation [49, 50].

By combining with the PDG method [38] (see also ref. [51]) the most precise results from refs. [39] and [48], eqs. (2)
and (3), we quote the final results

|Vud| = 0.97433(19) , |Vus| = 0.2251(8) , (4)

where |Vus| is indeed obtained from the unitarity of the CKM matrix in the SM and it is therefore not used in the
UTA. For a recent reappraisal of the determination of |Vud| and |Vus| and of the problem of the unitarity of the first
CKM matrix row see also ref. [54].

2. |Vcb|

Semileptonic B → D(∗)`ν` decays and their inclusive counter part are very important processes in the phenomenol-
ogy of flavor physics. From their measurement and the corresponding theoretical predictions depends the value of
|Vcb| which plays a fundamental role in the UTA analyses [2, 55, 56]. For years we had to live with the apparent strong
tension between the inclusive [11–13] and the exclusive determination of this CKM matrix element [14–21]. Some
important novelties have, however, recently changed the previous situation: on the one hand the inclusive predictions
were recently reconsidered and the uncertainties of the calculation performed in the Heavy Quark Effective Theory
were reevaluated [40, 57]. On the other hand, new lattice calculations of the relevant form factors in the small re-
coil region [58], new approaches to their determination in the full kinematical range [59–63] and measurements of the
exclusive differential decay rates were presented. We think that it is possible to argue that for |Vcb|, although some

difference remains, the tension is finally resolved, see the recent average from ref. [62] given in eq.(̇9) below. A set of
values from different estimates of |Vcb| from inclusive and exclusive decays are given in table V.

For the exclusive determination of |Vcb| we proceed as follows:

• For B → D∗ semileptonic decays, rather than making an average of the values of |Vcb| given in the rows 8-
9 of table V, following the procedure adopted for other quantities in this paper, we average the form factor
F (1) obtained from Nf = 2 + 1, F (1) = 0.906(13), and Nf = 2 + 1 + 1, F (1) = 0.895(10)(24) [39], obtaining
F (1) = 0.904(11);

• Then, using the formula derived from the rate, F (1) ηEW |Vcb| = 35.44(64)10−3 [39], and ηEW = 1.00662 [66] we
get |Vcb| = 38.95(86)10−3;

• For B → D, following [39], we quote |Vcb| = 40.0(1.0)10−3;

• Averaging the above values of |Vcb| from B → D∗ and B → D we obtain

|Vcb| · 103 (excl.) = 39.44(65) . (5)

This procedure uses all the available information from B → D∗ but neglects the correlation of the lattice determination
of form factors for B → D∗ and B → D decays obtained using the same gauge field configurations. Alternatively, we
combined the Nf = 2 + 1 value of |Vcb| by FLAG, obtained by averaging B → D∗ and B → D decays and taking
into account the correlation of the lattice determination of form factors for these decays obtained using the same
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Process Reference |Vcb| · 103

1 b→ c inclusive [40] 42.16 (50)

2 B → D [61] DM 41.0 (1.2)

3 B → D Nf = 2 + 1 [39] 40.0 (1.0)

4 Bs → Ds Nf = 2 + 1 [62] DM 41.7 (1.9)

5 B → D∗ [63] DM 41.3 (1.7)

6 B → D∗ [64] 39.6 (1.1)

7 B → D∗ [65] 39.6 (1.1)

8 B → D∗ Nf = 2 + 1 [39] 38.9 (0.9)

9 B → D∗ Nf = 2 + 1 + 1 [39] 39.3 (1.4)a

10 B → D∗ and B → D Nf = 2 + 1 [39] 39.4 (0.7)

11 Bs → D∗s Nf = 2 + 1 [62] DM 40.7 (2.4)

TABLE V. Values of |Vcb| from inclusive or exclusive determinations. a This value of |Vcb| × 103 has been derived using the
value of the form factor at zero recoil given in Eq. (267) of ref.[39]. DM in the rows 2-4-5-11 denotes the values obtained by
using the Dispersive Matrix approach mentioned in the text. For completenesss we also give some determinations which are
not used in the present paper. More recent determinations of |Vcb| from B → D(∗) semileptonic decays by Belle II have been
presented at the 2022 ICHEP Conference in Bologna by T. Koga (KEK). Since, however, LQCD form factors and experimental
data were simultaneously used to extract the value of |Vcb|, we decided not to use these results for the time being.

gauge field configurations, |Vcb| = 39.48(68)10−3, with the value that we can obtain from the form factor F (1) with
Nf = 2 + 1 + 1, |Vcb| = 39.34(1.35)10−3. We obtain

|Vcb| · 103 (excl.) = 39.45(61) , (6)

from which, after combining using the PDG method [38] with the result in eq. (5), we get our final result

|Vcb| · 103 (excl.) = 39.44(63) , (7)

which differs by 3.4 σ from the inclusive value in table V. We may combine the inclusive value of |Vcb| in table V with
the result in Eq. (7) obtaining

|Vcb| · 103 = 41.1(1.3) (incl.+ excl.) . (8)

We anticipate that a more accurate determination of |Vcb|, that is the one used in this UTfit analysis and quoted
in Table I, will be obtained by combining Eq. (8) with the determination of |Vub| and of the ratio |Vub|/|Vcb| from
Bs → (K−, D−s )µ+νµ decays in Eq. (13).

An alternative determination of the exclusive value of |Vcb| can be obtained by using the values obtained using the
Dispersive Matrix (DM) approach of Ref. [59] and given in Table V, Refs. [61–63]. By combining these results, which

include Bs → D
(∗)
s decays, we obtain

|Vcb| · 103 (DM excl.) = 41.2(8) , (9)

namely a value much closer and compatible at the 1 σ level with the inclusive one, with an uncertainty comparable
to the uncertainty quoted in Eq. (7) . By combining the inclusive value of Table V with the DM result in Eq. (9) we
obtain the result

|Vcb| · 103 = 41.9(4)(incl.+ DM excl.) , (10)

more precise than the result of Eq. (8).

3. |Vub|

The matrix element Vub is determined from the measurements of the branching ratios of leptonicB → τντ decays and
from exclusive and inclusive semileptonic b→ u decays. Theoretically, its precision is limited by the uncertainty of the
calculations of the B meson decay constant and of the relevant form factors, for leptonic and exclusive semileptonic
decays, and of the matrix elements of the operators appearing in the HQET expansion of the inclusive rate. For
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B → τντ , which is very interesting because it is particularly sensitive to physics beyond the SM, the main source of
uncertainty comes for the large error in the experimental measurement of the rate. Although the determinations from
inclusive semileptonic decays are systematically higher than the exclusive ones, the two values are compatible, once
the spread of the inclusive determinations using different theoretical models is considered.

For the leptonic decays we average the results given in Eqs. (289) and (290) of ref. [39] obtaining the value a) of
eq. (11). For the exclusive semileptonic decays we take the number of table 57 of the same reference, quoted in b).
We did not use the recent value of |Vub| from the Belle II Collaboration [67] since it is rather preliminary and based
only on the form factors of the FNAL/MILC Collaboration [68]. We plan to include it in the future by using in the
determination of |Vub|, besides the form factors computed by FNAL/MILC, also the recently computed form factors
by RBC/UKQCD [69] and JLQCD [70]. Finally, for inclusive semi-leptonic decays we use the value from ref. [22]. For
completeness, we give the average of a) and b) in d); the average of c) and d) in e) and the average of b) and c) in f).
We note that, in the case of the value of |Vub|, a difference between the inclusive and exclusive determinations at the
1.7 σ level still persists, although with large relative errors.

We observe that the effect of including B → τντ is almost invisible and, for reasons explained below, adopt in the
following the average in f).

V B→τub = 4.05(64) · 10−3 a)

V B→πub = 3.74(17) · 10−3 b)

V incl.
ub = 4.32(29) · 10−3 c) (11)

V a+b
ub = 3.76(16) · 10−3 d)

V c+dub = 3.89(24) · 10−3 e)

V b+cub = 3.89(25) · 10−3 f)

A percent precision is expected to be reached by LQCD using Exaflops CPUs for fB and for the form factors entering
the exclusive determination of |Vub|. A higher precision will require the non-perturbative calculation of the radiative
corrections to the decay rates [50]. Considering how challenging the measurement of BR(B → τν) in a hadronic
environment is, it is difficult to imagine a similar improvement in precision of the experimental measurement for this
channel for which a higher theoretical accuracy can be reached. On the other hand, it was pointed out in ref. [71]
that the indirect determination of |Vub| from the fit in the SM is presently more accurate than the measurements,
yielding a central value close to the exclusive determination. Therefore the most precise prediction of BR(B → τν)
in the SM can be obtained by combining the indirect knowledge of |Vub| from the rest of the UT fit, fourth column in
table I, combined with fB derived from fBs

and fB/fBs
in table III

BR(B → τν)UTfit = 0.882(45) . (12)

The progress of lattice calculations allow us to use in the analysis also the constraint coming from the ratio |Vub|/|Vcb|
determined either from Λb → (p,Λc)µ

−ν̄µ or Bs → (K−, D−s )µ+νµ decays. We use only the latter decays since the
lattice form factors relevant for Λb decays do not satisfy the quality criteria of FLAG [39]. Following [39] we quote

|Vub|
|Vcb|

= 0.0844(56) . (13)

We have combined the information from exclusive and inclusive decays, eqs. (7) and (11)-b) and table V and eq. (11)-
c) respectively, and the ratio |Vub|/|Vcb| in eq. (13) using the average procedure of refs. [51] obtaining the following
input values that we have used in the present UT analysis

|Vcb| · 103 = 41.25(95) |Vub| · 103 = 3.77(24) , ρc = 0.11 (14)

where ρc is the correlation matrix element; had we used the results from the DM analysis, eq. (9), we would have
obtained

|Vcb| · 103 = 41.94(80) |Vub| · 103 = 3.79(24) , ρc = 0.09 . (15)

Had we used the most recent PDG value of |Vub| from inclusive decays [38], |Vub| · 103 = 4.13(26), we would have
obtained |Vcb| · 103 = 41.24(95) and |Vub| · 103 = 3.76(23) with ρc = 0.11, substantially identical to the values given in
Eq. (14), or, in the DM case, |Vcb| · 103 = 41.94(80) and |Vub| · 103 = 3.77(23) with ρc = 0.09, substantially identical
to the numbers of Eq. (15).

The values of the CKM matrix elements |Vub| and |Vcb| from exclusive and inclusive decays, eqs. (7) and (11) and
table V and eq. (11) respectively, and the ratio |Vub|/|Vcb| in eq. (13) are shown in the left plot of fig. 1. This figure
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FIG. 1. Left Panel: |Vcb| vs |Vub| plane showing the values reported in Table I. We include in the figure the ratio |Vcb|/|Vub| from
ref. [39] shown as a diagonal (blue) band; Central Panel: ρ̄-η̄ plane with the SM global fit results using only exclusive inputs for
both Vub and Vcb; Right Panel: SM global fit results using only inclusive inputs. In the central and right panels, εK = |ε| where
ε is defined in eq. (16).

highlights the inclusive-vs-exclusive tensions already discussed by the UTfit collaboration since 2006 [71]. In the same
figure the allowed two-dimensional (2D) region, eq.(14), calculated with a 2D procedure inspired by the skeptical
method of Ref. [51] with σ = 1 and denoted as UTfit average, is shown in the plot. The allowed region, as determined
by the global fit and denoted as global SM UTfit is also given there. The global fit strongly prefers a value of |Vcb|
close to its value from inclusive decays and a value of |Vub| close to its exclusive value. This results find a further
support by the values denoted as UTfit predictions shown in the fourth column of table I.

III. CP VIOLATION IN THE K0-K0 SYSTEM: ε AND ε′/ε

In this section we discuss an update in the theoretical evaluation of ε and the inclusion, for the first time in the
UTA analysis, of the ratio ε′/ε [36]. Although the latter still suffers from large uncertainties, its determination is a
very important step in our understanding of CP violation in the SM.

A. An updated evaluation of ε

The parameter ε, which describes indirect CP-violation in the K0−K0
system, represents one of the most interesting

observables in Flavor Physics. It plays an important role in the UTA both within the SM and beyond, see [1]-[2] and

references therein. As the phenomenon of K0−K0
mixing is a loop process further suppressed by the GIM mechanism,

ε turns out to be a powerful constraint on New Physics models, for which it is important to have experimental and
theoretical uncertainties well under control.

The standard formula for the evaluation of ε is the following

ε = ei φε sinφε

(
ImM12

∆mK
+ ξ0

)
, (16)

where ξ0 = ImA0/ReA0. At the leading order in the expansion in inverse powers of the charm mass, mc, ImM12 is
given by

ImM12 = 〈K0|Heff |K0〉 =
G2
F

16π2
M2
W

[
Im
(
λ2
c

)
(η1S0(xc)− η3S0(xc, xt)) +

+Im
(
λ2
t

)
(η2S0(xt)− η3S0(xc, xt))

] 8

3
f2
KM

2
K B̂K , (17)

where λi = VidV
∗
is; the S0’s are the Inami-Lim functions computed by matching full and effective amplitudes for

external states of four quarks with zero momentum [72]; the ηi are the corrections to the Wilson coefficient of the
four-fermion operator Q = s̄γµLd s̄γ

µ
Ld (in squared parentheses in Eq. (17)), computed at short distance in perturbative
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QCD in order to match the Standard Model to the effective Hamiltonian and B̂K is the renormalisation group invariant
bag parameter of the four-fermion operator.

We wish to note that the UTfit Collaboration always computed the Wilson coefficient by evaluating all the ηi
simultaneously event by event so that the reduction of the uncertainty noted in [73] was always automatic and active
in our calculations.

On the one hand ε is experimentally measured with a 0.4% accuracy, εexp
K = |εexp| = 2.228(11)× 10−3 [38], on the

other hand the theoretical accuracy of the SM prediction is approaching a few percent level, mainly thanks to the
improvement of the lattice determination of the relevant bag parameter B̂K [39],

Nf = 2 + 1 B̂K = 0.7625 (97) , Nf = 2 + 1 + 1 B̂K = 0.717 (18)(16) . (18)

Following our general approach we average the above two numbers using the PDG method [38] and use

B̂K = 0.756 (16) . (19)

Given the improved accuracy, the ξ0 term and the deviation of the phase φε from 45◦ appearing in Eq. (16) are not
negligible [74].

For what concerns ImM12, the calculation of the amplitude, including long distance contributions, is possible from
first principles in lattice QCD [75, 76]. This was also attempted numerically [77] but, for the time being, the difficulty
in making the calculation at the physical point in the light quark masses and the extrapolation to the continuum
limit, leave too large uncertainties to compete with the standard approach of Eq. (17).

Within the standard approach, the dominant long-distance corrections of O(1/m2
c) to ImM12, δBGI below, due to

the exchange of two pions, were evaluated in [78]. The inclusion of this correction and of the more accurate values of
ξ0 and φε reduces by 6% the predicted central value of ε. Given the increasing precision of the theoretical ingredients
entering ε, it is then becoming important to include all terms expected to contribute to the theoretical evaluation of ε
at the percent level. Very recently, in ref. [37], other power corrections due to the finite value of the charm quark mass,
denoted as δmc below, coming from dimension-8 operators in the effective Hamiltonian were evaluated. We have also
included the electroweak corrections, computed in ref. [79], to the charm-top contribution to the coefficient function
of the operator Q defined above, denoted as δEW. By consistency, the electroweak corrections to the renormalisation
of the operator Q should be included but this calculation is not available yet.

Up to higher order terms, we may then write

ImM12 = 〈K̄0|Heff |K0〉 (1 + δEW + δBGI + δmc) , (20)

where δBGI = 0.02 and the δmc correction increases the theoretical prediction for εK by 1%. The electroweak
correction is δEW ∼ 0.15%. Both δEW and δmc are small corrections which are unable to remove the small tension,
corresponding to a pull of −1.56, between the UTA theoretical prediction for ε

εK = |ε| = 2.00(15)× 10−3 , (21)

and the experimental result. From the UTA analysis within the SM, the comparison of the experimental value of εK
with the theoretical prediction in Eq. (20) allows the extraction of a value of B̂K that can be compared to the result
of lattice calculations. This value is given in subsection IV B, where the corresponding pull is also presented.

Another improvement producing a 2% reduction of the central value is the inclusion of the available NNLO QCD
corrections to the Wilson coefficients of the ∆S = 2 effective Hamiltonian [80, 81]. We have not included these

corrections, however, since the relevant matrix element, B̂K , computed on the lattice is matched to the MS coefficient
at the NLO only. In this respect, the perturbative calculation of the NNLO matching of B̂K from the non-perturbative
RI-MOM/SMOM schemes used in lattice calculations to the MS scheme would be welcome.

B. New: the lattice determination of ε′/ε

Since this is the first time that ε′/ε is included in the UTA, in this subsection we give some details of its calculation.
Our theoretical prediction has been obtained by using the operator matrix elements computed on the lattice by the
RBC-UKQCD collaboration [36] and the Wilson coefficients computed with the parameters used in the present work.
The calculation requires several steps: i) the evaluation of the matrix elements of the bare lattice four fermion operators
in lattice QCD; ii) the matching of the matrix elements of the bare operators to those of the operators renormalised
non-perturbatively in some version of the RI-MOM scheme [82], which in ref. [36] was either in the RI-SMOM(/q, /q)
or in the RI-SMOM(γµ, γµ) schemes [83]; iii) the matching of the renormalised operators in the SMOM schemes to
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the operators renormalised in the MS scheme in which the Wilson coefficient functions have been computed at the
NLO [84–87]; iv) the combination of the operators in the MS scheme and the Wilson coefficients computed at the
NLO to compute the relevant amplitudes. In our analysis we take the matrix elements in the SMOM scheme from
ref. [36] and perform the steps iii) and iv) using the parameters extracted in our UTA run.

The expression of ε′/ε is given by

Re

(
ε′

ε

)
= −ω sin(δ2 − δ0 − φε)√

2|ε|

(
ImA2

ReA2
− ImA0

ReA0

(
1− Ω̂eff

))
, (22)

where the isospin breaking effects (both from the mass difference md − mu and from electromagnetic corrections)

are encoded in the parameter Ω̂eff . Since at present there is no lattice calculation of this parameter, in this UTA
analysis, from the estimate of ref. [88] namely Ω̂eff = 17.0+9.1

−9.0 · 10−2, by taking a symmetric error, we have used

Ω̂eff = 17.05(9.05) · 10−2. In the calculation of ε′/ε we use the experimental value of the parameters ω, δ2, δ0, φε
and εK = |ε|. For comparison with the experimental data, the theoretical values of δ0,2(s) in the fourth column of
the table have been taken from ref. [41] whereas the value of εK is extracted from this UTfit analysis. Re (A2) is
extracted from the K+ → π+π0 decay width; Re (A0) is computed using the K0 → π+π− and K0 → π0π0 decay
widths. To get A0 from the corresponding decay amplitudes, one takes x = |A2|/|A0| ∼ Re (A2) /Re (A0) as a small
parameter (its value is about 0.05) and expands the amplitudes to leading order in this parameter. The values
of ReA0,2 extracted as explained above are given in table I, the values of ImA0,2 are computed using the matrix
elements of the RBC/UKQCD Collaboration [36]. The evaluation of ε′/ε is much harder due to the presence of large
cancellations among the contribution of the different operators, particularly between the matrix elements of Q6 and
Q8 defined below.

The general expression of the amplitude relative to a given isospin channel (in the case of the K → ππ, either I = 0
or I = 2) in the SM is given by

A0,2 =
GF√

2
V ∗usVud

10∑
i=1

(
zMS
i (µ) + τyMS

i (µ)
)
MMS
i (µ)I=0,2 , (23)

where the Wilson coefficients zi, yi, the matrix elements of the relevant renormalised operators, MMS
i (µ)I=0,2 =

〈ππ|Qi(µ)|K〉I=0,2, and τ = −V ∗tsVtd/V ∗usVud will be discussed in the following.

1. Operators, bases and matrix elements of bare lattice operators

The bare lattice operators which have been evaluated by the authors of ref. [36] are the following:

• Current-Current Operators:

Q1 = (s̄iγ
µPLuj)(ūjγµPLdi) , Q2 = (s̄γµPLu)(ūγµPLd) ; (24)

• QCD-Penguins Operators

Q3 = (s̄γµPLd)
∑
q

(q̄γµPLq) , Q4 = (s̄iγ
µPLdj)

∑
q

(q̄jγµPLqi)

Q5 = (s̄γµPLd)
∑
q

(q̄γµPRq) , Q6 = (s̄iγ
µdj)

∑
q

(q̄jγµPRqi) ; (25)

• Electroweak-Penguins Operators

Q7 =
3

2
(s̄γµPLd)

∑
q

eq(q̄γµPRq) , Q8 =
3

2
(s̄iγ

µPLdj)
∑
q

eq(q̄jγµPRqi)

Q9 =
3

2
(s̄γµPLd)

∑
q

eq(q̄γµPLq) , Q10 =
3

2
(s̄iγ

µdj)
∑
q

eq(q̄jγµPLqi) , (26)
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i M
(/q,/q)

i (µ0)I=0

(
GeV3

)
i M

(/q,/q)

i (µ2)I=2

(
GeV3

)
1 0.060(39) (27,1) 0.0506 (29)

2 −0.125(19) − −
3 0.142(17) − −
5 −0.351(62) − −
6 −1.306(90) − −
7 0.775(23) (8,8) 1.003 (0.037)

8 3.312(63) (8,8)mx 4.43 (18)

TABLE VI. Physical, extrapolated to the infinite-volume, matrix elements in the RI-SMOM(/q, /q) scheme at µ0 = 4 GeV and
µ2 = 3 GeV

where PL/R = (1∓γ5)/2 are the chiral projectors and eq is the quark charge in units of e. This basis is used in lattice
calculations. For renormalization, however, the chiral basis is better suited for the task since, in the usual 10-operator
basis, the operators are not linearly independent. In fact, by Fierz transforming the operators Q1, Q2 and Q3, we
define

Q̃1 = (s̄γµPLd)(ūγµPLu) , Q̃2 = (s̄iγ
µPLdj)(ūjγµPLui) , Q̃3 =

∑
q

(s̄iγ
µPLqj)(q̄jγµPLdi)

we can eliminate operators Q4, Q9 and Q10 using the relations

Q4 = Q̃2 + Q̃3 −Q1 , Q9 =
3

2
Q̃1 −

1

2
Q3 , Q10 =

1

2
(Q1 − Q̃3) + Q̃2 .

The remaining seven operators can then be recombined according to irreducible representations of the chiral flavour-
symmetry group SU(3)L⊗SU(3)R. The details of the decomposition can be found in [89]. The chiral operator basis,
which we will indicate by primed operators, is thus given by

(27, 1) Q′1 = 3Q̃1 + 2Q2 −Q3,

(8, 1) Q′2 = 1
5 (2Q̃1 − 2Q2 +Q3),

(8, 1) Q′3 = 1
5 (−3Q̃1 + 3Q2 +Q3),

(8, 1) Q′5,6 = Q5,6,

(8, 8) Q′7,8 = Q7,8

(27)

where (L,R) denotes the respective irreducible representations of SU(3)L ⊗ SU(3)R. We recall that the bare lattice
matrix elements are converted to the chiral basis by a specific minimization procedure based on the fact that the Fierz
identities are not obeyed exactly by the bare lattice matrix elements, for details see ref. [36]. The resulting matrix
elements converted back to the 10 operator basis and renormalised in RI-SMOM(/q, /q) are given in table VI (second
column).

The operator (27, 1) renormalises multiplicatively and contributes to the I = 2 channel only, the operators Q7,8

mix only among themselves and thus all the (8, 1) operators.
For the calculation of A2 the authors of ref. [41] used the following operator basis

Q(27,1) = (s̄aγ
µ(1− γ5)da)(ūbγµ(1− γ5)ub − d̄bγµ(1− γ5)db) + (s̄aγ

µ(1− γ5)ua)(ūbγµ(1− γ5)db) ,

Q(8,8) = (s̄aγ
µ(1− γ5)da)(ūbγµ(1 + γ5)ub − d̄bγµ(1 + γ5)db) + (s̄aγ

µ(1− γ5)ua)(ūbγµ(1 + γ5)db) , (28)

Q(8,8)mx = (s̄aγ
µ(1− γ5)db)(ūbγµ(1 + γ5)ua − d̄bγµ(1 + γ5)da) + (s̄aγ

µ(1− γ5)ub)(ūbγµ(1 + γ5)da) ,

where a, b are summed colour indices. The values of their matrix elements, renormalised in RI-SMOM(/q, /q) , are given
in the fourth column of table VI.

2. Non-perturbative renormalization of lattice matrix elements

The matrix elements of the bare operators computed on lattice are matched non-perturbatively to a RI-MOM
scheme to reduce the uncertainties related to lattice QCD perturbation theory [82]. Since the Wilson coefficients are
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Σij Q1 Q2 Q3 Q5 Q6 Q7 Q8

Q1 0.001516 5.385× 10−5 −9.167× 10−5 0.0001252 −0.0003965 0.0004930 0.0007192

Q2 5.385× 10−5 0.0003563 −4.099× 10−5 0.0007596 0.0002981 2.914× 10−5 −0.0002118

Q3 −9.167× 10−5 −4.099× 10−5 0.0002808 0.0003784 0.0004679 −4.656× 10−5 0.0001516

Q5 0.0001252 0.0007596 0.0003784 0.003904 0.001679 −8.000× 10−5 −0.0004013

Q6 −0.0003965 0.0002981 0.0004679 0.001679 0.008188 −0.0003817 −0.002110

Q7 0.0004930 2.914× 10−5 −4.656× 10−5 −8.000× 10−5 −0.0003817 0.0005395 0.0009460

Q8 0.0007192 −0.0002118 0.0001516 −0.0004013 −0.002110 0.0009460 0.003937

TABLE VII. The 7 × 7 covariance matrix between the renormalized, infinite-volume matrix elements in the RI-SMOM(/q, /q)
scheme in the chiral basis.

usually given in the MS scheme, we have then to translate the matrix elements to this scheme. This is done by
converting the bare lattice matrix elements to the RI-SMOM scheme and then matching at NLO in perturbation
theory the result to MS.

The authors of refs. [36] and [41] computed the matrix elements either in the RI-SMOM(/q, /q) or in the RI-
SMOM(γµ, γµ) schemes but used only the results in RI-SMOM(/q, /q) . According to their choice, in the following, we
give only the information necessary for the generation of the UTA events using the matrix elements computed in this
scheme. In refs. [36] and [41] the calculations were presented, however, at two different renormalisation scales: for A2

they used µ2 = 3 GeV whereas for A0 the renormalisation scale was µ0 = 4 GeV.
The conversion from the bare lattice matrix elements to those of the RI-SMOM scheme is operated by a matrix

ZRI←lat
ij (µI GeV) according to the relation

M ′RI
i (µI GeV)I=0,2 =

∑
j

ZRI←lat
ij (µI GeV)

(
a−3FIM

′ lat
j

)
I=0,2

(29)

where a−1 is the inverse of the lattice spacing and FI is the Lellouch-Lüscher factor accounting for leading finite-
volume corrections to the lattice matrix elements in the isospin I = 0, 2 channels. We do not need this matrix in our
analysis, it can be found in the original publication quoted above.

Once we have the operators in the 7-operator basis, we can perform the non-perturbative renormalization using
a 7 × 7 renormalization matrix. In the case of A0, the matrix elements in 7-operator basis at renormalization scale
of µ = 4 GeV in the RI-SMOM(/q, /q) scheme, and the corresponding covariance matrix, Σij = ρijσiσj , are given in
table VI and VII respectively; ρij is the correlation matrix and σi are the errors associated to the matrix elements.
In the case of A2 it was not possible to obtain the correlation matrix from the authors. To be conservative in the
evaluation of the uncertainties we considered three cases: a) no correlation among the three operators of eq. (28); b)
maximal correlation, namely ρij = 1, and c) the same correlation for the operators mediating ∆I = 3/2 transitions as
the one computed for ∆I = 1/2 transitions in ref. [36]. In the latter case the correlation matrix can be easily derived
using the covariance matrix given in Table VII. The difference between the results obtained with a)-c) is tiny with
respect to the overall uncertainty and was absorbed in the overall uncertainty.

At this point one matches the RI-SMOM(/q, /q) renormalized matrix elements to the MS scheme. This is done with

another renormalization matrix ZMS←RI
ij (µ) that is found in ref. [89]

ZMS←RI
ij (µ) = δij +

αs(µ)

4π
∆rMS←RI

ij . (30)

The non-zero matrix elements for the ∆rMS←RI
ij matrix of eq. (30) are, in the case of the matching between the RI-

SMOM(/q, /q) and MS schemes given in Table VIII, where the gauge parameter is denoted by ξG (ξG = 0, 1 correspond
to the Landau and Feynman gauges, respectively). In our case the appropriate value is ξG = 0.

3. Wilson coefficients and final result

After the conversion of the matrix elements in the MS scheme, we can compute the A0 and A2 amplitudes using
eq. (23). The expression of the Wilson coefficients zi, yi can be found at NLO in the references [84–87].

From the UTA we find

τ = − V ∗tsVtd
V ∗usVud

= 0.001482(36)− i 0.000644(16) . (31)
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(i,j) ∆rMS←RI
ij

(1,1) ξG
(
C0
Nc
− C0 − 4 log(2)

Nc
+ 4 log(2)

)
− 12 log(2)

Nc
+ 12 log(2) + 9

Nc
− 9

(2,2) ξG
(
4C0Nc

5
+ C0

Nc
− 6C0

5
− 4 log(2)

Nc
− 4Nc

5
+ 6

5

)
− 12 log(2)

Nc
+ 8Nc

5
+ 9

Nc
− 12

5

(2,3) ξG
(
6C0Nc

5
− 9C0

5
+ 4 log(2)− 6Nc

5
+ 4

5

)
+ 12 log(2) + 12Nc

5
− 53

5

(3,2) ξG
(
− 6C0Nc

5
+ 4C0

5
+ 4 log(2) + 6Nc

5
− 9

5

)
+ 12 log(2)− 12Nc

5
+ 2

3Nc
− 263

45

(3,3) ξG
(
− 9C0Nc

5
+ C0

Nc
+ 6C0

5
− 4 log(2)

Nc
+ 9Nc

5
− 6

5

)
− 12 log(2)

Nc
− 18Nc

5
+ 85

9Nc
+ 26

15

(3,5) 2
9Nc

(3,6) − 2
9

(5,5) ξG
(
C0
2Nc
− 2 log(2)

Nc
− 1

2Nc

)
+ 3C0

2Nc
− 2 log(2)

Nc
− 2

Nc

(5,6) ξG
(
−C0

2
+ 2 log(2) + 1

2

)
− 3C0

2
+ 2 log(2) + 2

(6,2) 5
Nc
− 10

3

(6,3) 10
3Nc
− 5

(6,5)
(
2 log(2)− 1

2

)
ξG + 2 log(2) + 5

3Nc
− 2

(6,6) ξG
(
−C0Nc

2
+ C0

2Nc
− 2 log(2)

Nc
+Nc − 1

2Nc

)
− 3C0Nc

2
+ 3C0

2Nc
− 2 log(2)

Nc
+ 4Nc − 2

Nc
− 5

3

(7,7) ξG
(
C0
2Nc
− 2 log(2)

Nc
− 1

2Nc

)
+ 3C0

2Nc
− 2 log(2)

Nc
− 2

Nc

(7,8) ξG
(
−C0

2
+ 2 log(2) + 1

2

)
− 3C0

2
+ 2 log(2) + 2

(8,7)
(
2 log(2)− 1

2

)
ξG + 2 log(2)− 2

(8,8) ξG
(
−C0Nc

2
+ C0

2Nc
− 2 log(2)

Nc
+Nc − 1

2Nc

)
− 3C0Nc

2
+ 3C0

2Nc
− 2 log(2)

Nc
+ 4Nc − 2

Nc

TABLE VIII. Non-zero matrix elements for the ∆rMS←RI
ij matrix of eq. (30) are shown in the case of the matching between the

RI-SMOM(/q, /q) and MS schemes. C0 = 2/3Ψ′(1/3)− (2π/3)2 ∼ 2.34391, where Ψ is the digamma function.
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FIG. 2. The prediction of ε′/ε obtained within this UT analysis. The vertical band represents the experimental measurement
and uncertainty of this quantity.
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The values of the generated amplitudes Re (A0) and Re (A2) are given in table I.We also find Im (A0) = −6.75(86)×
10−11 GeV and Im (A2) = −8.4(1.2)×10−13 GeV. For the calculation of ε′/ε, however, assuming the validity of the SM,
the real part of these amplitudes are taken from the experiments in order to reduce the final theoretical uncertainty.
For this quantity we get

ε′/ε = 15.2(4.7) · 10−4 . (32)

This number can be compared with the RBC/UKQCD result, given without error, which includes the isospin breaking
corrections of ref. [88], ε′/ε = 16.7 ·10−4 (RBC/UKQCD quotes 21.7(8.4) ·10−4 without isospin breaking corrections),
and with the experimental value ε′/ε = 16.6(3.3) · 10−4. The predicted distribution of ε′/ε is shown in Fig. 2. Within
still large theoretical uncertainties the SM predictions and experimental results are in very good agreement and there
is no sign of NP. The novelty here is the insertion of the determination of ε′/ε in the full UT analysis.

C. The Unitarity Triangle angles

For what concerns the values of the Unitarity Triangle angles, we used the following inputs:

• β (or φ1): the value of sin β is taken from the latest HFLAV average [22] with the most updated inputs, which
gives sin 2β = 0.688(20). We then add a correction factor of −0.01(1), although strictly speaking this applies
exclusively to the J/ψK0 channel, as data-driven theory uncertainty obtained with the method described in
ref. [90];

• α (or φ2): the value of the angle α is obtained by UTfit isospin analyses of the three contributing final states
ππ, ρρ and ρπ. The various probability distributions are shown in Fig. 3 (left panel) together with the combined
one that is used as input to our global fit;

• γ (or φ3): the value of the angle γ is taken from the latest HFLAV average [22] and the corresponding probability
distribution is shown in Fig. 3 (right panel) together with the prediction from the global fit.
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FIG. 3. Left: global fit input distribution for the angle α (in solid yellow histogram) with the three separate distributions coming
from the three contributing final states ππ, ρρ and ρπ; Right: global fit input distribution for the angle γ (in solid yellow
histogram) obtained by the HFLAV [22] average compared with the global UTfit prediction for the same angle.

The full list of measurements used as inputs in the global fit is given in the first and second columns of table I. ε,
ε′/ε, |Vub| and |Vcb| have been discussed in the previous sections.

IV. STANDARD MODEL UNITARITY TRIANGLE ANALYSIS

The results of the global SM fit are given as two-dimensional probability distributions in the plane of the CKM
parameters ρ̄ and η̄ and shown in Fig. 4. The numerical results are in Table IX. Besides the global fit shown in the
top-left panel, we have studied various configurations which provide us further physical information:
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FIG. 4. ρ̄-η̄ planes with the SM global fit results in various configurations. The black contours display the 68% and 95%
probability regions selected by the given global fit. The 95% probability regions selected are also shown for each constraint
considered. Top-Left: full SM fit; Top-Right: fit using as inputs the “tree-only” constraints; Bottom-Left: fit using as inputs
only the angle measurements; Bottom-Right: fit using as inputs only the side measurements and the mixing parameter εK in
the kaon system.

fit configuration ρ̄ η̄

full SM fit 0.161(10) 0.347(10)

tree-only fit ±0.158(26) ±0.362(27)

angle-only fit 0.156(17) 0.334(12)

no-angles fit 0.157(17) 0.337(12)

TABLE IX. Results for the ρ̄ and η̄ values as extracted from the various fit configurations. The Universal Unitarity Triangle
(UUT) fit includes the three angles inputs and the semileptonic ratio |Vub/Vcb| [91].

1. By fitting the “tree-only” constraints, i.e. processes for which a contribution from new physics is with the
highest probability absent, we test the possibility that all the sources of CP violation come from physics beyond
the SM. The results shown in the top-right panel, which have a two-fold sign ambiguity in the ρ̄-η̄ values, show
that the SM alone contributes to the largest part of the observed CP violation at low energy;

2. We analysed the results that can be obtained by using only the information coming from the measured angles,
“angle-only” fit, bottom-left panel;

3. We analysed the results that can be obtained from the triangle sides fit and ε, “sides+ εK” fit, bottom-right
panel.
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FIG. 5. Pull plots (see text) for sin 2β (top-left), α (top-centre), γ (top-right), |Vub| (bottom-left) and |Vcb| (bottom-right) inputs.
The crosses represent the input values reported in Table I. In the case of |Vub| and |Vcb| the x and the * represent the values
extracted from exclusive and inclusive semileptonic decays respectively.

We observe that there is not a particular bias from either case forcing the global fit to fill a specific region of the
plane, all fits prefer essentially the same region in the ρ̄-η̄ plane. We want also to give the CKM matrix in all its glory

VCKM =

 0.97431(19) 0.22517(81) 0.003715(93) e−i(65.1(1.3))o

−0.22503(83) e+i(0.0351(1))o 0.97345(20) e−i(0.00187(5))o 0.0420(5)

0.00859(11) e−i(22.4(7))o −0.04128(46) e+i(1.05(3))o 0.999111(20)

 . (33)

From the global fit we also obtain

λ = 0.22519(83) , A = 0.828(11) . (34)

Several other quantities that we have analysed in our fit can be found in Table X and XI in the Appendix.

A. Pull plots and allowed regions

For a given quantity x, the compatibility between its UTA prediction x̄, given in Table I, and its direct measurement
x̂ is obtained integrating the probability density function (pdf) p(x̄ − x̂), in the region for which it acquires values
smaller than p(0), namely the region for which the pdf value is smaller than that of the case x̄ = x̂, i.e., when the
measurement matches the prediction. This two-sided p-value is then converted to the equivalent number of standard
deviations for a Gaussian distribution. When x̄− x̂ is distributed according to a Gaussian p.d.f, this quantity coincides
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FIG. 6. Allowed region in the |Vtd|-|Vts| plane.
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FIG. 7. Allowed region in the BR(B0
s → µµ)-BR(B0 → µµ) plane. The vertical (orange) and horizontal (yellow) bands

correspond to the present experimental results (1σ regions).

with the usual pull, i.e. with the ratio between |x̄− x̂| and its standard deviation. The advantage of this approach is
that no approximation is made on the shape of pdf’s.

The so-called “pull plots“ are then constructed assuming a measured value and an experimental error for each point
of the plane, with the procedure described above (assuming that the measurement has a Gaussian pdf). In Fig. 5
these plots are used to assess the agreement of a given measurement with the indirect determination from the fit
using all the other inputs. The coloured areas represent the level of agreement between the predicted values and the
measurements at better than 1, 2, . . .nσ. The markers (crosses) have the coordinates (x, y) = (central value, error)
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of the direct measurements considered, see Table I. In the case of |Vub| and |Vcb| the x and the * represent the values
extracted from exclusive and inclusive semileptonic decays respectively. These plots allow to visualise the tensions
between each input and the rest of them as in the pull column of Table I. It is clear that inputs as α and γ show very
good agreement with the rest of the fit, while sin 2β, |Vub| and |Vcb| present various degrees of tension either directly
or with respect to the different exclusive or inclusive determinations.

Overall, the global fit proves a remarkable internal consistency with a better than 7% precision in the determination
of the fundamental CKM parameters ρ̄ and η̄. New physics effects, if present, would give rather small contributions
and for this reason it is necessary to improve both the precision of the experiments and the accuracy of the theoretical
calculations.

We also find useful to provide some further information coming form our global UT analysis: in Fig. 6 we show
the constraint on the third row of the CKM matrix given by the allowed region, mainly determined by neutral B
meson mixing, in the |Vtd|-|Vts| plane; in Fig. 7 we show the allowed region in the BR(B0

s → µµ)-BR(B0 → µµ)
plane compared with the experimental measurements given by the vertical (orange) and horizontal (yellow) bands
corresponding to the present experimental constraints.

B. Constraints on the lattice parameters in the Standard Model

Assuming the validity of the Standard Model, the constraints in the ρ̄-η̄ plane allow the ”experimental” deter-
mination of several hadronic quantities which, in the previous fits, were taken from lattice QCD calculations. This
approach has the advantage that we can extract from the combined experimental measurements the value of B̂K , of

the B0 mixing amplitudes, fBs,d
B̂

1/2
s,d or fBs

B̂
1/2
s , and of ξ = fBs

B̂
1/2
s /fBd

B̂
1/2
d . We have considered the following

possibilities (the derived lattice quantities and their uncertainties, obtained by combining the lattice inputs of Table
III are denoted by ”latt.*” ):

1. we remove from the lattice inputs B̂K and we compare the UTfit value with the lattice result

B̂K(UTfit) = 0.840(59) , B̂K(latt.) = 0.756(16) ; (35)

2. we only use B̂s and B̂s/B̂d and derive

fBd
(UTfit) = 190.9(7.2) MeV , fBd

(latt.∗) = 190.5(1.3) MeV ;

fBs
(UTfit) = 229.4(7.2) MeV , fBs

(latt.∗) = 230.1(1.2) MeV ; (36)

ξ(UTfit) = 1.204(27) , ξ(latt.∗) = 1.208(59) ;

3. we use only the ratios fBs/fBd
and B̂s/B̂d but not fBs and B̂s

fBd
B̂

1/2
d (UTfit) = 216.9(5.3) MeV , fBd

B̂
1/2
d (latt.∗) = 214.2(5.6) MeV ;

fBsB̂
1/2
s (UTfit) = 264.4(6.0) MeV , fBsB̂

1/2
s (latt.∗) = 260.7(6.1) MeV ; (37)

ξ(UTfit)) = 1.219(12) , ξ(latt.∗) = 1.208(51) ;

4. we only use B̂K but not any of the other inputs of table III

fBd
B̂

1/2
d (UTfit) = 210.5(3.6) MeV , fBd

B̂
1/2
d (latt.∗) = 214.2(5.6) MeV ;

fBs
B̂1/2
s (UTfit) = 259.0(3.4) MeV , fBs

B̂1/2
s (latt.∗) = 260.7(6.1) MeV ; (38)

ξ(UTfit) = 1.230(23) , ξ(latt.∗) = 1.217(14) .

We observe that the case 3. has simply slightly larger uncertainties than the case 4. and that the UTfit predictions of
the hadronic parameters are fully compatible with the lattice calculations. For further information, we also repeated
the case 1. with |Vcb| taken from Eq. (10) instead than Eq. (8) obtaining BK(UTfit) = 0.831(57) in substantial
agreement with the result in Eq. (35). This remains true for the other parameter condidered in all the other cases
(2.-3.-4.).
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V. CONCLUSIONS

Our main conclusions are the following:

• The SM analysis shows a very good overall consistency;

• The exclusive vs inclusive saga is not concluded yet although there are signals that it could be quickly re-
solved. We stress that, as in the past [2], the unitarity triangle analysis, namely the analysis without including
the experimental measurements from semileptonic decays, favours a large value of |Vcb|, close to the inclusive
determination, and a smalle value of |Vub|, close to the exclusive determination;

• For |Vcb|, on the theoretical side, there are signals that a more accurate determination of the form factors
obtained from new and more accurate lattice calculations and the DM approach [63], combined with a more
careful treatment of the experimental data, could increase the central value and determine more realistically the
uncertainty, thus reducing substantially the tension between the inclusive and exclusive values of this quantity.
The difference with respect to previous analyses is not only due to the use of the DM approach but also to a
critical examination of the experimental correlation matrix of the B → D∗ differential decay rates and to the
theoretical determination of the momentum dependence of the form factors independently of the experiments
and before fitting the data [60–63].

• Similar analyses are needed for semileptonic B → π decays, although in that case the tension is smaller since
the uncertainties in both the inclusive and exclusive determinations of |Vub| are larger. In ref. [92] for example,
using the DM approach, the results are |Vub| × 103 = 3.62(47) from B → π decays and |Vub| × 103 = 3.77(48)
from Bs → K decays, compatible with the latest inclusive determination |Vub| × 103 = 4.13(26) from PDG [38];

• On the experimental side, regarding the differences between exclusive and inclusive semileptonic B decays, we
really need more measurements from LHCb and (mostly) Belle II;

• Most of the quantities studied in this work refer to the quark down sector for which the CKM paradigm has
been (and still is) a great success in predicting weak processes (mainly to the physics of strange and beauty
particles). Only recently we experimentally started to investigate if there are signals of New Physics in the up
sector singled by discrepancies between measurements and theoretical predictions. The discovery of CP violation
in neutral D meson system has opened a new sector of investigation and will be the subject of our study in a
future publication.
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APPENDIX

Observable Full Fit Full Fit (95%)

λ 0.22519± 0.00083 [0.22359, 0.22686]

A 0.828± 0.011 [0.807, 0.851]

ρ̄ 0.1609± 0.0095 [0.1430, 0.1794]

η̄ 0.347± 0.010 [0.327, 0.367]

β 22.46± 0.68 [21.13, 23.78]

α 92.4± 1.4 [89.9, 95.4]

βs −0.0368± 0.0010 [−0.0388,−0.0347]

sin θ12 0.22519± 0.00083 [0.22359, 0.22686]

sin θ23 0.04200± 0.00047 [0.04109, 0.04290]

sin θ13 0.003714± 0.000092 [0.003528, 0.003898]

δ[◦] 1.137± 0.022 [1.092, 1.180]

JCP × 105 3.102± 0.080 [2.946, 3.264]

Rt 0.9082± 0.0084 [0.8908, 0.9244]

Rb 0.383± 0.011 [0.362, 0.404]

|Vtd/Vts| 0.2080± 0.0020 [0.2041, 0.2119]

BR(Bd → µµ)× 1010 0.949± 0.037 [0.871, 1.009]

BR(Bs → µµ)× 109 3.25± 0.12 [3.01, 3.44]

|Vud| 0.97431± 0.00019 [0.97392, 0.97468]

|Vus| 0.22517± 0.00081 [0.22352, 0.22682]

|Vub| 0.003715± 0.000093 [0.003532, 0.003898]

|Vcd| 0.22503± 0.00083 [0.22343, 0.22669]

|Vcs| 0.97345± 0.00020 [0.97305, 0.97381]

|Vcb| 0.04200± 0.00047 [0.04109, 0.04290]

|Vtd| 0.00859± 0.00011 [0.00837, 0.00880]

|Vts| 0.04128± 0.00046 [0.04038, 0.04217]

|Vtb| 0.999111± 0.000020 [0.999072, 0.999149]

TABLE X. Extra outputs of interest obtained from our UTA analysis I.
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Observable Full Fit Full Fit (95%)

Re(λtsd) −0.0003252± 0.0000080 [−0.0003413,−0.0003098]

Re(λcsd) −0.21908± 0.00076 [−0.22058,−0.21757]

Re(λusd) 0.21943± 0.00077 [0.21789, 0.22090]

Re(λtbd) 0.00794± 0.00013 [0.00769, 0.00818]

Re(λcbd) −0.00945± 0.00011 [−0.00967,−0.00924]

Re(λubd) 0.001522± 0.000090 [0.001344, 0.001699]

Re(λtbs) −0.04123± 0.00046 [−0.04216,−0.04037]

Re(λcbs) 0.04089± 0.00045 [0.04001, 0.04177]

Re(λubs) −0.04123± 0.00046 [−0.04216,−0.04037]

Im(λtsd)× 105 14.13± 0.37 [13.42, 14.85]

Im(λcsd)× 105 −14.13± 0.37 [−14.85,−13.42]

Im(λtbd)× 105 −327.6± 8.1 [−343.2,−311.3]

Im(λcbd)× 105 −0.578± 0.018 [−0.615,−0.545]

Im(λubd)× 105 328.1± 8.3 [311.6, 344.0]

Im(λtbs)× 105 −75.7± 1.9 [−79.4,−71.8]

Im(λcbs)× 105 −0.1336± 0.0041 [−0.1420,−0.1258]

Im(λubs)× 105 −75.7± 1.9 [−79.4,−71.8]

|λtsd| 0.0003545± 0.0000075 [0.0003398, 0.0003698]

|λcsd| 0.21908± 0.00076 [0.21757, 0.22058]

|λusd| 0.21943± 0.00077 [0.21789, 0.22090]

|λtbd| 0.00858± 0.00011 [0.00837, 0.00880]

|λcbd| 0.00945± 0.00011 [0.00924, 0.00967]

|λubd| 0.003618± 0.000091 [0.003436, 0.003794]

|λtbs| 0.04125± 0.00045 [0.04037, 0.04213]

|λcbs| 0.04089± 0.00045 [0.04001, 0.04177]

|λubs| 0.04125± 0.00045 [0.04037, 0.04213]

Im(τ) −0.000644± 0.000016 [−0.000678,−0.000612]

Re(τ) 0.001482± 0.000036 [0.001410, 0.001557]

TABLE XI. Extra outputs of interest obtained from our UTA analysis II. λqij = VqiV
∗
qj.
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