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Meroni58, David Meyhöfer50, Mauro Mezzetto61, Jonathan Miller7, Lino Miramonti58, Paolo

Montini65, Michele Montuschi57, Axel Müller55, Massimiliano Nastasi59, Dmitry V.

Naumov68, Elena Naumova68, Diana Navas-Nicolas44, Igor Nemchenok68, Minh Thuan

Nguyen Thi39, Alexey Nikolaev70, Feipeng Ning11, Zhe Ning11, Hiroshi Nunokawa4, Lothar

Oberauer53, Juan Pedro Ochoa-Ricoux75,6,5, Alexander Olshevskiy68, Domizia Orestano65,

Fausto Ortica63, Rainer Othegraven52, Alessandro Paoloni64, Sergio Parmeggiano58, Yatian

Pei11, Nicomede Pelliccia63, Anguo Peng24, Haiping Peng23, Yu Peng11, Zhaoyuan Peng11,

Frédéric Perrot45, Pierre-Alexandre Petitjean2, Fabrizio Petrucci65, Oliver Pilarczyk52, Luis

Felipe Piñeres Rico46, Artyom Popov70, Pascal Poussot46, Ezio Previtali59, Fazhi Qi11, Ming

Qi28, Sen Qian11, Xiaohui Qian11, Zhen Qian21, Hao Qiao13, Zhonghua Qin11, Shoukang

Qiu24, Gioacchino Ranucci58, Neill Raper21, Alessandra Re58, Henning Rebber50, Abdel

Rebii45, Mariia Redchuk62,61, Mariia Redchuk62,61, Bin Ren19, Jie Ren10, Barbara Ricci57,

Mariam Rifai51,49, Mathieu Roche45, Narongkiat Rodphai72, Aldo Romani63, Bedřich
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Padova, Padova, Italy
63INFN Sezione di Perugia and Dipartimento di Chimica, Biologia e Biotecnologie
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Abstract

The physics potential of detecting 8B solar neutrinos is exploited at the Jiangmen Under-

ground Neutrino Observatory (JUNO), in a model independent manner by using three distinct

channels of the charged-current (CC), neutral-current (NC) and elastic scattering (ES) inter-

actions. Due to the largest-ever mass of 13C nuclei in the liquid-scintillator detectors and the

potential low background level, 8B solar neutrinos would be observable in the CC and NC interac-

tions on 13C for the first time. By virtue of optimized event selections and muon veto strategies,

backgrounds from the accidental coincidence, muon-induced isotopes, and external backgrounds

can be greatly suppressed. Excellent signal-to-background ratios can be achieved in the CC, NC

and ES channels to guarantee the 8B solar neutrino observation. From the sensitivity studies

performed in this work, we show that one can reach the precision levels of 5%, 8% and 20% for

the 8B neutrino flux, sin2 θ12, and ∆m2
21, respectively, using ten years of JUNO data. It would be

unique and helpful to probe the details of both solar physics and neutrino physics. In addition,

when combined with SNO, the world-best precision of 3% is expected for the 8B neutrino flux

measurement.

6



1 Introduction

Electron neutrino fluxes are produced from thermal nuclear fusion reactions in the solar core, either

through the proton-proton (pp) chain or the Carbon-Nitrogen-Oxygen (CNO) cycle. According to

their production reactions, the solar neutrino species can be categorized as pp, 7Be, pep, 8B, hep

neutrinos of the pp chain, and 13N, 15O, and 17F neutrinos of the CNO cycle. Before reaching the

detector, solar neutrinos undergo the flavor conversion inside the Sun and the Earth during their

propagation. It has been a long history for solar neutrino physics since the first observation at the

Homestake experiment [1]. Many measurements, such as Kamiokande [2], GALLEX/GNO [3, 4],

SAGE [5], and Super-Kamiokande (SK) [6,7], had observed the solar neutrino deficit problem: that

is the amount of observed neutrinos originating from the Sun was much less than that expected

from the Standard Solar Model (SSM). Subsequently, the Sudbury Neutrino Observatory (SNO)

provided the first model-independent evidence of the solar neutrino flavor conversion using three

distinct neutrino interaction channels in heavy water [8–14]. These reactions include the νe sensitive

charged-current (CC) interaction, all flavor sensitive neutral-current (NC) interaction on Deuterium,

and the elastic scattering (ES) interaction on electrons from all neutrino flavors with different cross

sections.

Solar neutrino observations rely on both the flux prediction from the SSM and neutrino oscillation

parameters that determine the flavor conversion [15–17]. Thus although SK [18,19] and Borexino [20,

21] experiments have made precision measurements on the 8B neutrinos via the ES interaction, the

evaluation of the total amount of neutrinos produced inside the Sun relies on the input of solar

neutrino oscillations [17]. The present most precise 8B neutrino flux is determined by SNO with the

precision of 3.8% [10–14], and it is the only existing model independent flux measurement. Therefore,

a second independent measurement of the total 8B neutrino flux with the NC channel [22,23] would

be important to answer relevant questions in the field of solar physics. For example, there is the

solar abundance problem, in which the SSM based on the solar composition with a higher value of

metallicity is inconsistent with the helioseismological measurements [24].

In contrast, the neutrino oscillation parameters sin2 θ12 and ∆m2
21 have reached the precision

levels around 5% and 15% respectively, from the current global solar neutrino data [25]. The mixing

angle sin2 θ12 is extracted from the comparison of the observed fluxes of pp, 7Be, and 8B solar

neutrinos to their respective total fluxes from the SSM. And the mass squared difference ∆m2
21 is

measured from both the vacuum-matter transition of the 8B neutrino oscillations and the size of the

day-night asymmetry. A direct comparison of oscillation parameters from the solar neutrino and

reactor antineutrino oscillations is an unique probe of new physics beyond the Standard Model of

particle physics. It would be excellent to have a new measurement of solar neutrino oscillations with

high precision in this respect. This has triggered a variety of interesting discussions on the prospects

of future large neutrino detectors [26–29].

The Jianmen Underground Neutrino Observatory (JUNO) is a liquid scintillator (LS) detector

of 20 kton, which is located in South China and will start data taking by 2023. As a multiple-

purpose neutrino experiment, JUNO is unique for the solar neutrino detection because of its large

target mass, excellent energy resolution, and expected low background levels. With the analysis

threshold cut of around 2 MeV for the recoiled electron energies in the ES channel, JUNO can make

a high-statistics measurement of the flux and spectral shape of 8B solar neutrinos and will be able to

extract the neutrino oscillation parameters sin2 θ12 and ∆m2
21 [27]. In addition to the high statistics

measurement in the ES channel, the presence of a large mass of the 13C nuclei (∼0.2 kt) makes it

feasible to detect 8B solar neutrinos via CC and NC interactions on 13C. By combining all the CC,

7



Table 1: Typical CC, NC, and ES detection channels of the 8B solar neutrinos together with the

final states, the neutrino energy threshold, the typical signatures in the detector, and the expected

event numbers with 10 years of data taking. Note that νx with (x = e, µ, τ) denotes all three active

flavor neutrinos. The spin and parity of the daughter nuclei at the ground (gnd) or excited states,

denoted as the corresponding excited energies, are also provided.

No. Channels Threshold [MeV] Signal Event numbers (10 years)

1 νe +12 C→ e− +12 N (1+; gnd) [32] 16.827 e−+12N decay (β+, Q=17.338 MeV) 0.43

1
CC

νe +13 C→ e− +13 N ( 1
2

−
; gnd) [33] 2.2 e−+13N decay (β+, Q=2.22 MeV) 3929

2 νe +13 C→ e− +13 N ( 3
2

−
; 3.5 MeV) [33] 5.7 e−+p 2464

4 νx +12 C→ νx +12 C (1+; 15.11 MeV) [32] 15.1 γ 4.8

3

NC

νx +13 C→ νx + n+12 C (2+; 4.44 MeV) [34] 6.864 γ + n capture 65

4 νx +13 C→ νx +13 C ( 1
2

+
; 3.089 MeV) [33] 3.089 γ 14

5 νx +13 C→ νx +13 C ( 3
2

−
; 3.685 MeV) [33] 3.685 γ 3032

6 νx +13 C→ νx +13 C ( 5
2

+
; 3.854 MeV) [33] 3.854 γ 2.8

7 ES νx + e→ νx + e 0 e− 3.0× 105

NC and ES channels, we are able to perform a model independent measurement of the 8B solar

neutrino flux and oscillation parameters sin2 θ12 and ∆m2
21, which will add a unique contribution to

the global solar neutrino program.

The paper is organized as follows. We illustrate the typical signatures of the CC and NC inter-

actions of 8B solar neutrinos, and evaluate the corresponding backgrounds in the JUNO detector in

Sec. 2. In Sec. 3, the physics potential of detecting the 8B solar neutrinos with different combinations

of the CC, NC, and ES channels are presented, and the sensitivity to the 8B solar neutrino flux,

sin2 θ12 and ∆m2
21 is reported. The concluding remarks of this study are presented in Sec. 4.

2 Signal and Background at JUNO

The JUNO experiment is building the world largest LS detector with the total target mass of 20 kt,

in which the mass fraction of Carbon is 88%. Given that the natural abundance of 13C is 1.1%, the

mass of 13C can reach the level of ∼0.2 kt, which is similar to the total mass of Deuterium of the

SNO detector. Therefore, the CC and NC solar neutrino interaction rates on the 13C nuclei will be

sizable at JUNO.

In Table 1, we present the typical CC, NC and ES detection channels for 8B solar neutrinos in

the LS medium. For each interaction channel, the reaction threshold is provided, together with the

typical experimental signatures, and the expected event numbers for 10 years of data taking before

event selection cuts. The spin and parity of the daughter nuclei at the ground (gnd) or excited

state, denoted by the corresponding excited energies, are also provided. The unoscillated 8B solar

neutrino νe flux (5.25×106 /cm2/s) is taken from the final result of SNO for this estimation [14], and

the spectra are taken from Refs. [30, 31]. The cross sections for these exclusive channels are taken

from the calculation in Refs. [32–34], in which the uncertainties at the level of a few percent are

considered to be achievable. Note that the standard Mikheev-Smirnov-Wolfenstein (MSW) effect of

solar neutrino oscillations [15,16] and the neutrino oscillation parameters from Ref. [17] are used in

the signal calculations of the CC, NC, and ES channels.

There are no interactions on the 12C nuclei for most solar neutrinos because of the high energy

threshold. Thus for the CC channel, we are left with the following exclusive interaction:

νe +13 C→ e− +13 N

(
1

2

−
; gnd

)
, (1)
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where the final 13N is in the ground state. It undergoes a delayed β+ decay (Q = 2.2 MeV) with a

lifetime of 863 s. The distinct signature for this channel is a coincidence of the prompt electron and

delayed positron with stringent time, distance, and energy requirements. The expected number of

events for 8B solar neutrinos in this CC channel is 3929 for 10 years of data taking. Note that the CC

interaction channel with an excited 13N (3/2−; 3.502 MeV) in the final state has a comparable cross

section as the ground-state channel [33], but the deexcitation of 13N (3/2−; 3.502 MeV) is dominated

by a proton knockout. The corresponding signature after quenching is a single event and thus cannot

be distinguished from the recoiled electron of the ES channel on an event-by-event basis.

Among all the five listed NC channels, the only one with a coincidence signature is the interaction

of νx+13C→ νx+n+12C, with a prompt γ energy of 4.44 MeV from 12C de-excitation and the delayed

neutron capture. However, given that the background from the inverse beta decay interactions of

reactor antineutrinos are overwhelming, where the signal to background ratio is at the level of 10−4,

and thus the event rate of this channel is unobservable. In this work we focus on the NC channels

with the signature of single γ deexcitation, among which the NC interaction with the 13C de-excited

energy of 3.685 MeV:

νx +13 C→ νx +13 C

(
3

2

−
; 3.685 MeV

)
, (2)

is the dominant interaction channel and will be used to determine the 8B solar neutrino flux via the

NC interaction.

Finally, we also consider the ES interaction channel on the electron,

νx + e→ νx + e , (3)

where the signature is a single recoiled electron [27]. Using all the three channels of CC, NC, ES

interactions, we are able to make a model independent measurement of the 8B solar neutrino flux,

sin2 θ12 and ∆m2
21 with JUNO, which is useful to disentangle the solar dynamics and the neutrino

oscillation effects. This measurement is expected to be the only model independent study after the

SNO experiment [9–12].

To summarize, in this work we are going to employ the following three interaction channels for a

model independent approach of the JUNO 8B solar neutrino program: i) the CC detection channel is

sensitive to the νe component of solar neutrinos, ii) the NC channel is sensitive to all active neutrino

flavors (νe, νµ, ντ ) with identical cross sections, iii) the ES channel is also sensitive to all active

flavors, but with a preferred cross section for the νe flux [i.e., σ(νµ/τ ) ' 0.17σ(νe)].

2.1 νe +13 C Charged Current Channel

For the typical coincidence signature of the CC channel, νe+13 C→ e−+13 N (1/2−; gnd), the energy

of the prompt signal is the kinetic energy of the outgoing electron with the reaction threshold of 2.2

MeV. Therefore, there is a one-to-one correspondence between the electron kinetic energy and the

initial neutrino energy Te ' Eν − 2.2 MeV, because of the negligible recoil energy of the daughter
13N. Meanwhile, the delayed signal is the deposited energy of the positron from the 13N β+ decay

(Q = 2.2 MeV), with a decay lifetime of τ = 863 s. The time and spatial correlation between the

prompt and delayed signals provides the distinct feature of the coincidence signature.

In the following, we consider two significant backgrounds for this coincidence signature of the

CC channel in this work.

• The first background is the accidental coincidence of two single events. For the visible energy

between 2 and 5 MeV, natural radioactivity composes the most significant part of the prompt

9



Table 2: The efficiencies of optimized event selection cuts for the signal and backgrounds of the νe

CC channel [νe +13 C → e− +13 N (1/2−; gnd)] analysis. The expected event numbers of the signal

and backgrounds for 10 years of data taking after each cut are also listed. The fiducial volume used

in this work corresponds to the effective mass of 16.2 kt. For the energy cuts, Ep and Ed represent

the visible energy of prompt and delayed signals. The same muon and three-fold-coincidence veto

strategies as in Ref. [27] are used for the reduction of muon-induced isotopes.

Cuts CC signal efficiency CC signal

Background for CC channel

Solar ES Muon-induced isotopes

Accidental Accidental Correlated

– – – 3929 – – –

Time cut ∆T < 900 s 65% 2554 1010 1013 1012

Energy cut
5 MeV < Ep <14 MeV 79%

1836 109 1010 109

1 MeV < Ed < 2 MeV 91%

Fiducial volume Cut R < 16.5 m [27] 81% 1487 107 107 108

Vertex cut ∆d < 0.47 m 87% 1293 328 105 106

Muon veto Muon and TFC veto [27] 50% 647 164 53 58

Combined – 17% 647 275
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Figure 1: Expected prompt visible energy spectra of the CC signal and backgrounds after the opti-

mized cuts. The accidental background with the recoiled electron from solar neutrino ES interaction

as the prompt signal is illustrated as the green line. The background from muon-induced isotopes

is illustrated as the red line, which is the summation of the accidental and correlated backgrounds

originated from the initial muons.
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component of the coincidence candidate, while the prompt signals above 5 MeV come from the

muon-induced unstable isotopes and the recoiled electrons of solar neutrino ES interactions.

Due to the expected natural radioactivity level in the LS (10−17 g/g 238U and 232Th in the

secular equilibrium, 10−18 g/g 40K and 10−24 g/g 210Pb), a requirement on the selection of the

prompt energy is to minimize the contribution from these radioactivity events. The delayed

component of the accidental background is mainly from the cosmogenic 11C decay (Q = 1.98

MeV) in the energy range of [1, 2] MeV, while the internal LS radioactivity contributes less

than 2% compared to that from 11C. If the internal radioactivity is 1-2 orders of magnitude

higher than expected, the contribution to the delayed component from the radioactivity would

be at the same level as the cosmogenic 11C decay. Note that all the single events in the energy

range between 1 and 2 MeV can be accurately measured in-situ with the future data, and

the accidental background can be deduced with the off-time coincidence method. Note that

we have neglected the external radioactivity which can be effectively removed by the proper

fiducial volume cut.

• The second background is produced by the correlated prompt and delayed decays of unstable

isotopes from the same parent muon. These correlated decays are not considered in the above

accidental background. Therefore, the cosmic muon and the corresponding isotope simulations

have been performed, and the muon veto strategies of the three-fold-coincidence are the same

as those in Ref. [27]. It shows that the prompt signal is mainly from the beta decays of 12B,
8Li, 6He, and 10C (below 4 MeV), and as expected the delayed signal is from 11C. The muon

detection efficiency of the outer water veto can reach as high as 99.5% [27]. Since the remaining

untagged muons are usually located at the edge of the central detector, these muon-induced

correlated background can be removed using the fiducial volume cut and is neglected in this

work. Note that we have assumed a perfect detector uniformity for these isotopes and used

the whole detector region to estimate the background inside the fiducial volume.

We have simulated the signal and backgrounds using the official JUNO simulation software [35,

36]. According to the signal characteristics of the CC channel, the accidental background can be

calculated with different selection cuts. The final event selection criteria is obtained by optimizing

the figure of merit, S/
√
S +B, where S and B stand for the rates of the signal and background,

respectively. The optimized event selection cuts of the fiducial volume, the prompt and delayed

energies, the time and spatial correlation cuts and muon vetos are provided step by step in Tab. 2,

where the efficiencies of the signal and backgrounds are also calculated. In order to avoid possible

large contamination from the internal radioactivity and muon-induced 10C, we select the threshold

of the prompt visible energy to 5 MeV for the CC channel, i.e., 5 MeV < Ep < 14 MeV. Meanwhile,

the fiducial volume is chosen to be R < 16.5 m to reject the external radioactivity and isotopes,

with R being the distance to the detector center.

We illustrate in Fig. 1 the expected prompt visible energy spectra of the selected signal and

residual backgrounds in the CC channel after the optimized cuts. The expected number of selected

signals is 647 for 10 years of data taking, which is shown as the purple line. The fiducial volume

used in this work corresponds to the effective mass of 16.2 kt. The accidental background with solar

neutrino ES interactions as the prompt signal is illustrated as the green line and contributes 164

background events, which will be fully correlated with the solar neutrino ES signal in the following

global analysis. In contrast, the muon-induced isotopes contribute 111 background events (depicted

as the red line of Fig. 1), which are from both the accidental coincidence (53 events) and correlated

background (58 events). Therefore, we can achieve an excellent S/
√
S +B ' 21.
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Figure 2: Expected visible energy spectra of all single event sources for 10 years of data taking with

the same energy-dependent fiducial volume cuts as in Ref. [27] are illustrated. The blue and green

curves are singles from the νx+13C NC and νx+e ES channels, respectively. The purple curve includes

the νe+
13C→ e−+13N (3

2

−
) channel and the residual singles of the νe+

13C→ e−+13N (1
2

−
) channel

after the coincidence cut. The red curve represents the single events from natural radioactivity and

muon-induced unstable isotopes. The brown curve includes the ν̄e + e ES and ν̄x +13 C NC channels

from reactor antineutrinos. The black curve is the summation of all the components. The upper

right insert plot is illustrated for the energy range between 3 and 5 MeV in the linear scale. Note

that the discontinuities at 3 MeV and 5 MeV are due to the changes in the fiducial volume size.

Finally, the expected event number of hep solar neutrinos in the CC channel is about 15 for ten

years of data taking, but only 3 events are beyond the spectral tail of 8B solar neutrinos. Thus it

would be difficult to detect the hep solar neutrinos with the CC interaction on 13C, and the signal

from the hep solar neutrinos will be neglected in this work.

2.2 νx +13 C Neutral Current Channel

The typical signature for the NC event, νx +13 C→ νx +13 C (3/2−; 3.685 MeV) is a mono-energetic

γ with the energy of 3.685 MeV, convoluted with the detector energy resolution of 3%/
√
E. The

expected visible energy spectra of all single event sources for 10 years of data taking with the same

energy-dependent fiducial volume cuts as in Ref. [27] are shown in Fig. 2. The blue and green curves

are singles from the νx+13 C NC and νx+e ES channels, respectively. The purple curve includes the

νe +13 C→ e− +13 N (3
2

−
) channel and the residual singles of the νe +13 C→ e− +13 N (1

2

−
) channel

after the coincidence cut. The red curve represents the single events from natural radioactivity and

muon-induced unstable isotopes [27]. The brown curve includes the ν̄e + e ES and ν̄x +13 C NC

channels from reactor antineutrinos. The NC events rate from reactor antineutrinos is less than

0.2% of that from solar neutrinos. The black curve is the summation of all the components. Note

that the discontinuities at 3 MeV and 5 MeV are caused by the energy-dependent fiducial volume

cuts which are, from low to high energies, R < 13 m for [2, 3] MeV, R < 15 m for [3, 5] MeV, and

R < 16.5 m for the energies large than 5 MeV. The upper right insert plot is illustrated for the

energy range between 3 to 5 MeV in the linear scale, where a clear peak from the solar neutrino

NC channel can be seen above the continuous spectra from solar neutrino ES interactions and the

other backgrounds, demonstrating the promising prospect for the observation of the NC channel at

12



JUNO. After all the cuts the number of signal events in the NC channel is 738 for 10 years of data

taking.

2.3 νx + e Elastic Scattering Channel

In this work, we follow exactly the same strategy as in Ref. [27] for the analysis of the νx + e ES

channel, where energy spectra for the recoiled electrons as well as all the backgrounds have been

shown in Fig. 2. One should note that the upturn feature of the energy dependence of the solar

neutrino survival probability is clearly visible in the electron energy spectrum.

2.4 Day-Night Asymmetry

The MSW effect can cause solar neutrino event rate variations as a function of the solar zenith angle

when the neutrinos propagate through the Earth [37–45], and result in the day-night asymmetry of

the solar neutrino observation, in which the signal rate in the night is higher than that in the day

due to νe regeneration inside the Earth.

In this work, in addition to the visible energy spectra of the CC, NC and ES channels, we also

consider the day-night asymmetry to constrain the neutrino oscillation parameters. The location of

JUNO (i.e., 112◦31’05” E and 22◦07’05” N [46]) is used in the day-night asymmetry calculations, and

the two dimensional visible energy and zenith angle spectra are employed. For illustration, we show

in Fig. 3 the ratios of solar neutrino signal event rates with and without considering the terrestrial

matter effects as the function of the zenith angle θz. The red and blue solid lines are for the ES and

CC channels, respectively. In comparison, the dashed lines are shown for the respective averages

over the whole zenith angle range. The ratios of the day-night average (RA), the daytime (RD),

and the nighttime (RN) are also illustrated with the first three bins. The error bars are quoted as

the statistical uncertainties of the signal and backgrounds. The blue shaded regions with different

colors from the left to right are used to denote the zenith angle ranges passing through the crust,

mantle and core of the Earth respectively. The day-night asymmetry, defined as (RD −RN)/RA, is

predicted to be −3.1% and −1.6% for the CC and ES channels respectively. The energy ranges of

the CC and ES channels are [5, 14] MeV and [2, 16] MeV respectively. Given that all the neutrino

flavors can be detected through the NC channel, no day-night asymmetry exists in the NC detection.

Note that the magnitude of the day-night asymmetry strongly depends on the value of ∆m2
21. If

∆m2
21 is decreased from the KamLAND measurement 7.5× 10−5 eV2 [17] to 6.1× 10−5 eV2 of the

global solar neutrino data [25], the absolute values of the day-night asymmetry are also increased to

−4.2% and −2.2% for the CC and ES channels, respectively.

3 Sensitivity Study

In this section, we study the physical potential for the model independent measurement of 8B solar

neutrinos using CC, NC, and ES channels. Based on the typical event signatures, the full solar

neutrino data can be separated into the correlated and single event data sets. As discussed in the

previous section, all the three interaction channels from 8B solar neutrinos would contribute to the

single event data set, while the correlated data set includes events from both the CC channel and

the accidental coincidence of the ES channel.

In this analysis, we consider the following systematic uncertainties. First, the uncertainty of

detection efficiency is estimated to be 2% [27], which is fully correlated for the the signal and

background components of each data set, but uncorrelated between the coincidence and single event

13
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Figure 3: Ratios of the solar neutrino signal event rates with and without considering terrestrial

matter effects as the function of the zenith angle for the ES (red sold line) and CC (blue solid line)

channels. The dashed lines are shown for the average over the whole zenith angle range. The ratios

for the daytime, nighttime and the day-night average are also shown for comparison. The blue

shaded regions with different colors from the left to right are used to denote the zenith angle ranges

passing through the crust, mantle and core of the Earth. Note that the signal rate in the night is

higher than that in the day due to the νe regeneration through the Earth.

data samples. Second, the current uncertainty of the 13C cross sections from the model calculation

is at the level of several percents [32–34], but the precision could be reduced to 1% or better with

large-scale modern shell-model calculations [47]. Therefore the uncertainties for the 13C CC and

NC interaction are taken as 1% for the current study. A 0.5% cross section uncertainty is used for

the ES channel [48]. Third, the shape uncertainty of 8B solar neutrinos is taken from Refs. [30, 31],

and the uncertainties for the radioactive and muon-induced backgrounds are the same as those in

Ref. [27], namely, 1% for 238U, 232Th and 12B decays, 3% for 8Li and 6He decays, and 10% for
10C and 11Be decays. A 2% uncertainty is used for the single event from the reactor antineutrino

ES interaction. In this work we treat the 8B solar neutrino flux as a free parameter since we are

performing the model independent measurement. Only in the scenario of combining with the SNO

flux measurement, an uncertainty of 3.8% is used as an informative prior.

The standard Poisson-type χ2 method using the Asimov data set [17] is employed to estimate

the sensitivity to measure the 8B solar neutrino flux and the oscillation parameters sin2θ12 and

∆m2
21, where different pull parameters are included in the χ2 function to account for the systematic

uncertainties described in this section. More technical details on the construction of the χ2 function

are provided in the Appendix. In order to identify the contribution of each interaction channel, we

divide the whole data sets into the correlated events, the single events within [3.5, 4.1] MeV, and

the single events outside [3.5, 4.1] MeV, which correspond to the CC, NC, and ES measurements

respectively.

We illustrate in Figs 4-6 the two dimensional allowed ranges and the marginalized one dimen-

sional curves on the sensitivity of the 8B neutrino flux, sin2 θ12 and ∆m2
21, of which Fig. 4 is for

the comparison of the ES and ES+NC measurements, Fig. 5 for the comparison the ES+NC and

ES+NC+CC measurements, and Fig. 6 for the comparison of the JUNO and JUNO + SNO flux
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Figure 4: Comparison of the sensitivity on the 8B solar neutrino flux, sin2θ12 and ∆m2
21 between

the ES measurement (single events outside [3.5, 4.1] MeV) and the ES+NC measurement (all singles

events). The 1σ (68.3%), 2σ (95.5%), and 3σ (99.7%) allowed regions are illustrated with blue lines

and red shaded regions, respectively. The marginalized projections of these parameters are also

shown.

measurements. In addition, a summary of relative uncertainties on the 8B neutrino flux, sin2 θ12 and

∆m2
21 from the model independent approach is provided in Fig. 7. Several important observations

and comments are presented as follows.

• The NC measurement is accomplished based on the single events within [3.5, 4.1] MeV, where

the background events are from the singles of ES and CC interactions of 8B solar neutrinos,

together with the natural radioactivity and muon-induced unstable isotopes. The standard

MSW effect of solar neutrino oscillations is used in the calculation of ES and CC interactions

and the oscillation parameters sin2θ12 and ∆m2
21 are marginalized. The 8B solar neutrino flux

can be obtained with an accuracy of 10.6% with the NC measurement, which is comparable

to the level of 8.6% from the NC measurement of the SNO Phase-III data [13].

• The ES measurement is based on the single events outside the energy range of [3.5, 4.1] MeV, in

which the dominant background is from the natural radioactivity and muon-induced unstable

isotopes, which are summarized in Fig. 2 and more details can be found in Ref. [27]. In the

model independent approach of the ES measurement, the 8B neutrino flux and two oscillation

parameters sin2θ12 and ∆m2
21 are simultaneously constrained, where the relative uncertainties

are derived as +11%
−8% , +17%

−17%, and +45%
−25%, respectively. The uncertainties of sin2θ12 and ∆m2

21 are

larger than those obtained in Ref. [27] by including the 3.8% SNO flux measurement because

of the strong correlation between the flux and oscillation parameters in the model independent
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Figure 5: Same as Fig. 4, but for the comparison between the ES+NC measurement (all single

events) and the ES+NC+CC measurement (both the single events and correlated events).
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Figure 6: Same as Fig. 4, but for the comparison between the ES+NC+CC measurement of JUNO

and the combined JUNO+SNO flux measurement.

approach. When adding the JUNO NC measurement, the accuracy of the 8B neutrino flux can

be improved to the level of +6.0%
−5.5%, and the uncertainties of sin2θ12 and ∆m2

21 are also improved

to +10%
−10%, and +31%

−21% respectively.

• The CC measurement with the correlated events itself cannot simultaneously determine the 8B

neutrino flux and oscillation parameters because of the high visible energy threshold. However,

by combining the CC measurement with the single events of the NC+ES channels, it will help to

break the correlation and possible degeneracy among different parameters, where the accuracy

of the 8B neutrino flux can be further improved to 5%, while those of sin2 θ12 and ∆m2
21 are

+9%
−8%, and +25%

−17% respectively.

• The expected 5% precision of the 8B neutrino flux obtained with all three detection channels

is much better than that of 11.6% from the latest prediction of the SSM [24]. This will be

the only model independent measurement after SNO [14]. In addition, the uncertainties of

sin2 θ12 and ∆m2
21 from the 8B neutrino measurement at JUNO are at the levels of +9%

−8% and
+25%
−17% respectively, which is comparable to the levels of +5%

−5%, and +20%
−11% from the latest results of

combined SK and SNO solar neutrino data [49]. Considering that the reactor antineutrino mea-

surement of JUNO will obtain sub-percent levels of sin2 θ12 and ∆m2
21 in the near future [50],

measurements of these parameters from future solar neutrino data would be important to test

the CPT symmetry of fundamental physics and resolve the possible discrepancy between the

neutrino and antineutrino oscillation channels.

• Within the spirit of the model independent approach, one can also include the 3.8% 8B neutrino
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measurement of the SNO Phase-III data (SNO-NC) [13], and the combined SNO CC, NC and ES

data (SNO) [14]. The green bands in the middle and right panels are the uncertainty of oscillation

parameters from the combined SK and SNO solar neutrino data [49].

flux measurement of SNO as an informative prior, where even better precision levels of the

flux and oscillation parameters can be achieved. In this scenario, the expected accuracy of the
8B solar neutrino flux would reach the level of 3%, and sin2θ12 and ∆m2

21 can be constrained

with the precision of +7.5%
−6.5%, and +19%

−15% respectively. These measurements are comparable to

those from the current global solar neutrino data and would provide unique information to the

future solar neutrino program.

• In addition to the discussion above, it is also noteworthy that the signal event rates and cross

section uncertainties are the most crucial factors that affect the detection potential of the CC

and NC detection channels. If the cross section uncertainties are 10%, instead of 1% assumed

in this work, the uncertainty of the 8B neutrino flux will become +6%
−6%.

4 Concluding Remarks

In this work we have studied the physics potential of detecting 8B solar neutrinos at JUNO, in a

model independent manner by using the CC, NC and ES detection channels. Because of its largest-

ever mass of 13C and the expected low background level, excellent signal-to-background ratios can

be achieved. Thus 8B solar neutrinos will be observable in all three interaction channels.

We have performed detailed evaluations on the background budgets and signal efficiencies of the

CC, NC and ES channels at JUNO. With optimized selection strategies, we find that the expected 8B

neutrino rates of the CC and NC channels are O(100) interactions per year after the event selection.

It turns out that the signal event rates and cross section uncertainties are the most crucial factors

that affect the detection potential of these two channels. We have carried out a combined analysis

of both the coincidence and single events from all three detection channels, and shown that the 8B

18



solar neutrino flux, sin2 θ12, and ∆m2
21 can be measured to ±5%, +9%

−8%, and +25%
−17%, respectively. When

combined with the SNO flux measurement, the world-best precision of 3% can be achieved for the
8B neutrino flux.

In the history of solar neutrino experiments, the NC measurement is unique in decoupling the

neutrino flux and oscillation parameters, and enabling the model independent approach of the solar

neutrino program. SNO has been the only solar neutrino experiment in the past to achieve this goal,

and JUNO would be the second one. In this work, we have demonstrated the feasibility of 8B solar

neutrino measurements at JUNO, which, together with other large solar neutrino detectors [26,28,29],

will open a new era of solar neutrino observation and may uncover new directions on neutrino physics

and solar physics.
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Appendix

In this appendix, we present technical details of the sensitivity study used in this work. The Poisson-

type least squares function χ2 is defined as follows,

χ2 = χ2
stat(CC) + χ2

stat(NC) + χ2
stat(ES) + χ2

syst

= 2×
10∑
i=1

[
90∑

jC=1

(
NC

pre(θ
i
z, E

jC
vis)−N

C
obs(θ

i
z, E

jC
vis) +NC

obs(θ
i
z, E

jC
vis) · log

NC
obs(θ

i
z, E

jC
vis)

NC
pre(θ

i
z, E

jC
vis)

)

+

140∑
jS=1

(
NS

pre(θ
i
z, E

jS
vis)−N

S
obs(θ

i
z, E

jS
vis) +NS

obs(θ
i
z, E

jS
vis) · log

NS
obs(θ

i
z, E

jS
vis)

NS
pre(θ

i
z, E

jS
vis)

)]

+

(
εES
X

σES
X

)2

+

(
εNC
X

σNC
X

)2

+

(
εCC
X

σCC
X

)2

+
∑
kC

(
εkC

B

σkC
B

)2

+
∑
kS

(
εkS

B

σkS
B

)2

+

(
εC

eff

σC
eff

)2

+

(
εS

eff

σS
eff

)2

+ (εs)
2 , (4)
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where χ2
stat(CC), χ2

stat(NC), and χ2
stat(ES) are the statistical parts of the CC, NC and ES channels

in the χ2 function, respectively, which are shown in the second row and third row Eq. (4), with jC

from 1 to 90 for the CC measurement, jS from 16 to 21 for the NC measurement, and jS from 1 to

15 and from 22 to 140 for the ES measurement. NC
pre(θ

i
z, E

jC
vis) and NS

pre(θ
i
z, E

jS
vis) are the predicted

numbers of the signal and background events in the i-th zenith angle bin, and the jC-th or jS-th

visible energy bin of the correlated and single event samples, respectively, which can be calculated

as

NC
pre(θ

i
z, E

jC
vis) = (1 + εC

eff)SCC
pre (θiz, E

jC
vis) +

∑
kC

(1 + εkC
B )BkC

pre(θ
i
z, E

jC
vis) , (5)

NS
pre(θ

i
z, E

jS
vis) = (1 + εS

eff)[SNC
pre (θiz, E

jC
vis) + SES

pre(θ
i
z, E

jC
vis)] +

∑
kS

(1 + εkS
B )BkS

pre(θ
i
z, E

jS
vis) , (6)

where SCC
pre , SNC

pre , and SES
pre are the two dimensional spectra of the 8B neutrino signals in the CC, NC,

and ES channels with the fiducial volume and signal efficiencies taken into account, whose projection

in the axis of the visible energy can be found in Fig. 1 and Fig. 2 respectively. Meanwhile, BkC
pre

and BkS
pre are components of the respective backgrounds in the correlated and single event samples,

respectively, whose visible energy spectra are also illustrated in Fig. 1 and Fig. 2.

The calculations of the 8B neutrino signal spectra in the CC, NC, and ES channels are given by

SCC
pre (θiz, E

jC
vis) = Φ8B ×

[
(1 + εsδ

S
Eν )S8B(Eν)⊗ Pee(θ12,∆m

2
21, Eν , θ

i
z)

⊗(1 + εCC
X )σCC(Eν , Ee)⊗M(Ee, E

jC
vis)

]
, (7)

SNC
pre (θiz, E

jC
vis) = Φ8B ×

[
(1 + εsδ

S
Eν )S8B(Eν)

⊗(1 + εNC
X )σNC(Eν , Eγ)⊗M(Eγ , E

jS
vis)

]
, (8)

SES
pre(θ

i
z, E

jC
vis) = Φ8B ×

{
(1 + εsδ

S
Eν )S8B(Eν)⊗ Σα

[
Peα(θ12,∆m

2
21, Eν , θ

i
z)

⊗(1 + εES
X )σναES(Eν , Ee)

]
⊗M(Ee, E

jC
vis)

}
, (9)

which are the convolution of the 8B neutrino spectrum Φ8B, the neutrino oscillation probability Peα

with α = e or µ+τ , the interaction cross section (i.e., σCC, σNC, and σναES) and the detector response

matrix M. Peα with both the standard MSW favor conversion and the terrestrial matter effect as the

function of neutrino energy Eν and the zenith angle θz is calculated in the three neutrino oscillation

framework. The detector response matrix M includes the effects of both the energy resolution and

energy non-linearity, which we directly follow the description in Ref. [27]. Finally, the observed

spectra NC
obs(θ

i
z, E

jC
vis) and NS

obs(θ
i
z, E

jS
vis) can be obtained from the corresponding predicted spectra

by taking the true values of the 8B neutrino flux Φ8B and oscillation parameters sin2 θ12 and ∆m2
21,

as well as the vanishing values of nuisance parameters. Note that, as discussed in Sec. 2, the 8B

solar neutrino interactions may also contribute to some of the background components BkC
pre (e.g.,

the green line in Fig. 1, the purple line in Fig. 2), in this case, all possible correlation between the

respective signal and background components will be taken into account in the χ2 function.

The nuisance parameters εmX (m=CC, NC, ES), εkB, εneff (n=C, S) correspond to the systematical

uncertainties from the cross section, the backgrounds, and the detection efficiency that discussed in

the manuscript. δS
Eν

is the 1σ fractional variation of the 8B neutrino energy spectrum [30,31], and εs
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Table 3: Description the nuisance parameters and the associated uncertainties in the χ2 function.

Sys. Description for the pull term Uncertainty

εES
X , εNC

X , εCC
X Cross section for the CC, NC, ES channels 1%, 1%, 0.5%

εC
eff , εS

eff Detector efficiency 2% [27]

εkCB , εkSB Rate for the kC-th or kS-th background component 1%-10%, same as Ref. [27]

εs
8B neutrino energy spectrum Refs. [30,31]

denotes the magnitude of the 8B neutrino spectral uncertainty. Description the nuisance parameters

and the associated uncertainties in the χ2 function is summarized in Table 3. In the sensitivity

study of obtaining the results of Figs. 4-7, we first choose the data sets from one of the CC, NC

and ES measurements or their combinations, and turn on the relevant nuisance parameters of the

systematical uncertainties to formulate the respective χ2 function. When the allowed regions of each

analysis of are calculated, the displayed parameters (one or two of the fitting parameters Φ8B, θ12,

and ∆m2
21) will be fitted and all the other physical and nuisance will be marginalized. The critical

values of ∆χ2 for different confidence levels are taken from Ref. [17].
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