
Stringent pulsar timing bounds on light scalar couplings to matter

David Benisty ,1,2,* Philippe Brax,3,4,† and Anne-Christine Davis1,2,‡
1DAMTP, Centre for Mathematical Sciences, University of Cambridge,

Wilberforce Road, Cambridge, CB3 0WA, United Kingdom
2Kavli Institute of Cosmology (KICC), University of Cambridge,

Madingley Road, Cambridge, CB3 0HA, United Kingdom
3Institut de Physique Theorique, Universite Paris-Saclay,
CEA, CNRS, F-91191, Gif-sur-Yvette Cedex, France

4Theoretical Physics Department, CERN, CH-1211 Geneva 23, Switzerland

(Received 9 December 2022; revised 22 February 2023; accepted 1 March 2023; published 22 March 2023)

Pulsar timing constraints on scalar-tensor theories with conformal and disformal couplings to matter are
discussed. Reducing the dynamics to the motion in the center-of-mass frame and using the mean anomaly
parametrization, we find the first post-Newtonian corrections induced by the conformal and disformal
interactions in the form of a generalized quasi-Keplerian solution. We also derive the radiation reaction
force due to scalar radiation and the corresponding post-Keplerian parameters (PKP). We use different
pulsar time of arrival (TOA) datasets to probe the scalar corrections to the PKP. In particular, we focus on
systems with large orbital frequencies as the contributions to the PKP terms induced by the disformal
coupling are sensitive to higher frequencies. We find that the most constraining pulsar timings are PSR
B1913þ 16 and the double pulsar PSR J0737-3039A/B, being of the order of the Cassini bound on the
conformal coupling obtained from the Shapiro effect in the solar system. The combined constraints using
other pulsar timings give an upper bound on the conformal coupling β2 < 2.33 × 10−5 and a lower bound
on the disformal coupling scale of Λ ≥ 1.12 MeV which is comparable to the Cassini bound and to the
GW-170817 constraints respectively. Future measurements for pulsar timing with black hole companions
are also discussed.
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I. INTRODUCTION

The discovery of the accelerated expansion of the late
Universe, requires a modification of general relativity (GR)
as originally presented in 1915. This change could be as
minimal as the addition of a cosmological constant [1–6],
which is so far the most likely explanation to the cosmo-
logical observations. On the theoretical side, the smallness
of the cosmological constant could be considered to be fine
tuned. Recent string theoretic conjectures such as the
swampland ones [7,8] would favor a more dynamical
approach and prescribe that the Universe should be driven
by quintessence in its late time phase [9–29]. Such a scalar
field would slow roll and eventually mimic a cosmological
constant. In these models the scalar field does not couple to

ordinary matter. Other possibilities include a modification
of general relativity itself where a scalar, which could be the
scalar polarization of a massive gravity model for instance,
couples to matter [30–38].
One very popular model of light scalar coupled to

matter is obtained by modifying the Einstein-Hilbert action
into a function of the Ricci scalar, the so-called fðRÞ
theories [39,40]. This can be seen as adding a coupled
scalar field to GR, i.e. becoming a scalar-tensor theory, with
a specific coupling to matter equal to β ¼ 1=

ffiffiffi
6

p
, i.e. the

Jordan gJμν and the Einstein gEμν metrics are related by a
conformal rescaling.

gJμν ¼ e2βϕ=mPlgEμν: ð1Þ

In more general cases, the coupling between the scalar field
and matter depends on the transformation between the
Jordan, where matter couples minimally, to the Einstein
frames, where the Einstein-Hilbert term is canonical.
Bekenstein gave the most general coupling of a scalar
field to matter, which involves both conformal and dis-
formal transformations [32,36,41,42]
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gJμν ¼ A2ðϕ; XÞgEμν þ B2ðϕ; XÞ∂μϕ∂νϕ; ð2Þ

where this metric gJμν defines the Jordan frame and gEμν is the
Einstein frame metric. Here we denote by X ¼ − 1

2
ð∂ϕÞ2

the standard kinetic terms. Such modifications may help
resolve some issues in cosmology such as the Hubble
tension [43]. Recently light scalar fields have also been
suggested as possible candidates for dark matter [44]. The
coupling of such dark matter fields to matter is also crucial
for their dynamics and their eventual detection [45–47].
These theories can be tested using gravitational methods

as shown by earlier studies which focused on two bodies in
an orbital motion [48–61], a well studied example in GR,
from which similar properties can be inferred for modified
gravity with conformal and disformal couplings [62–69].
In this paper, we shall work with the most general

scalar-tensor theory associated with a Bekenstein coupling
involving generic conformal and disformal couplings.
These theories potentially give rise to fifth forces which
are subject to strict limits from solar system tests of general
relativity [70], and, at face value, the archetypical fðRÞ
models would then appear to be ruled out. However, the fifth
force effects canbe screened in the solar system, giving rise to
screened modified gravity with a phenomenology which
depends on the environment. Screening can take place
in different ways either via the chameleon [71,72], the
K-mouflage and Vainshtein [73,74] or Damour-Polyakov
mechanisms [75–78]. All rely on the environment such that
the fifth force becomes screened in the solar system and as a
result the theory can evade all the local tests of gravity. On
larger scales, these models can give rise to modifications to
GR on cosmological scales [70,71,73–75,79–81].
Screenings of the Chameleon and Damour-Polyakov

types, see [82,83] for reviews, can be usefully compared to
scalar models where scalarization takes place [84].
Scalarized models are commonly used in analysing pulsar
timing when looking for new physics effects. In a nutshell,
chameleon type screening relies on the stabilization effects
of matter, i.e. the effective mass of the scalar field in matter
increases as the density increases. On the other hand,
scalarization relies on the destabilization of the scalar field
in the presence of matter [85–89]. We will give more details
in Sec. II.
Here we consider the scalar interaction between moving

bodies when the coupling between matter and the scalar
field is mediated by the coupling functions

Aðϕ; XÞ ¼ eβϕ=mPl ; B2ðϕ; XÞ ¼ 2

m2
PlΛ2

; ð3Þ

which gives rise to a Yukawa interaction of coupling
strength β with matter and the disformal term is taken to
be constant at leading order. These terms are the leading
order contributions from an effective field theory point of
view. Indeed the contributions depending on powers of X

only matter at short distances. We work on large distances
where the terms in X in the coupling functions can be
neglected as they would lead to higher order corrections to
the dynamics of the moving bodies and for most purposes it
is enough to consider a small field expansion AðϕÞ ≈ 1þ
βϕ=mPl and Bðϕ; XÞ as constant. Higher order terms would
lead to effects which could be taken into account in
perturbation theory and are neglected here. Our description
would nonetheless apply to the effective interaction of
screened bodies when screening takes place. In this case,
the small values of the couplings that we will infer from
pulsar timing should be seen as resulting from the screening
of dense objects such as pulsars.
The study of gravitational physics benefits from a

number of experimental advances which provide excel-
lent chances for constraining these interactions. The first
evidence for gravitational waves was provided by the
binary Hulse-Taylor pulsar PSR B1913þ 16 [90].
Pulsars are extremely useful tools for testing gravity due
to the extreme precision of the radio pulses they emit.
Pulsars have a short spinning period. The monitoring of the
times of arrival of the pulsar’s radio pulses allows one to
infer the properties of the orbit. Observations over long
periods of time provide a unique way of obtaining
experimental constraints on the parameters of the orbits.
In pulsar timing systems, observed pulse arrival times are
sensitive to relativistic effects that can be modeled in a
theory-independent way using the “post-Keplerian param-
eters” (PKP) [91,92]. They are phenomenological correc-
tions and additions to the Keplerian description of the
binary motion. The PKP take different forms in different
theories of gravity and so their measurement can be used to
test these gravity theories [68,93–97]. Earlier studies such
as [55,66,67,98,99] show conformal and the disformal
effects on the two body motion. In this paper we derive
the whole PKP and compare it with the latest measurements
of pulsars.
As we will see, the disformal strength is affected by the

frequency of the orbital motion, where higher frequencies
give larger disformal contributions. This follows from the
higher derivative nature of the disformal interaction. The
following dimensionless quantity ϵΛ relates the disformal
coupling interaction to the frequency

ϵΛ ¼ ðβnb=ΛÞ2
ð1 − e2Þ3 ; ð4Þ

where e is the eccentricity of the motion and nb ¼ 2π=Pb is
the frequency of the motion. ϵΛ describes the contri-
bution of the disformal interaction to the PKP. Figure 1
compares pulsar timings that are analyzed in this paper vs.
the precessions of mercury and of the S2 star around the
galactic center, as analyzed in [55]. In the middle of this
plot we focus on the pulsar timings (in red). Since the
periods of the pulsar timings are higher than for other
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systems, the constraints on the disformal interaction is
stronger and therefore motivates us to constrain the con-
formal and the disformal interactions with these systems.
The plan of this work is as follows: Section II des-

cribes the action and the equations of motion. Section III
solves the system using the mean anomaly approach. In
Sec. IV we include the effects of the scalar radiated power
on the trajectories of the reduced two-body system in the
center-of-mass frame. This leads to a radiation reaction
force on the orbital motion, allowing us to compute the
change in the period and the eccentricity due to this effect.
Section V derives the time delays PKP. Section VI com-
pares the PKP with different pulsar timings. Section VII
discusses the results with possible observational constraints
on the conformal and disformal couplings. There are five
technical appendices.

II. CONFORMAL AND DISFORMAL
INTERACTIONS

A. Screening and effective dynamics

We will focus on models where screening of the
Damour-Polyakov or the chameleon types take place.
Such models are defined by the scalar tensor action

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
gμνϕ;μϕ;ν − VðϕÞ

�
þ Smðψ i; gJμνÞ; ð5Þ

where the Jordan metric is related to the Einstein metric via
(2). In the spirit of effective field theories, we will consider

that the dependence on the kinetic terms of the Bðϕ; XÞ
function can be expanded as

B2ðϕ; XÞ ¼
X
n≥0

BnðϕÞ
Xn

ðΛ2m2
PlÞn

ð6Þ

where the powers of the Planck scale appear as ϕ is
normalized in Planck units and derivatives appear sup-
pressed by powers of Λ. This expansion is valid in the
regime where ∂=Λ≲ 1 corresponding to distances larger
than 1=Λ. In practice, the length scale 1=Λ of interest is
much shorter than the typical scales probed by gravitational
physics observations and experiments implying that the
leading term B0ðϕÞ dominates. Similarly as we can expand
B0 in powers of ϕ

B0ðϕÞ ¼
X
n≥0

B0;n
ϕn

mn
Pl

ð7Þ

and in the small ϕ regime corresponding to the screened
theories that we will consider, the leading contribu-
tion comes from the constant term B0;n ¼ 2 normalized
as in (3). In the regime where ∂=Λ ≪ 1 as will be the case
for coupling scales Λ in the MeV range, the effect of the
disformal coupling can be treated in perturbation theory
using for instance a ladder expansion for the solutions
of the Klein-Gordon equation [65]. The zeroth order in
the disformal interaction corresponds to a scalar-tensor
theory with the conformal coupling AðϕÞ only. In the pre-
sence of nonrelativistic matter the Klein-Gordon equation
reads [71,82,83,101]

□ϕ ¼ ∂Veff

∂ϕ
ð8Þ

where the effective potential is given by

VeffðϕÞ ¼ VðϕÞ þ ðAðϕÞ − 1Þρm ð9Þ

where ρm is the conserved matter density in the Einstein
frame. It is related to the Einstein matter density by
ρE ¼ AðϕÞρm. The chameleon and Damour-Polyakov
mechanisms operate when the effective potential has a
unique minimum ϕðρmÞ which depends on the matter
density.
A typical example is given by the inverse power-law

chameleon where [71]

VðϕÞ ¼ M4þn

ϕn þ… ð10Þ

and the coupling function AðϕÞ ¼ eβϕ=mPl . The runaway
potential of the quintessence type [18] VðϕÞ is stabilized by
the matter contributions with

FIG. 1. Comparison of selected pulsars that are analyzed in this
paper vs. mercury and the S2 star from the Galactic center. In the
middle of the figure, we focus on the pulsar timings (in red).
Since the orbital periods of the pulsars is higher then the other
systems, the constraints on the disformal interaction is stronger.
The S2 stars orbit around the central supermassive black hole of
the Milky Way. Far away from the black hole, the two-body
system can be approximated by the dynamics of two point-
particles [55,100].
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ϕðρmÞ ¼
�
nM4þnmPl

βρm

�
1=nþ1

: ð11Þ

Notice that ϕðρmÞ ≪ mPl as soon asM ≪ mPl. This implies
that AðϕðρmÞ ≃ 1 and that the Einstein and conserved
matter densities are essentially equal. The mass of the
chameleon is given by the second derivative of the effective
potential

m2ðρmÞ ¼
d2VeffðϕÞ

dϕ2

����
ϕðρmÞ

ð12Þ

which grows with the matter density in ρðnþ2Þ=2ðnþ1Þ
m . This is

the defining property of screened models, i.e. the mass of
the stabilized scalar field grows rapidly with the matter
density.
This has important consequences for compact objects

that we will treat as composed of nonrelativistic matter in
the first place [102]. In this case, the scalar field profiles
takes two different characteristic shapes. In the screened
regime, the scalar field is nearly constant inside the body,
that we consider as spherical for simplification’s sake, with
a value given by ϕin ¼ ϕðρinÞ. Here ρin is the density inside
the object. This is guaranteed as long as minR ≫ 1 where
min is the mass of the scalar field inside the body. Outside
the field extrapolates to the outside value ϕout ¼ ϕðρoutÞ
where ρout is the matter density in the environment
surrounding the compact object. For typical models such
as the inverse chameleons ϕin ≪ ϕout. Outside the objects
the field behaves as

ϕ ¼ ϕout −
βeff

4πmPl

M
r

ð13Þ

where the effective coupling of the scalar field to the
compact object is given by

βeff ¼
ϕout − ϕin

2mPlΦNðRÞ
≃

ϕout

2mPlΦNðRÞ
: ð14Þ

Here ΦNðRÞ ¼ GM=R is the absolute value of Newton’s
potential at the surface of the object. The screening
criterion is simply that the compact object couples less
strongly than a point particle embedded in the surrounding
environment

βeff ≤ βðϕoutÞ ð15Þ

where

βðϕÞ ¼ mPl
d lnA
dϕ

ð16Þ

is the coupling of a point particle to the scalar field. One
important point is that from the point of view of an outside

observer, the compact object behaves like a point particle
coupled to the scalar field with a strength βeff . As the field is
nearly constant inside the body and ϕin=mPl ≪ 1 implying
that AðϕinÞ ≃ 1, the mass of the field in the Einstein
frame ME corresponding to the source for the gravitational
field in the Poisson equation coincides with the conserved
mass M as

ME ¼
Z

d3rAðϕðrÞÞρm ≃
Z

R

0

d3rAðϕinÞρm

≃
Z

R

0

d3rρm ¼ M: ð17Þ

For screened models, the mass of the object can be
identified with the mass in GR in the absence of scalar field.
On the other hand when screening does not operate, i.e.

when (15) is not satisfied, the field inside the object is
nearly constant and equal to ϕout. In this case, the object
behaves for an outside observer as a point-particle with the
coupling βðϕoutÞ and a mass M which does not differ from
the mass in GR.
These results have been deduced in the case of non-

relativistic matter. They can be extended to the case of
matter where the pressure does not vanish. In this case
the generalized Tolman-Oppenheimer-Volkov equations
including the scalar contributions must be solved [103].
In fact for screened models satisfying the solar system
constraints the field profile is still sharp and the previous
results apply [63]. In particular, the mass of the object is
still given by its GR value and the body behaves like a
pointlike particle with an effective charge depending on the
environment. In the unscreened case, the scalar field is not
perturbed by the presence of the objects and the previous
results also apply. For objects where the screening is rather
weak and the field profile is not sharp, numerical methods
are necessary in order to solve the generalized TOV
equations. This goes beyond the present paper.
The screened and unscreened cases behave very differ-

ently when it comes to the gravitational tests in the solar
system and the radiation of scalar waves. In the screened
case, the coupling to scalars must be small enough to evade
tests such as the Cassini bound [70] when the effective
coupling of the Sun is small enough. This gives a con-
straint on the physics of the scalar field in the solar system,
i.e. ϕout and βðϕoutÞ must be such that (15) is satisfied for
Φ⊙ ∼ 10−6. For pulsars, we have seen that they would
behave like point-particles for the scalar field with a
coupling (14) which would depend on the pulsar’s envi-
ronment via ϕout and the pulsar’s Newtonian potential. For
binary system composed of two screened stars, the cou-
pling would differ if their Newtonian potentials are not
equal. In this case, scalar radiation in the form of dipolar
radiation must be taken into account [104]. Constraints
from pulsar timing would result in bounds on the scalar
value ϕout in the pulsar’s environment. On the other hand
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for the unscreened case, the coupling βðϕoutÞmust be tuned
to be small enough in the solar system to pass the Cassini
bound. In the case of pulsars, the constraints are then on
βðϕoutÞ in the pulsar’s environment. In particular, as the
objects are universally coupled to the scalar field, the
dipolar radiation vanishes and only the monopole and
quadrupole radiations matter.

B. Screening vs scalarization

The screening mechanisms that we have reviewed in
the previous section are inspired by the physics of the
acceleration of the Universe. On large scale where the
density is small, the scalar should have large effects on
the dynamics of the Universe and therefore should not
couple weakly. On the other hand, locally in the solar
system the scalar should be screened to pass the gravita-
tional tests. This is what has been achieved with models for
which the effective mass in dense objects is large, i.e.
preventing any strong interaction between the scalar field
and the object. Only a thin shell at the surface of the object
interacts with the scalar field, hence drastically reducing its
coupling to the scalar.
Scalarization [84,105] appears in a different context

whereby scalar effects are enhanced in the strong field
regime of objects such as neutron stars. In sparse environ-
ments, the scalar field essentially decouples from matter
while its coupling is driven to larger values in dense matter.
This is in effect an antiscreening behavior. This can be
simply exemplified in the nonrelativistic case with a simple
scalar-tensor theory defined by a massive scalar field of
potential [86,87]

VðϕÞ ¼ 1

2
m2ϕ2 ð18Þ

and a coupling function

AðϕÞ ¼ e−aϕ
2=2m2

Pl ð19Þ

where a is a constant. In the absence of surrounding matter,
point particles couples to the scalar with a strength

βðϕÞ ¼ −a
ϕ

mPl
: ð20Þ

In vacuum, the effective potential reduces to VðϕÞ whose
minimum is for ϕ̄ ¼ 0 implying that the scalar decouples
from point-particles βðϕ̄Þ ¼ 0. Obviously this is the oppo-
site effect that one would like to achieve to generate
modifications of gravity on the largest scales of the
Universe. On the other hand, a remarkable effect takes
place in dense matter from which compact objects poten-
tially couple strongly to the scalar field.
This can be understood by studying the nonrelativistic

limit where the background space-time metric is taken to be

flat and matter is pressureless. When matter is present the
coupling function add a potential term in

ðAðϕÞ − 1Þρm ≃ −a
ρm
m2

Pl

ϕ2 þ… ð21Þ

corresponding to a destabilization of the scalar field by a
negative contribution to the scalar mass. The vanishing
value of the scalar field is not stable for densities

ρm ≥
m2m2

Pl

a
: ð22Þ

This is an antisymmetron effect [78] while the symmetron
contribution to the mass is positive in matter. This insta-
bility is eventually stabilized for a nonvanishing value of
the field ϕðρmÞ satisfying dVeff=dϕ ¼ 0 implying that

e−aϕðρmÞ2=2m2
Pl ¼ m2m2

Pl

aρm
ð23Þ

and therefore

AðϕðρmÞÞ ¼
m2m2

Pl

aρm
: ð24Þ

The coupling of the scalar to a point particle βðϕmÞ
increases like ln1=2ðρmÞ implying that the scalar field
couples stronger to point particles in matter than in vacuum.
When it comes to the field profile created by an object of

radius R and density ρm, the field interpolates between a
vanishing value in vacuum at infinity and a value which
would converge to ϕðρmÞ inside very large objects.
Scalarization takes place when mR is bounded and the
field evolves significantly inside the object. As AðϕÞ
interpolates between a value of unity at infinity and a very
different value which could be (24) deep inside the objects
for large bodies, we see that the Einstein frame density ρE
varies substantially with the scalar field and is not equal
to the conserved density ρm as in the screened case.
This implies that the Einstein mass ME which sources
the Poisson equation for the Newtonian potential does not
coincide with the conserved mass M. The Einstein mass
depends on the details of the scalar field profile in the
object. Moreover the scalar coupling of the object depends
on the profiles and becomes nonuniversal triggering
the possibility of dipolar emission in binary system [104].
We give a simplified treatment of the scalar profile in the
nonrelativistic approximation in Appendix A.
In the case of relativistic objects like neutron stars

where pressure must be taken into account, the simple
description given by the nonrelativistic case must be
complemented with a numerical integration of the TOV
equations. Still the effects of the scalar field on the mass of
the objects must be taken into account. This is very
different from the case of screened scalars where such
an effect of the scalar field is absent.
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C. The effective point-particle Lagrangian

In this paper we will focus on screened models in their
unscreened regime where the coupling of the scalar field to
matter is universal and depends on the environment. The case
for which compact objects are screened is left future works.
The dynamics of gravity interacting with a massless

scalar field are described by

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
R

16πG
−
1

2
gμνϕ;μϕ;ν

�
þ Smðψ i; gJμνÞ;

ð25Þ
where matter fields are denoted by ψ i and their action by
Sm. In the following we will take the matter action to be the
one of pointlike particles and the scalar potential to be
vanishing. This will provide an appropriate description of
the dynamics of macroscopic objects like neutron stars as
long as finite size effects can be neglected. This setting
applies to screened models where the scalar field between
massive objects is assumed to be very light and the
coupling to matter depends on the environment and is
universal for different objects. In a different environment,
the coupling would differ as the background density and
distribution of the surrounding objects would be different.
Our model can therefore be seen as an effective description
of the long range interaction between massive objects
mediated by such an unscreened scalar with the coupling
β≡ βðϕoutÞwhich depends on the environment. In practice,
we will require that the scalar field is massless on the size of
the solar system corresponding to an estimated 100 a.u. and
the mass mϕ ≲ 10−20 eV. Larger masses by two orders of
magnitude would still be considered as massless for double
pulsars but not in the solar system where the time delay
effects would have to be modified, i.e. the enhancement of
Newton’s constant for time delays would not be present for
a massive field. To simplify the analysis we will also
assume that the coupling in the pulsar’s environment is the
same as the one in the solar system. If this is not the case
then two couplings βP and βSS would have to be introduced
for the pulsars and the solar system.
In [65,67] the Lagrangian for the reduced action for two

isolated bodies was derived and reads

L ¼ L0 þ c−2LDis þ c−2L1 þOðc−4Þ; ð26Þ
with:

L0 ¼
1

2
v2 þ ð1þ 2β2ÞGM

r
;

LDis ¼ ξðrÞðv2 − 2ðv · n̂Þ2Þ:

L1 ¼
1 − 3ν

8
v4 þ GM

2r

�
ð3 − 2β2 þ νð1þ 2β2ÞÞv2

þ νðv · n̂Þ2 − ð1þ 2β2ÞGM
r

�
; ð27Þ

and the dimensionless function ξðrÞ is defined as:

ξðrÞ ¼ 4β2GM2

Λ4r4
: ð28Þ

The β parameter characterizes the conformal interaction
and the dimensionless function ξðrÞ the disformal coupling.
When β and 1=Λ go to zero the action reduces to the
standard Einstein-Infeld-Hoffmann (EIH) action [106]. μ is
the reduced mass andM is the total mass of the system, r is
the separation and v is the relative velocity. ν is the ratio
between the reduced mass and the total mass ν ¼ μ=M,
with 0 ≤ ν ≤ 1=4. Since v · n̂ ¼ _r we get that the energy
per units of reduced mass ϵ ¼ E=μ is

ϵ ¼ 1

2
v2 − ð1þ 2β2ÞGM

r
þ ξðrÞðv2 − 2_r2Þ þ c−2ϵ1; ð29Þ

with the 1st PPN correction

ϵ1 ¼
3

8
ð1 − 3νÞv4 þ GM

2r

�
ð3 − 2β2

þ νð1þ 2β2ÞÞv2 þ ν_r2 þ ð1þ 2β2ÞGM
r

�
; ð30Þ

and the angular momentum per units of reduced mass
j ¼ J=μ is

j⃗ ¼ ½1þ 2ξðrÞ þ c−2j1�r⃗ × v⃗ ð31Þ
where

j1 ¼
v2

2
ð1 − 3νÞ þ ð3 − 2β2 þ νð1þ 2β2ÞÞGM

r
: ð32Þ

Although j⃗ is conserved, the vector r⃗ × v⃗ is not. While
r⃗ × v⃗ no longer has a constant magnitude, it has a constant
direction. This is sufficient to establish that the orbital
motion takes place within a fixed orbital plane, just as in the
Newtonian case.

III. QUASI-KEPLERIAN SOLUTION

A. Newtonian case

In order to study the dynamics following from the above
Lagrangian, we start by reviewing the mean and true
anomaly formalism together with the Keplerian paramet-
rization for the Newtonian motion [107]. The conservation
of energy and angular momentum reads

ϵ ¼ 1

2
_r2 þ j2

2r2
−
GM
r

; j ¼ r2 _θ; ð33Þ

where ϵ is the total energy per unit of reduced mass, j is the
total angular momentum per unit of reduced mass, r is the
separation between the bodies and the dot is the derivative
with respect to time. In order to solve the two-body
problem, it is useful to parametrize the separation as
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r=a ¼ 1 − e cos η: ð34Þ

e is the eccentricity, a is the semi-major axis. The
exact solution of Eq. (33) is described by the well-known
relations

nbðt − t0Þ ¼ η − e sin η; θ ¼ ν̃e: ð35Þ

nb ¼ 2π=Pb is the frequency while ν̃ is defined via

ν̃e ≡ 2 arctan

� ffiffiffiffiffiffiffiffiffiffiffi
1þ e
1 − e

r
tan

η

2

�
: ð36Þ

This provides the Newtonian relationship between the
mean anomaly η and the true anomaly θ. In the New-
tonian case, two angles are used to describe the instanta-
neous position of the reduced body of mass μ on the
ellipse, namely θ, i.e. the true anomaly and η, i.e. the mean
anomaly. Figure 2 shows the two anomalies and the relation
between them.
The orbital parameters are related to the energy and the

angular momentum via

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
−
GM
2ϵ

r
; e2 ¼ 1þ 2l2ϵ; nb ¼

ð−2ϵÞ3=2
GM

;

ð37Þ

which corresponds to the Keplerian 3rd law n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3

p
.

B. Conformal interaction

We now consider the general case and reinstate the
conformal and the disformal interactions up the 1st PN
correction. In this case we find that the equations of motion
obtained from the Lagrangian with the conformal and
disformal corrections become

_r2 ¼
X5
i¼1

αi
ri
; _θr2 ¼

X4
i¼1

γi
ri
; ð38Þ

with the couplings listed below for completeness

α0 ¼ 2ϵ

�
1þ 3

2
ð3ν − 1Þ ϵ

c2

�

α1 ¼ 2GM

�
1þ ϵ

c2
ð7ν − 6Þ þ 2β2

�
1þ 2ϵ

c2

��

α2 ¼ −j2
�
1 − 2ð1 − 3νÞ ϵ

c2

�

þ ð5ν − 10þ 2β2ð12ν − 11ÞÞ
�
GM
c

�
2

α3 ¼ ð8 − ð3þ 8β2ÞνÞGMj2

c2

α4 ¼ ϵ
16β2GM2

Λ4
;

α5 ¼
16β2G2M3

Λ4
;

γ0 ¼ j

�
1þ ð3ν − 1Þ ϵ

c2

�
;

γ1 ¼ ðð2þ 4β2Þν − 4ÞGMj
c2

;

γ2 ¼ γ3 ¼ 0; γ4 ¼ −
8β2GjM2

Λ4
: ð39Þ

The GR case gives only contributions to the orders
between 0 and 3 for the α parameters and 0 to 1 for the
γ parameters. The higher order terms emerge from the
disformal interaction as they depend on the coupling Λ.
The solution for the system is similar to the 3PN solution in
the GR case with modified couplings. Figure 3 shows the
modified effective potential from GR, the conformal and

FIG. 2. Illustration of the mean (η) vs. the true (θ) anomaly.
Their relation depends on the eccentricity of the trajectory.

FIG. 3. The effective potential for the 1st post-Newtonian
correction. The blue curve shows the PN case, the orange curve
shows the conformal modification (with β2) and the green curve
shows the modification with the disformal interaction (with Λ).
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the disformal interactions. We will review how to describe
the orbits below.
For the limit Λ → ∞ there are only modifications from

the conformal coupling. Based on identities from [51] (see
Appendix B) the solution for this case reads

nðt − t0Þ ¼ η − et sin η;
2π

Φ
ðθ − θ0Þ ¼ ν̃eθ ; ð40Þ

where the relation between the mean and true anomalies
now involves the angular eccentricity eθ while the
orbital radius evolves according to r=aR ¼ 1 − eR cos η.
All in all, this requires the definition of four parameters
ðaR; eR; et; eθÞ. The parameters are given by

n¼ ð−2ϵÞ3=2
GM

�
1− 2β2 −

ϵ

4c2
ðβ2ð6νþ 62Þþ ν− 15Þ

�
;

aR ¼−
GM
4ϵ

�
2þ 4β2−

ϵ

c2
ð2β2ðνþ 1Þþ ν− 7Þ

�
;

e2R − 1¼ 2ð1− 4β2Þλþ ϵ

c2
ð2ð14β2þ ν− 6Þ

þ λð−20β2νþ 92β2þ 5ν− 15ÞÞ;
e2t − 1¼ 2ð1− 4β2Þλþ ϵ

c2
ð4β2ð−5νλþ 23λþ 7Þ

þ 5ðν− 3Þλþ 2ðν− 6ÞÞ;

e2θ − 1¼ 4ϵ

c2
ðβ2ðνþ 7Þ− 3Þ

þ λ2
�
4β2

�
ϵ

c2
ðνþ 23Þ− 2

�
þ ϵ

c2
ðν− 15Þþ 2

�
;

ð41Þ

where λ ¼ ϵj2=G2M2 is a dimensionless parameter. Finally
for the precession we have

Δθ ¼ Φ
2π

− 1 ¼ 6πGM
ac2ð1 − e2Þ

�
1 −

2

3
β2
�
: ð42Þ

It is useful to use the relation

eR
et

¼ 1þ GM
aRc2

�
4 −

3

2
νþ β2ð8 − 7νÞ

�
; ð43Þ

that connects the time eccentricity and the radial eccen-
tricity. As expected, for the limit β → 0 the solutions
from [51] are recovered.

C. Conformal and disformal interactions

To address the effect of the disformal coupling, we
follow the approach of [52,53]. First we attempt to solve the
radial equation (38). We can write the radial equation using
the Binet variable s ¼ 1=r

_s
s4

¼ ðβ0 þ β1sþ β2s2 þ β3s3Þðs − s−Þðs − sþÞ: ð44Þ

The full β terms can be found in Appendix C. This equation
has two nonzero roots s�. The eccentricity eR and semi
major axis aR are defined using the periastron and the
perihelion via aR¼ðs−þ sþÞ=ð2s−sþÞ and eR¼ðs−−sþÞ=
ðs−þsþÞ leading to

aR ¼ −
GM
4ϵ

�
2þ 4β2 −

ϵ

c2
ð2β2ðνþ 1Þ þ ν − 7Þ

�

−
32β2M3

Λ4j6
ðϵj2 þ G2M2Þ;

e2R − 1 ¼ 2ð1 − 4β2Þλþ ϵ

c2
ð2ð14β2 þ ν − 6Þ

þ λð−20β2νþ 92β2 þ 5ν − 15ÞÞ

−
64β2ϵ

GΛ4j6
ð5ϵ2j4 þ 10ϵG2j2M2 þ 4G4M4Þ: ð45Þ

Using the Taylor expansion of ð1þ xÞ1=2, it is possible to
solve for the time dependence by inverting Eq. (44)

t − t0 ¼
Z

s−

s
ds

A0 þ A1sþ A2s2 þ A3s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − s−Þðsþ − sÞp
s2

: ð46Þ

with the A coefficients given in Appendix C. One can
derive the modified 3rd Keplerian law via the complete
integral

R
s−
sþ
, that gives the period P. The frequency of the

motion then reads

nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM=a3R

p ¼ 1 − β2 þ GM
2aRc2

ðν − 9þ 2β2ð2νþ 1Þ

−
96GβM2

Λ4j6
ðϵj2 þG2M2Þ: ð47Þ

The conformal coupling changes the rate in the Keplerian
3rd law via the relativistic correction factor GM=aRc2. The
angular equation (38) becomes dθ=ds ¼ d_θ=d_s and can be
expressed as

θ − θ0 ¼
Z

s−

s
ds

C0 þ C1sþ C2s2 þ C3s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − s−Þðsþ − sÞp : ð48Þ

Next, one can calculate the advance of the perihelion Φ
during a full orbit by taking the limits s− to sþ

Φ ¼ 2

Z
s−

sþ
ds

C0 þ C1sþ C2s2 þ C3s3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðs − s−Þðsþ − sÞp : ð49Þ

The precession gives the modified relation
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k ¼ 3GM
ac2ð1 − e2Þ

�
1 −

2

3
β2 þ 5β2M

6πΛ4a3ð1 − e2Þ3
�
; ð50Þ

where 2πk ¼ ðΦ=2π − 1Þ. This expression was already
derived in [65,67] using the Binet equation. The above
derivation uses the quasi Keplerian parametrization where
we have reduced the description of the motion to a single
integral (46) which generalizes the description of the
two-body motion in general relativity and appears to be
akin to a 3PN parametrization. This coincidence could
become important as tests of GR become more and more
precise, i.e. the scalar interactions could appear as system-
atic corrections to the expected result in GR at the
3PN order.
We will use the periastron advance of binary pulsars

defined as:

_ω ¼ k
n
¼ ðmT⊙Þ2=3n5=3b

1 − e2

�
3 − 2β2 þ 5ϵΛ

2πT⊙Λ2

�
; ð51Þ

where T⊙ ¼ GM⊙=c2 is the solar mass in time units and Pb
is the orbital period of the binary system. The effects of the
conformal and disformal interaction appear as two additive
corrections depending on β2 and ϵΛ respectively.

IV. RADIATION EMISSION

Dissipation in two-body problems is discussed from
a phenomenological point of view in [67,108,109]. The
best modern timing model introduces the orbital period
derivative

η − e sin η ¼ 2π

��
t − t0
Pb

�
−

_Pb

2

�
t − t0
Pb

�
2
�
; ð52aÞ

θ − θ0 ¼
_ω

nb
ν̃e: ð52bÞ

The first equation deforms the relation between the mean
anomaly and time by introducing a dependence on the
energy loss, and the second modifies the relation between
the true and mean anomaly. Reference [67] shows that
such terms emerge from modified gravity due to the energy
loss for binary objects and calculates in detail the scalar
radiation emission. This section derives the corresponding
PKP for the dissipating conformal and disformal dark
energy by inferring the radiation reaction force in a manner
akin to the standard GR treatment.

A. Dissipation

The scalar field radiates energy away from the binary
system as shown in [67]. This can be captured using an
effective expansion of the interaction Lagrangian between
the long wavelength field ϕ̄, i.e. the radiated field, once the
short wavelength degrees of freedom corresponding to the

scalar reaction to the motion of the two point masses has
been integrated out. This reads explicitly

SðϕÞint ¼ 1

mPl

Z
dt

�
Iϕϕ̄þ Iiϕ∂iϕ̄þ 1

2
Iijϕ∂i∂jϕ̄

�
ð53Þ

where the multipole moments, characteristic of the binary
system, are given by

Iϕ ≡
Z

d3x

�
J þ 1

6
∂
2
t Jx2

�
;

Iiϕ ≡
Z

d3xJxi; Iijϕ ≡
Z

d3xJ

�
xixj −

1

3
x2δij

�
: ð54Þ

From this expression, the power radiated into the scalar
field reads

Pϕ ¼ 2G

�
h_I2ϕi þ

1

3
ḧIiϕ ̈Iiϕi þ

1

30
h I…ij

ϕ I
…ij
ϕ i
�

ð55Þ

where the average is taken over many gravitational wave
cycles. This is the scalar counterpart of the GR power
radiated

Ph ¼
G
5
h I…ij

h I
…ij
h i ð56Þ

where Iijh ≡ R
d3xT00ðxixj − 1

3
x2δijÞ is the gravitational

quadrupole of the source. Working at leading order in
the velocity expansion, the scalar current J is simply
given by

Jv0 ¼ −βðmAδ
3ðx⃗ − x⃗AÞ þmBδ

3ðx⃗ − x⃗BÞÞ; ð57Þ

i.e. this is nothing but the direct coupling between the point
sources and the scalar field. The relativistic corrections to
the current J come by integrating out the short distance
degrees of freedom and give for the conformal part

Jv2 ¼ β

�
mA

v2A
2
δ3ðx⃗ − x⃗AÞ þ ðA ↔ BÞ

�

þ β
GmAmB

jx⃗A − x⃗Bj
ðδ3ðx⃗ − x⃗AÞ þ ðA ↔ BÞÞ; ð58Þ

and for the disformal part

Jdisf ¼ 4β
GmAmB

Λ2

d2

dt2
δ3ðx⃗ − x⃗AÞ þ ðA ↔ BÞ

jx⃗A − x⃗Bj
: ð59Þ

The main contribution of the disformal current Jdisf comes
from the monopole at quadratic order in the velocities
while higher order multipoles are suppressed by velocity
powers. The dipole and quadrupole emission terms are only
dependent on Jv0 at this order
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Iijϕ ¼ −β
�
mA

�
xixj −

1

3
x2δij

�
þ ðA ↔ BÞ

�
Iiϕ ¼ −βðmAxiA þ ðA ↔ BÞÞ: ð60Þ

As the conformal coupling β is universal, the dipole
contribution to the radiated power vanishes, because its
second derivative is zero by the center-of-mass theorem at
lowest order in the velocity. The lowest order contribution
to the monopole coming from Jv0 vanishes as Iϕ;v0 ¼
−βðmA þmBÞ is conserved. The next contribution to
the monopole starts at the quadratic order in the velocities
and reads

Iϕ;v2þdisf ¼
β

6
ðmAv2A þmBv2BÞ þ

β

3
ð7þ 2β2Þ Gm1m2

jx⃗A − x⃗Bj

þ 8β
GmAmB

Λ2

d2

dt2
1

jx⃗A − x⃗Bj
: ð61Þ

At this order the conservation of energy implies that

mA
v2A
2
þmB

v2B
2
≃ Gð1þ2β2ÞmAmB

jx⃗A−x⃗Bj and therefore

Iϕ;v2þdisf ¼ 4βGmAmB ×

�
2þ β2

3jx⃗A − x⃗Bj
þ 2

Λ2

d2

dt2
1

jx⃗A − x⃗Bj
�
:

ð62Þ

This can be used to deduce the radiation reaction force
acting on the binary system.

B. Radiation reaction force

We are interested in deriving the secular effects of the
radiated power on the trajectories of the reduced two-body
system in the center-of-mass frame. As we are considering
the nonrelativistic regime and we shall focus on the effect
of energy loss at leading order, we can write

dϵ
dt

¼ −F⃗ d:v⃗ ð63Þ

where F⃗ d is the reduced force acting on the reduced
particle in the center-of-mass frame. We can identify
the dissipative force by integrating over a closed orbit of
period T

−
Z

T

0

dtμF d:v⃗ ¼ 2G
Z

T

0

dt

�
_I2ϕ þ

1

3
̈Iiϕ ̈Iiϕ

þ 1

30
I
…ij

ϕ I
…ij

ϕ þ 1

10
I
…ij
h I
…ij

h

�
: ð64Þ

For universal couplings, the dipole radiation vanishes. Let
us start with the monopole. It is convenient to rewrite

Iϕ ¼ βμ

�
4

3
v2 þ 8GM

Λ2

d2

dt2

�
1

r

��
ð65Þ

where the conservation of energy at leading order has been
used. After one integration by parts we can identify the drag
force corresponding to an effective viscosity

F⃗ð0Þ
drag ¼

8

3
Gβ ̈Iϕv⃗: ð66Þ

This term involves a friction term which depends on the
derivative of the acceleration. There is also a reaction term

F⃗ð0Þ
re ¼ 16G2βM

Λ2r2
Ið3Þϕ n̂ ð67Þ

which involves only the disformal term and the third time
derivative of the scalar monopole.
The quadrupole dissipation term is similar to the one in

GR, i.e. we find after two integrations by parts

F⃗ð2Þ
d ¼

�
1þ β2

3

�
F⃗GR ð68Þ

where the GR force contains only a radiation reaction
components with

Fi
GR ¼ 2G

5
rjQð5Þij

h ð69Þ

involving the fifth time derivative of the quadrupole. We
have used that in the center-of-mass frame, the quadrupole
moment reads

Qij ¼ μ

�
rirj −

δij

3
r2
�
: ð70Þ

In conclusion, we find that dissipation due to the scalar
field gives rise to an enhanced quadrudople radiation
reaction and introduces two new forces from monopole
radiation. One of them is characteristic of the disformal
interaction and involves a modification of Newton’s law
proportional to the third time derivative of the monopole.
All these interaction are of higher order and therefore
potentially break causality. We will only consider them as
perturbations to the GR trajectories.

C. Reduced equations of motion

Assuming that the main effect on the correction to the
trajectories comes from the radiation reaction force, we can
write in the center-of-mass frame

̈r⃗ ¼ −
GM
r2

n̂þ F⃗ d ð71Þ
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where F⃗ d ¼ F⃗ ð0Þ
d þ F⃗ ð2Þ

d . It is possible to separate the force

F⃗ d into a radial R and into a tangential parts S:

F⃗ d ¼ Rn̂þ Sθ̂: ð72Þ

We use the cylindrical coordinate system ðr; θ; zÞ. The
conformal and the disformal interaction effects are in the
plane ðr; θÞ. The loss for the angular momentum reads

d
dt

r2 _θ ¼ ðr⃗ ∧ F⃗ dÞ · ẑ

¼ 4Gβð2þ β2Þ
3ð1þ 2β2Þ

̈Iϕr2 _θ þ
�
1þ β2

3

�
2G
5

ϵzkirkrjQð5Þij
h

ð73Þ

The last term is the rescaled effect of the quadrupole
radiation on the angular momentum. The first term is
simply the effect of the monopole scalar radiation. Notice
that the monopole Iϕ is given by (65). Moreover both the
monopole and the quadrupole are proportional to the
reduced mass μ. As a result, the effect of radiation will
be proportional to ν.
Since the forces include high derivatives of the separa-

tion and the anomaly, one can use perturbation theory in
the Newtonian solution to reduce the higher derivatives.
More explicitly, we use the relations in Appendix D. For
instance, the relation θ̈ ¼ −2_r _θ =r emerges from the
conservation of the angular momentum l ¼ r2 _θ, at 1st
order. The relation (65) becomes:

Iϕ ¼ 2

3
βμ

�
_r2 þ r2 _θ2 þ 12GM

Λ2r4

�
GM þ 2r_r2 − _θ2r3

��
:

ð74Þ

Consequently, the modification for the force read

Rdrag ¼
32β2G2μM_r

9r4
α̃þ 64β2G2μM_r

3Λ2r7
β̃;

Sdrag ¼
32β2G2μM _θ

9r3
α̃þ 64β2G2μM _θ

3Λ2r6
β̃; ð75Þ

where

α̃ ¼ GM þ 2r_r2 − r3 _θ2;

β̃ ¼ 8G2M2 − r3 _θ2ð17GM þ 72r_r2Þ
þ 58GMr_r2 þ 24r2 _r4 þ 9r6 _θ4: ð76Þ

together with

Rre ¼ −
64β2G3μM2 _r

3Λ2r7

�
8GM þ 6r_r2 − 9r3 _θ2

�
;

Sre ¼ 0; ð77Þ

and the quadrupolar expressions

Rð2Þ
d ¼

�
1þ β2

3

�
16G2Mμ_r
15c5r4

�
4GM þ 3r_r2 þ 3r3 _θ2

�
;

Sð2Þ
d ¼ −

�
1þ β2

3

�
8G2Mμ_θ

5c5r3

�
3GM þ r_r2 þ r3 _θ2

�
: ð78Þ

With these relations we can write the system of equations
for the orbital parameters for the Keplerian trajectory where
we define p0 ¼ að1 − e2Þ. It is useful to introduce the small
parameters which govern the evolution of the secular
perturbations

ϵð2Þ ¼ 8

5
ν

�
GM
c2p0

�
5=2

: ð79Þ

This characterizes the quadrupolar part of the evolution
equation and scales as v5=c5. Similarly for the scalar part
we can distinguish the conformal part which depends on

ϵð0Þconf ¼ β2ϵð2Þ ð80Þ

and a disformal part

ϵð0Þdiff ¼
8

5
ν

�
GM
p0

�
7=2 β2

p2
0Λ2

ð81Þ

Notice that the ratio of the dimensionless parameters is the
parameter ϵΛ that also appears in the precession term

ϵð0Þdiff

ϵð0Þ
¼ ϵΛ ¼ ðβn=ΛÞ2

ð1 − e3Þ3 ; ð82Þ

which is of order v7=c7. As a result the radial force reads

Rdrag ¼ ϵð2Þ
2eGMs
3p2

0

ðceþ 1Þ3ð10ceþ 3e2 þ 7Þ;

Rre ¼ −β2ϵð2Þ
2eGMs
9p2

0

ðceþ 1Þ3ð15c2e2 − 8e2 − 7Þ;

Rð2Þ
d ¼ ϵð0Þdiff

5eGMs
3p2

0

ðceþ 1Þ5

× ð5e2ðc2ð40 − 12e2Þ þ 3eð7c4eþ 16c3ÞÞ
− 16cðe2 − 6Þeþ 27e4 þ 40e2 þ 8Þ: ð83Þ

Similarly, the tangential force becomes
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Sdrag ¼ −ϵð2Þ
GM
p2
0

ðceþ 1Þ4ð5ceþ e2 þ 4Þ;

Sre ¼ −β2ϵð2Þ
GM
9p2

0

ðceþ 1Þ4ð5eð6c2eþ 7cÞ − 7e2 þ 12Þ;

Sð2Þ
d ¼ ϵð0Þdiff

5eGM
3p2

0

ðceþ 1Þ6

× ðcð8 − 58e2Þ þ 20c2eð5 − 3e2Þ
þ 3eð35eðc4eþ 2c3Þ þ 9e2 − 4ÞÞ: ð84Þ

The secular variations for the orbital parameters becomes

h _aisec ¼ −
ffiffiffiffiffiffiffiffi
GM
a

r
1

72ðe2 − 1Þ ð2ϵ2ð96ðβ
2 þ 3Þ

þ ð77β2 þ 111Þe4 þ ð452β2 þ 876Þe2Þ
− 45e2ð27e6 þ 472e4 þ 592e2 þ 64Þϵð0ÞdiffÞ

h _pisec ¼ −ð1 − e2Þ3=2
ffiffiffiffiffiffiffiffi
GM
p0

s �
ϵð2Þ þ 1

3
ϵð0Þconf

��
1þ 7

8
e2
�

h_eisec
e

¼ −
ð1 − e2Þ3=2

144

ffiffiffiffiffiffiffiffi
GM
p3
0

s

× ð45ϵð0Þdiffð27e6 þ 472e4 þ 592e2 þ 64Þ
− 2ϵð2Þð464β2 þ ð161β2 þ 363Þe2 þ 912ÞÞ: ð85Þ

Using astronomical units, the time drift of the eccentricity
becomes

_e
e
¼ −

304

15
T5=3
⊙

mpmc

m1=3

�
Pb

2π

�
−8=3 1þ 121

304
e2

ð1 − e2Þ5=2

×

�
1þ β2

161e2 þ 464

363e2 þ 912

−
15ϵΛð27e6 þ 472e4 þ 592e2 þ 64Þ

2ð121e2 þ 304Þ
�
: ð86Þ

In the case of β → 0 and ϵΛ → 0, these terms reduce to the
known terms in [110]. Figure 4 illustrates the evolution of p
and e vs. time t using the true anomaly θ parametrization.
The impact of the disformal coupling is such that it changes
the evolution of e and p on average, i.e. in a secular way.
We note that the time variation in the eccentricity due to

the scalar interactions is very different from the Kozai-
Lidov effect discussed in [111] and in [112] where a third,
distant, body distorts the eccentricity of the binaries
potentially causing oscillations. In the Kozai-Lidov case,
radiative effects are not taken into account, unlike in our
work. Given the very different behavior between the Kozai-
Lidov effect and the time variation on the eccentricity
induced by radiative loss, the two phenomena should be

distinguishable in future experiments which would be
sensitive enough to observe such time variations.

D. Emitted power and time variation of the period

The total emitted power splits into the power lost into
gravitons and the one lost into the scalar field. The emitted
power reads on average

P ¼ hF⃗ · v⃗i ¼ hR_rþ S _θri: ð87Þ

For the graviton case the emitted power for elliptic orbits is
known from the Peter-Mathews formula [113]:

Ph ¼ −
195πT5=3

⊙

5n5=3
mpmc

m1=3 f1ðeÞ; ð88Þ

where m is the total mass of the system and:

f1ðeÞ ¼
1þ 73

24
e2 þ 37

96
e4

ð1 − e2Þ7=2 : ð89Þ

The scalar quadrupole (54) is proportional to the gravita-
tional quadrupole, i.e.

Pquad
ϕ ¼ β2

3
Ph: ð90Þ

FIG. 4. An illustration of the GR (blue) and disformal effects
(yellow) for ϵ2 ¼ 0.1, e ¼ 0.9, and β2 ¼ 0.01, ϵð0Þdiff ¼ 0.06. The
upper plot shows a and the lower one e.
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The scalar dipole is zero as the coupling β is universal. We
are left to calculate the monopole power starting from
Eq. (62). As a consequence of the loss of power, the
variation of the orbital period reads:

_P ¼ −
195πT5=3

⊙

5n5=3
mpmc

m1=3

×

��
1þ β2

3

�
f1ðeÞ þ

10

9
β2f2ðeÞ − ϵΛ

20

3
f3ðeÞ;

�
;

ð91Þ

with

f2ðeÞ ¼
e2ð1þ 1

4
e2Þ

ð1 − e2Þ7=2 ;

f3ðeÞ ¼
e2ð1þ 37

4
e2 þ 59

8
e4 þ 27

64
e6Þ

ð1 − e2Þ13=2 : ð92Þ

The expression for _P was obtained originally in [67] and is
confirmed here from the averaged loss due to the radiation
reaction force.
In GR, the PKP depend only on the two unknown masses

of the pulsarmp and its companionmc. When a light scalar
is present, the PK parameters contain the conformal and the
disformal interactions strengths. The full time of arrival
(TOA) data allows one to constrain these parameters effici-
ently. We use different events, i.e. PSR B1913þ 16 [90],
PSR J1906þ 0746 [114], PSR J1141-6545 [115], PSR
B2127þ 11C [116], PSR B1534þ 12 [117], PSR J0737-
3039A/B [118]. We have chosen these events as they have
the most precise measurements of the PKP and the highest
orbital frequencies, i.e. they provide the most stringent
constraint on the disformal coupling scale.

V. TIME DELAYS

In this section, we will describe the time delay
between the signals emitted for instance by binary
pulsars and the reception by detectors on Earth. For
this, let us recall that the best available approximation
for an inertial reference frame is that of the Solar
System barycenter. The required transformation between
the observer’s time τ, and the emission time t from a
distant object such as a pulsar is

t− τ¼−
D
f2

þΔR⊙þΔE⊙ −ΔS⊙ −ΔR −ΔE −ΔS; ð93Þ

where D=f2 accounts for the dispersive delay in seconds
of the observed pulse relative to infinite frequency; the
parameter D is derived from the pulsar’s dispersion
measurements. There are three time delays we take into
account in this formula. First there is the Roemer delay,
ΔR⊙, which takes corresponds to the travel time across

the Solar System based on the relative positions of the
pulsar and the telescope. Then there is the Einstein
delay, ΔE⊙, which accounts for the time dilation and the
gravitational redshifts due to the Sun and other masses
in the Solar System. Finally, the Shapiro delay ΔS⊙
expresses the excess delay to the pulsar signal as it
travels through the gravitational well of the Sun. The
terms ΔR, ΔE, ΔS account for similar delays within the
pulsar binary system. The delay terms are:

ΔR ¼ x sinωðcosη− erÞ þ xð1− e2θÞ1=2 cosω sinη;

ΔE ¼ γE sinη;

exp

�
−
ΔS

2r

�
¼ 1− e cosη− s½sinωðcosη− eÞ

þ ð1− e2Þ1=2 cosω sinη�; ð94Þ

where γE represents the combined time dilation and
gravitational redshift due to the pulsar’s orbit, and r and
s are, respectively, the range and shape of the
Shapiro delay.
In order to derive these PKP, one must track the

dynamics of photons compared to that of a light particle.
The trajectories of photons follow the null trajectories of
the Jordan metric gJμνdxμdxν ≡ 0, where the Jordan metric
is given by

gJ00 ¼ −
�
1 −

2Gmð1þ 2β2Þ
r

�

gJij ¼
�
1þ 2Gmð1 − 2β2Þ

r

�
δij þ

β2G
π

m2

Λ4r4
ninj: ð95Þ

which involves the parallel velocity only. The study of the
time delay of radio waves compared to its counterpart in
GR is conveniently performed by introducing the metric
potential due to the presence of a pointlike object

ΦðrÞ ¼ ΦNðrÞ þ β
ϕð0ÞðrÞ
mPl

¼ −
Geffm
r

; ð96Þ

where the effective Newton constant is here Geff ¼
ð1þ 2β2ÞG. This is the potential which appears in gJ00.
Since this potential is modified only by the conformal
coupling, the Einstein and the Shapiro delays are modified
by replacing G → Geff . Therefore the corresponding PKP
(γ, s, r) become

γE ¼ emc

ffiffiffiffiffiffiffi
T2
⊙

nm
3

r
ð1þ 2β2Þ2=3

�
1þmc

m

�
;

s ¼ xp
mc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

1þ 2β2
m2

T⊙

3

s
;

r ¼ ð1þ 2β2ÞT⊙mc: ð97Þ

STRINGENT PULSAR TIMING BOUNDS ON LIGHT SCALAR … PHYS. REV. D 107, 064049 (2023)

064049-13



These parameters will constrain the conformal coupling
especially as β appears both in the numerator and the
denominator of these expressions, making the combined
constraint stronger.

VI. BINARY PULSARS CONSTRAINTS

A. Dataset

There are two particularly relevant sets of observations
to our study. First we will use the Hulse-Taylor Pulsar,
PSR B1913þ 16, as updated by a relativistic analysis
of 9257 measurements of times of arrival acquired over
the last 35 years [90]. The updated analysis finds that the
ratio of the observed orbital period decrease caused by
gravitational wave damping to the general relativistic
prediction is 0.9983� 0.0016 with very high precision.
Then there is PSR J0737-3039A/B, which is the only
known double pulsar with associated very high precision
measurements [118–121]. The system has been studied
continuously using a number of radio telescopes, with
improved data acquisition systems and better sensitivity,
resulting in much improved timing precision over time. The
latest measurement of PSR J0737-3039A/B are published
in [118] and include higher orders in the post-Newtonian
expansion to guarantee a high precision on the determi-
nation of the PKP’s. In our analysis, the contribution of the
conformal and the disformal couplings to the PKP will be
treated as perturbations compared to the GR prediction.
The PKP’s now contain four unknown quantities

mp;mc; β;Λ which should be extracted from the observ-
ables Pb; e; xp; r; s; _Pb. We use an affine-invariant Markov
Chain Monte Carlo sampler [122] for the minimization of
our likelihoods via the implementation of the open-source
package Polychord [123]. The likelihood reads

−2 lnLðmp;mc; β;ΛÞ ¼
XNPSR

i¼1

�
ξðmp;mc; β;ΛÞ − ξob

δξob

�
2

ð98Þ

where ξ is the corresponding PKP from ξ ∈ ½ _ω; _P; γ; r; s; q�
with the error δξ:q is the ratio of themasses q ¼ mp=mc. The
prior we consider for the PKP’s are Gaussian priors as
reported in the original papers. For the masses we put a
uniform prior of ½0; 3�M⊙. For the conformal interaction we
set a uniform prior of β ∈ ½0; 1� and for the disformal
coupling we set a uniform prior on Λ−1 ∈ ½0; nb�, where
nb is the corresponding period of the system. Since the
conformal interaction could be present without the disformal
interaction, we test two different cases: only the conformal
interaction and the conformal with the disformal interaction.

B. Results

Figure 5 shows the posterior distribution for the con-
formal coupling for a model with the conformal interaction

only. The upper limit on β2 are presented in the upper part
of Fig. 7 in red. The double pulsar PSR J0737-3039 gives
the strongest upper bound on β2 (<2.26 × 10−5) which is
similar to the Cassini bound. Since this constraint is very

FIG. 5. Conformal coupling constraint from different events in
comparison to the Cassini constraint (in gray). The subplot shows
the double pulsar constraint (green) and the combined constraint
(red) which is comparable to the Cassini upper bound.

FIG. 6. Conformal and disformal coupling constraints from
different events in comparison to the Cassini constraint (in gray).
The subplot shows the double pulsar constraint (green) and the
combined constraint (red) which is comparable to the Cassini
upper bound.
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strong the combined constraint with the other pulsar events
is also very similar.
Figure 6 shows the posterior distribution for the con-

formal and the disformal couplings for a model where
both interactions are present. The upper limit on β2 are
presented in the upper part of Fig. 7 in red. The PSR
1913þ 16 timing gives a very strong bound on β2 ∼ 10−2.
The disformal lower limit is 0.21 MeV for that event. The
double pulsar PSR J0838-3039 A/B gives a bound of
<2.26 × 10−5 which is similar to the combined constraints
<2.33 × 10−5 due to the small errors for PSR J0838-3039
A/B. Correspondingly the lower bounds on Λ are of
the order 1.4 MeV which is close to the GW 170817
constraint [124].
For the completeness of our discussion, Fig. 8 introduces

the mass-mass diagram for PSR B1913þ 16 and PSR
J0737-3039 that give the best constraint on the light scalar
interactions. It is possible to see that all of the parameters
are intersecting at the same point for both cases, and give a
unique mass for the pulsar and its companion. PSR
B1913þ 16 includes larger errors for the r curves and
for the s curves, but the double pulsar PSR J0737-3039
gives much smaller errors for the whole case. Since these
observations are in good agreement with GR, the con-
straints on the light scalar interactions are the strongest
constraints obtained from pulsar timing measurements. Our
novel result is the tight constraint on the conformal and
disformal interactions which are comparable to the Cassini
constraint and to the GW-170817 constraint obtained from
the Shapiro delay in the solar system and the speed of
gravitational waves.

FIG. 7. Upper: upper bound on β2 for a model with a conformal
interaction (red) and for a model with a conformal and a disformal
interaction (green). Cassini bound for β2 is presented for a
comparison with a dashed line. Lower: lower bound on Λ for a
model with conformal and disformal interactions (green).

FIG. 8. Mass-mass diagram for the pulsar events that gives the best constraints for the conformal and the disformal interactions: PSR
B1913þ 16 and PSR J0737-3039. The contour describes the post-Keplerian parameters and the width of each curve indicates the
measurement uncertainty of the corresponding parameter.
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VII. CONCLUSIONS AND FUTURE PROSPECTS

In this paper, we have described the effects of a massless
scalar field coupled to matter on the motion of a two-body
system.We have used the mean anomaly parametrization of
the two-body motion in the presence of the conformal and
disformal interactions to derive exact analytical solutions
for the trajectories of the two objects at the leading order in
the parameters characterizing both interactions, i.e. the
conformal coupling strength β and the coupling scale Λ of
the disformal interaction. We also derive the analytical
corrections to the Keplerian 3rd law and the precession of
orbits. The formalism used to study the two-body motion in
the presence of scalar interactions is similar to the one used
at 3PN in GR.
The solutions to the binary motion given here in the

presence of scalar interactions can be used to create search
templates for the detection of gravitational waves or for the
improvement of the accuracy of the timing formula used for
radio observations of relativistic binary pulsars. The steady
improvement of sensitivity in observational astrophysics
will most likely make these corrections more and more
relevant. These correction terms to the two-body motion
could be used in the analyses of future experimental data
and could be seen as systematic deviations from GR. As
such, they should be taken into account in future high
precision tests of general relativity or in the comparison of
general relativity to alternative theories.
Figure 9 compares how different gravitational con-

straints impose different bounds on β and Λ. The
Cassini bound on β2 gives ≲10−5 [70]. [65] gives a
bound of Λ> 10−4 MeV for Mercury. [55] gives a bound
of the suppression scale of the disformal interaction
Λ > 0.08 MeV. [124] finds Λ > 10 MeV from the equiv-
alence of the speed of gravity and the speed of light from
the Neutron Star Merger GW-170817 [125]. This is super-
seded by the constraints coming from horizontal branch
stars, which give Λ > 100 MeV [126]. Other limits on Λ
are discussed in [36]. The limit we obtain from the time
drift of the revolution period of binary pulsars are of the
order ≲10−5 for β2 and Λ ∼ 1 MeV. The constraint
from pulsar timing events is stronger than some of these
constraints and comparable to Cassini bound for instance.
This should provide the possibility that future measurements
will yield much stronger constraints from additional and
more accurate measurements.
Finally let us mention that the bounds on the disformal

coupling scale Λ obtained in the gravitational context such
as pulsar observations are weaker and superseded by
particle physics bounds, see [127], where Λ≳ 650 GeV
can be obtained. Now of course, nothing guarantees that the
models used to analyze pulsar data and gravitational
phenomena are still valid at collider energy scales. In fact,
it is quite likely that the low energy models used for
gravitational phenomena need to be modified at higher
energies and that there is no direct relationship between the

gravitational and the particle physics bounds. In the
absence of understanding of the UV completion of the
low energy models leading to the screening of scalar effects
in gravitational experiments and observations, we will
refrain from stating strong conclusions from particle
physics bound.
Let us comment on [128] which discusses future con-

straints coming from pulsar-black hole binary systems.
Black holes go beyond our treatment as they have a horizon
where relativistic effects cannot be neglected close to their
horizon. On the other hand, when viewed from far enough
away, where the black hole metric reduces to a nearly
Minkowski metric, a Newtonian treatment can be consid-
ered. It is then possible to see black holes as point particles
which interact with the scalar field despite no hair theo-
rems. This happens in the time dependent setting where the
black holes acquire a scalar charge, see [129] and [37,83]
for instance, i.e. in the models that we consider the usual
no-hair theorems apply and no scalar charge is generated
unless one of the assumptions of the theorems such as the
absence of time dependence are violated. Extending our
results to the black hole case would imply considering
cosmologically induced scalar charge for instance. In this
case, the results presented in this paper could help analyz-
ing black hole phenomena as long as the distance between
stars and black holes is large and the point particle
approximation remains valid. In this case, a scalar coupling
can be assigned to black holes whose origin would be

FIG. 9. Qualitative comparison between different constraints on
the conformal and the disformal couplings from different data-
sets. The strongest bounds are from Cassini together with the GW
170817 bound. However the analysis of PSR J0737-3039 A/B
gives a comparable bound on the couplings only from one
pulsar event.
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cosmological and whose magnitude can be left as a
phenomenological parameter. Besides the higher precision
and smaller errors for such events, some of the PKP’s have
stronger dependence on the black hole mass m• since
mp ≪ m•. Not only _P but all the PK parameters depend
strongly on the black hole mass. Together with _P, one could
expect to constrain both masses with a larger precision.
However the constraint on the disformal coupling will not
necessarily be stronger, since the dimensionless coupling
ϵΛ depends on the orbital frequency. Indeed the total mass
will be larger but the semimajor axis is also crucial to obtain
larger frequencies and could compensate the previous effect
on the mass. Finally, the physics of conformal and
disformal interactions will certainly benefit from improved
measurements of the spin of binaries. Already known
measurements from local experiments such as Gravity
probe B [98] and future tests of the Lense-Thirring effects
will certainly lead to interesting bounds. This is left for
future work.
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APPENDIX A: SCALARIZATION IN A SPHERE

The solution of the Klein-Gordon equation in the non-
relativistic case with pressureless matter and a flat metric
for a sphere of radius R and matter density ρm is difficult to
obtain analytically. We will use a method which has been
successfully used for screened models in the case of cavity
profiles [102,130]. The Klein-Gordon equation reads [71]

d2ϕ
dr2

þ 2

r
dϕ
dr

¼ −∂ϕVeff ðA1Þ

where

VðϕÞ ¼ 1

2
m2ϕ2 þ ðe−aϕ2=2m2

Pl − 1Þρm: ðA2Þ

We will find an approximate solution which captures the
physics of scalarization. Above the critical density

ρc ¼
m2m2

Pl

a
ðA3Þ

the effective potential has a minimum at

ϕðρmÞ
mPl

¼
ffiffiffi
2

a

r
ln1=2

�
ρm
ρc

�
ðA4Þ

where the effective mass is

m2ðρmÞ ¼ 2m2 ln

�
ρm
ρc

�
: ðA5Þ

This is a weak dependence on the density. Point-particles in
a medium of density ρm couple to the scalar with a strength
βðϕÞ ¼ mPl∂ϕ lnAðϕÞ ¼ −a ϕ

mPl
which coincides with

βðρmÞ ¼ −
ffiffiffiffiffiffi
2a

p
ln1=2

�
ρm
ρc

�
ðA6Þ

and increases with the density.
We will look for solutions when a sphere is embedded in

vacuum. We will expand the solution inside the sphere by
considering that the scalar field is a massive scalar of mass
m0 ¼ mðϕ0Þ and the field can be expanded around a
fiducial value ϕ0 which is determined by a bootstrapping
method, i.e.

r ≤ R; ϕ ¼ ϕ0 þ δϕ ðA7Þ

where δϕ satisfies

δϕ00 þ 2

r
δϕ0 ¼ m2

0δϕþ V 0
effðϕ0Þ: ðA8Þ

Notice that ϕ0 is not assumed to be at the minimum of the
effective potential hence V 0

effðϕ0Þ acts as a source term for
δϕ. Outside the sphere we have

ϕ00 þ 2

r
ϕ0 ¼ m2ϕ ðA9Þ

where 0 ¼ d=dr. Explicitly we find that

m2
0 ≡m2ðϕ0Þ ¼ m2 þ aρm

m2
Pl

�
aϕ2

0

m2
Pl

− 1

�
e−aϕ

2=2m2
Pl ðA10Þ

and

V 0
0 ≡ V 0

effðϕ0Þ ¼ ϕ0

�
m2 −

aρm
m2

Pl

e−aϕ
2=2m2

Pl

�
: ðA11Þ

The solution inside the sphere reads

δϕ ¼ δϕ0 þ A
sinhm0r
m0r

ðA12Þ

where

STRINGENT PULSAR TIMING BOUNDS ON LIGHT SCALAR … PHYS. REV. D 107, 064049 (2023)

064049-17



δϕ0 ¼ −
V 0
0

m2
0

ðA13Þ

and sinhm0r should be replaced by sin jm0jr when m2
0 < 0

corresponding to ρm ≥ ρc and small ϕ0. Self-consistency
requires that ϕ0 should be determined by the bootstrap
equation

Aþ δϕ0 ¼ 0 ðA14Þ

guaranteeing that the field deep inside the object is ϕ0.
After matching at r ¼ R and imposing that δϕ0 ¼ 0 at the

origin we have

A ¼ −
ϕ0 þ δϕ0

mR
1þmR

sinhm0R
m0R

þ coshm0R
ðA15Þ

leading to the bootstrap equation

�
mR

1þmR
sinhm0R
m0R

þ coshm0R − 1

�
δϕ0 ¼ ϕ0 ðA16Þ

Given a solution to this equation, the solution inside the
sphere is explicitly

r≤R;

ϕðrÞ ¼ ðδϕ0þϕ0Þ
�
1−

1
mR

1þmR
sinhm0R
m0R

þ coshm0R

sinhm0r
m0r

�

ðA17Þ

while outside the sphere we have

ϕðrÞ ¼ −
βeffmPl

4πr
ME

r
e−mðr−RÞ: ðA18Þ

The Einstein frame mass is given by

ME ¼ αM ðA19Þ

where

α ¼ 4π

V

Z
R

0

dxx2AðϕðxÞÞ ðA20Þ

with V ¼ 4π
3
R3. The scalar charge is given by

βeff
mPl

¼ −
4πRα

ð1þmRÞME

1
mR

1þmR
sinhm0R
m0R

þ coshm0R

×

�
coshm0R −

sinhm0R
m0R

�
ðϕ0 þ δϕ0Þ ðA21Þ

The bootstrap equation has two branches of solutions. Let
us assume that ln ρm

ρc
¼ Oð1Þ such that m and mðρmÞ are of

the same order of magnitude. Then taking first the mR ≫ 1
limit, the first branch corresponds to the equation

m2 −
aρm
m2

Pl

�
1 − C

aϕ2
0

m2
Pl

�
e−aϕ

2
0
=2m2

Pl ¼ 0 ðA22Þ

where

C ¼
�

mR
1þmR

sinhm0R
m0R

þ coshm0Rþ 1

�
−1

ðA23Þ

which implies that ϕ0 ≃ ϕðρmÞ when mR ≫ 1 as C ∝
e−mðϕðρmÞÞR ≪ 1. As mR decreases, the C coefficient
increases and a transition occurs when Cϕ2ðρmÞ > 1
implying that (A22) does not have a solution anymore.
This happens for mR ≤ fðρm=ρcÞ where fðρm=ρcÞ corre-
sponds to the solution of Cϕ2ðρmÞ ¼ 1. For low values
of mR below the threshold fðρm=ρcÞ, the solution of
the bootstrap equation is on the second branch which is
simply

ϕ0 ¼ 0 ðA24Þ

i.e. for small enough bodies the field does not respond to
the presence of the sphere and remains uniformly vanishing
in all space. This type of phase transition from a non-
vanishing to a vanishing value for the field below a certain
radius is common for symmetron models where it can be
shown that when mR≲ 1 the value of the symmetron field
inside a cavity exactly vanishes [131–133]. Notice that the
scalarization behavior is dual to the symmetron one, i.e. the
phase transition happens for symmetron inside the vacuum
of a cavity while for scalarization it occurs inside the matter
of a sphere. This illustrates the fact that screening and
scalarized models behave in opposite ways when coupled
to matter.
For such small objects, the coupling to the scalar

vanishes exactly while for large bodies mR ≫ 1 the field
is nearly constant inside the body implying that α ¼
AðϕðρmÞÞ ¼ ρc

ρm
and therefore

βeff ≃
4πmPlAðϕðρmÞÞϕðρmÞ

mME

¼
ffiffiffi
2

a

r
ρc
ρm

ln1=2
�
ρm
ρc

�
1

mR
1

2ΦNðRÞ
ðA25Þ

where ΦNðRÞ ¼ GNME=R. This is suppressed by mR.
This also depends on the body via its size R and its density
(or its mass). and breaks the universality of couplings
which could lead to a substantial dipolar emission in the
case of binary systems.
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In the intermediate region where mR is neither large nor
small, the field profile will interpolate smoothly between
the vanishing value in vacuum outside the body and a
nonvanishing value ϕ0 inside the body. As a result, the
mass ME will depend on the scalar field profile via
the AðϕÞ factor. This is also the case of the coupling to
the scalar field.

APPENDIX B: SOLUTION FOR
POST-NEWTONIAN CASE

In the absence of the disformal coupling, the _r and
the _θ have the same form as the first PN expansion of
GR with extended polynomials. Reference [51] gives the
corresponding relations between the polynomials and the
observables

n ¼ ð−α0Þ3=2
α1

; e2t ¼ 1 −
α0
α21

�
α2 −

α1α3

αð0Þ2

�
;

aR ¼ −
α1
α0

þ α3

2αð0Þ2

; eR ¼ et

�
1þ α0α3

2α1α
ð0Þ
2

�

eθ ¼ et

�
1þ α0α3

α1α
ð0Þ
2

−
α0γ1
α1γ0

�

2π

Φ
¼ n

γ0
ðaR − γ1=2γ0Þ2ð1 − e2ϕÞ1=2 ðB1Þ

where αð0Þ2 ¼ −j2.

APPENDIX C: FULL β TERMS

The parametrization of the correction terms to the orbits
used in the main text are given below. They enter in the rela-
tion between the orbital radius, the true anomaly and time.

β0 ¼
32β2ϵ2j4Λ−2M2ϵþ 192β2ϵG2j2Λ−2M4ϵþ j8ð2ϵð1− 3νÞϵþ 2Þþ 128β2G4Λ−2M6ϵ−G2j6M2ϵð2β2ð2ν− 5Þþ ν− 6Þ

2j9

ðC1aÞ

β1 ¼
GMϵð64β2ϵj2M2=Λ2þ 64β2G2M4=Λ2þ j6ð8− ð8β2þ 3ÞνÞÞ

2j7
; β2 ¼

8β2ϵðϵj2M2þ 2G2M4Þ
j5Λ2

; β3 ¼
8β2GM3ϵ

j3Λ2

ðC1bÞ

A0 ¼
32β2ϵ2j4Λ−2M2ϵþ 192β2ϵG2j2Λ−2M4ϵþ j8ð2ϵð1− 3νÞϵþ 2Þþ 128β2G4Λ−2M6ϵ−G2j6M2ϵð2β2ð2ν− 5Þþ ν− 6Þ

2j9

ðC2aÞ

A1 ¼
GMϵð64β2ϵj2Λ−2M2 þ 64β2G2Λ−2M4 þ j6ð8 − ð8β2 þ 3ÞνÞÞ

2j7
; A2 ¼

8β2

j5Λ2
ðϵj2M2 þ 2G2M4Þ; A3 ¼

8β2GM3ϵ

j3Λ2

ðC2bÞ

APPENDIX D: SIMPLIFICATION TERMS

The relevant simplification equations have been used in the main text. They arise as the radiation reaction for GR appears
as a fifth time derivative and the monopole term from the scalar interaction is a third time derivative

̈r ¼ r_θ2 −
GM
r2

; r
… ¼ 2GM_r

r3
− 6_r_θ2;

r⃜ ¼ r_θ2ð7GM þ 30r_r2Þ − 2GMðGM þ 3r_r2Þ − 5r2 _θ4

r5
;

θ̈ ¼ −
2_r _θ
r

; θ
…
¼ 2_θðGM þ 3r_r2Þ

r3
− 2_θ3: ðD1Þ

With these identities the higher derivatives reduce to simpler forms.
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APPENDIX E: ORBITAL PARAMETERS

The relevant orbital parameters obey the following Gauss
equations which are used in the main text.

da
dt

¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
ffiffiffiffiffiffiffiffi
a3

GM

r
½esRþ ð1þ ecÞS�; ðE1aÞ

dp
dt

¼ 2

ffiffiffiffiffiffiffiffi
p3

GM

r
S

1þ ec
; ðE1bÞ

de
dt

¼
ffiffiffiffiffiffiffiffi
p

GM

r �
eðc2 þ 1Þ þ 2c

ecþ 1
S þ sR

�
; ðE1cÞ

dω
dt

¼ 1

e

ffiffiffiffiffiffiffiffi
p

GM

r �
s
2þ ec
ecþ 1

S − cR
�
: ðE1dÞ

When expressed in terms of the true anomaly, they read

dp
dθ

≃
2p2

GM
S

ð1þ ecÞ3 ; ðE2aÞ

de
dθ

≃
p2

GM

�
s

ð1þ ecÞ2Rþ eþ 2cþ ec2

ð1þ ecÞ3 S
�
; ðE2bÞ

dω
dθ

≃
p2

eGM

�
−

c
ð1þ ecÞ2Rþ s

2þ ec
ð1þ ecÞ3 S

�
ðE2cÞ

dt
dθ

≃

ffiffiffiffiffiffiffiffi
p3

GM

r
1

ð1þ ecÞ2
�
1 −

p2

eGM

�
c

ð1þ ecÞ2 R

− s
2þ ec

ð1þ ecÞ3 S
��

ðE2dÞ
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