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Event generators simulate particle interactions using Monte Carlo techniques, providing the pri-
mary connection between experiment and theory in experimental high energy physics. These soft-
ware packages, which are the first step in the simulationworkflowof collider experiments, represent
approximately 5 to 20% of the annual WLCG usage for the ATLAS and CMS experiments. With
computing architectures becoming more heterogeneous, it is important to ensure that these key
software frameworks can be run on future systems, large and small. In this contribution, recent
progress on porting and speeding up the Madgraph5_aMC@NLO event generator on hybrid ar-
chitectures, i.e. CPU with GPU accelerators, is discussed. The main focus of this work has been
in the calculation of scattering amplitudes and “matrix elements”, which is the computational bot-
tleneck of an event generation application. For physics processes limited to QCD leading order,
the code generation toolkit has been expanded to produce matrix element calculations using C++
vector instructions on CPUs and using CUDA for NVidia GPUs, as well as using Alpaka, Kokkos
and SYCL for multiple CPU and GPU architectures. Performance is reported in terms of matrix
element calculations per time on NVidia, Intel, and AMD devices. The status and outlook for the
integration of this work into a production release usable by the LHC experiments, with the same
functionalities and very similar user interfaces as the current Fortran version, is also described.

Version 1.0 (20 October 2022)

41st International Conference on High Energy physics - ICHEP2022
6-13 July, 2022
Bologna, Italy

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

ar
X

iv
:2

21
0.

11
12

2v
1 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 2
0 

O
ct

 2
02

2

mailto:andrea.valassi@cern.ch
https://pos.sissa.it/


Developments in Performance and Portability for MadGraph5_aMC@NLO Andrea Valassi

1. Introduction

Physics event generators are an essential component of the software chain in HEP experiments.
For the ATLAS and CMS experiments at the LHC, they are the first step of simulation workloads
and represent 5 to 20% of the annual CPU resource budget. Their internal workflow, where Monte
Carlo (MC) techniques are used to draw random samples of events, for each of which a “matrix
element” (ME) is computed independently, makes these application an ideal fit for implementing
data parallelismwith lockstep processing onGPUs and on vectorCPUs. This is especially interesting
because the computational bottleneck of matrix element generators, which can easily take more than
95% for complex LHC physics processes, is the ME calculation. It is therefore possible to obtain
large overall speedups by efficiently exploiting these hardware architectures for the ME calculation.

In this contribution, we report on ourwork on the reengineering of theMadgraph5_aMC@NLO
(in the following: MG5aMC) event generator [1], to port the ME calculation from the current
Fortran version to faster implementations using C++ based programming models on CPUs and
GPUs. This paper, which describes the status of our “madgraph4gpu” project at the time of ICHEP
in July 2022, focuses only on the progress achieved since our vCHEP presentation in May 2021,
whose proceedings [2] include a more in-depth description of our work. Schematically, the new
results achieved during the last year can be grouped in three areas: first, further progress in the
ME calculation in vectorized C++ for CPUs and CUDA for NVidia GPUs, including automatic
code generation and new performance measurements for complex QCD LO processes relevant to
LHC physics; second, the parallel development of new implementations of the ME calculation
using performance portability frameworks (PFs) such as Alpaka, Kokkos and SYCL, and initial
measurements of their computing performance on CPUs and GPUs from different vendors; third,
progress in the integration of the CUDA/C++MEcalculation into the existingMadEvent framework,
which represents our strategy to achieve in a relatively short time a production release of the software
that can be used by the LHC experiments to generate large samples of events with identical physics
output, but at a fraction of the current computational cost. The structure of this paper is organized
accordingly: these three specific areas of work are described in the following Sections 2, 3 and 4,
each of which also includes some hints at the outlook and plans for our work in that respective area.

Figure 1 schematically represents the computational workflow of a ME event generator and its
implementation for MG5aMC in the two applications used in our work. Our ME calculations in
CUDA/C++ and PFs are developed and optimized using a “standalone” application, where random
numbers, phase space sampling and other functionalities outside the ME calculation are based on
simplified software components which are fast and can be executed fully on a GPU, but miss many
features required for production use. The “madevent” application, conversely, injects the new ME
computational engines into the existing Fortran MadEvent framework [3], replacing the previous
MEs in Fortran, but keeping the functionalities and user interface identical to those currently used
by the LHC experiments, except for some additional options needed for the parallel event execution.

2. Matrix element calculations in CUDA and vectorised C++

MG5aMC is a code generator, written in Python, which allows the generation of the code for a
chosen physics process inmany languages. Fortran is now the production version, while CUDA/C++
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Figure 1: Schematic representation of the internal computational workflow of a matrix element event
generator, and of its implementation for MG5aMC in the applications described in this paper.

is a new back-end that we developed based on an earlier C++ version. At the time of vCHEP2021,
our engineering process was made up of few, very long, development cycles and only allowed the
optimization of one physics process at a time. For this reason, in Ref. [2] we only presented results
for 𝑒+𝑒−→𝜇+𝜇− collisions. One major breakthrough achieved since then has been the move to
a new engineering process, where a Python plugin for CUDA/C++ code generation is now itself
part of the madgraph4gpu repository [4], complementing the upstream MG5aMC code-generating
framework [5]. While the engineering process remains intrinsically iterative, the development cycles
are much shorter and more frequent. Every merge request providing changes in the CUDA/C++
code of a physics process must also include their backport to the code-generation plugin and the
re-generation of the CUDA/C++ code for the full set of physics process maintained in the repository
(which presently includes SM LO 𝑒+𝑒−→𝜇+𝜇−, 𝑔𝑔→ 𝑡𝑡, 𝑔𝑔→ 𝑡𝑡𝑔, 𝑔𝑔→ 𝑡𝑡𝑔𝑔 and 𝑔𝑔→ 𝑡𝑡𝑔𝑔𝑔,
as well as one EFT process for comparison). The main physics process for new developments,
optimizations and tests is now 𝑔𝑔→ 𝑡𝑡𝑔𝑔 rather than 𝑒+𝑒−→𝜇+𝜇−: this is much better not only
because 𝑔𝑔→ 𝑡𝑡𝑔𝑔 is of great relevance to LHC physics, but also because it is a computational task
of much higher arithmetic intensity, with limited overhead from memory access and data copy.

The promising speedups in the ME calculation that we had previously reported for 𝑒+𝑒−→𝜇+𝜇−

are now confirmed also for 𝑔𝑔→ 𝑡𝑡𝑔𝑔. This is discussed in Sec. 4, using the results listed in Tables 1
and 2. For CUDA, speedups in the order of several hundreds may be obtained on an NVidia V100
GPU when compared to a single CPU core: the exact speedups depend on the specific process and
are somewhat lower for 𝑔𝑔→ 𝑡𝑡𝑔𝑔 than for 𝑒+𝑒−→𝜇+𝜇−, as the compute kernel for the former uses
all of the 255 available GPU registers per thread, while the latter has a lower “register pressure”.
For C++, it is confirmed that our vectorized implementation of the ME calculation using event-level
data parallelism makes a maximally efficient use of CPU vector registers. One new result since
vCHEP2021 is that we have now achieved speedups of x8 in double precision and x16 in single
precision on some high-end AVX512 CPUs, such as the Intel Gold 6148 CPUs at the Jülich HPC
center, using our “512z” implementation which uses the AVX512 instruction set on 512-bit zmm
vector registers. The reason why we do not see these speedups on other AVX512 CPUs such as
Intel Silver 4216 CPUs is most likely the absence of a second FMA unit on these CPU models [6].

Another important progress in the CUDA/C++ME engine has been its enhancement with many
features needed to provide the same level of functionality currently available in the Fortran version,
such as the MadEvent single-diagram enhancement algorithm [3] for phase space sampling and
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madevent standalone

𝑔𝑔→ 𝑡𝑡𝑔𝑔
MEs 𝑡TOT = 𝑡Mad + 𝑡MEs 𝑁events/𝑡TOT 𝑁events/𝑡MEs
precision [sec] [events/sec] [MEs/sec]

Fortran(scalar) double 38.3 = 2.5 + 35.8 2.14E3 (=1.0) 2.29E3 (=1.0) —
C++/none(scalar) double 39.1 = 2.5 + 36.6 2.10E3 (x1.0) 2.24E3 (x1.0) 2.31E3
C++/sse4(128-bit) double 21.1 = 2.5 + 18.6 3.89E3 (x1.8) 4.41E3 (x1.9) 4.57E3
C++/avx2(256-bit) double 10.8 = 2.5 + 8.3 7.60E3 (x3.6) 9.92E3 (x4.3) 1.04E4
C++/512y(256-bit) double 10.1 = 2.6 + 7.5 8.14E3 (x3.8) 1.09E4 (x4.8) 1.17E4
C++/512z(512-bit) double 7.1 = 2.5 + 4.5 1.16E4 (x5.4) 1.82E4 (x7.9) 1.92E4
C++/none(scalar) float 37.8 = 2.5 + 35.3 2.17E3 (x1.0) 2.32E3 (x1.0) 2.38E3
C++/sse4(128-bit) float 11.7 = 2.5 + 9.3 7.00E3 (x3.3) 8.85E3 (x3.9) 8.90E3
C++/avx2(256-bit) float 7.1 = 2.7 + 4.5 1.15E4 (x5.4) 1.84E4 (x8.1) 2.01E4
C++/512y(256-bit) float 6.4 = 2.6 + 3.8 1.28E4 (x6.1) 2.15E4 (x9.5) 2.31E4
C++/512z(512-bit) float 4.8 = 2.5 + 2.3 1.71E4 (x8.1) 3.65E4 (x16.1) 4.01E4

Table 1: Processing times and throughputs to generate 81952 𝑔𝑔→ 𝑡𝑡𝑔𝑔 weighted events, using the madevent
or standalone application. The ME calculation uses Fortran (double precision) or C++ (double/single
precision). Five different SIMD modes are used in C++. The fourth column gives throughputs for the full
workflow, the last two columns give throughputs for the ME calculation alone. Results obtained on a single
core of a Juwels Cluster login node with Intel Gold 6148 CPUs, using gcc11.2 builds.

madevent standalone
CUDA grid size 8192 524288

𝑔𝑔→ 𝑡𝑡𝑔𝑔
MEs 𝑡TOT = 𝑡Mad + 𝑡MEs 𝑁events/𝑡TOT 𝑁events/𝑡MEs
precision [sec] [events/sec] [MEs/sec]

Fortran double 58.3 = 5.2 + 53.1 1.55E3 (=1.0) 1.70E3 (=1.0) — —
CUDA double 6.1 = 5.7 + 0.36 1.49E4 (x9.6) 2.54E5 (x149) 2.51E5 4.20E5 (x247)
CUDA float 5.7 = 5.4 + 0.24 1.59E4 (x10.3) 3.82E5 (x224) 3.98E5 8.75E5 (x515)

Table 2: Processing times and throughputs to generate 90112 𝑔𝑔→ 𝑡𝑡𝑔𝑔 weighted events, using the madevent
or standalone application. The ME calculation uses Fortran (double precision) or CUDA (double/single
precision). The fourth column gives throughputs for the full workflow, the last three columns give throughputs
for the ME calculation alone. Results obtained on a single core of a CERN virtual machine with Intel Silver
4216 CPUs and a dedicated NVidia V100 GPU, using cuda11.7 and gcc11.2 builds.

the “running” of the QCD coupling 𝛼𝑠. As described in Sec. 4, our priority for the CUDA/C++
ME engine is now to provide the functionalities and API hooks still missing for its integration into
the madevent executable. Further performance optimizations are also ongoing, but the focus has
shifted to speeding up the overall madevent workflow rather than just the ME calculation.

3. Matrix element calculations in performance portability frameworks (PFs)

The main interest of abstraction layers, or performance portability frameworks, is that they al-
low writing algorithms only once with the ability to run on many architectures, while even including
some hardware-specific optimizations. In our work onMG5aMC, the performance of PFs seems es-
pecially promising for GPUs, as shown in Fig. 2. While our CUDA/C++ version ofMEs is presently
limited to NVidia hardware, our new three implementations in Alpaka, Kokkos and SYCL may also
successfully run on AMD GPUs, and the latter two on Intel GPUs too. The other important point is
that, onNVidia V100 andA100GPUs, the performances achieved by the three new implementations
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Figure 2: Comparison of the CUDA, Alpaka, Kokkos and SYCLME engines for 𝑔𝑔→ 𝑡𝑡𝑔𝑔 on many GPUs,
using the standalone application. Optimal grid sizes at the throughput plateau are used in the right plot.
“Xe-HP SDV” is a Software Development Vehicle for functional testing only. It is currently used at Argonne
and at other customer sites to prepare their code for future Intel data center GPUs.

are comparable to our reference CUDA/C++ version, using four code bases that are approximately
equivalent although they miss some of the features recently added to CUDA/C++. On CPUs, one
benefit of the three PFs is that they all provide an out-of-the-box multi-threading mechanism for
exploiting all CPU cores, while in the CUDA/C++ version this needs to be explicitly added (an
OpenMP prototype existed, but needs to be rethought and has been discontinued for the moment).
Conversely, while the CUDA/C++ implementation is designed from the ground up to efficiently
exploit SIMD through explicit Compiler Vector Extensions, it is not yet clear whether or how much
our Alpaka, Kokkos and SYCL ME calculations are benefitting from CPU vector registers.

At this point, we have not yet decided which of these back-ends will be supported by MG5aMC
in the future. For the moment, we plan to continue exploring all of these avenues, initially through
further performance optimizations and tests on both GPUs and CPUs. We are adding new function-
alities to the PF implementations, but at the same time we are considering adding support for AMD
GPUs via HIP or for CPUmulti-threading to the CUDA/C++ version. Our goal in this context is not
only to release new production versions of MG5aMC with multi-GPU support, but also to provide
useful feedback to the HEP software community about the usability and performance of PFs.

4. Integration of matrix element calculations in the MadEvent framework
The main issue that we had to address to inject our CUDA/C++ ME engine into the existing

Fortran MadEvent framework was not language interoperability (which was easily achieved via a
Fortran/C bridge interface), but the fact that the latter was designed years ago, with serial processing
in mind: a single event was processed at a time, and its data properties were allowed to be accessed
frommultiplememory locations, includingCOMMONblocks. For our goals, it was thus essential to
change the Fortran framework so that it can process many events in parallel, turning event properties
into large arrays and redesigning some components as reentrant functions with clearly defined inputs
and outputs. This is now achieved, but MadEvent remains an active area of development, mainly
because of two issues. First, the event property arrays have a large RAM footprint, and this currently
limits the number of events that can be processed in parallel to 8k, which is a problem on GPUs
because a grid size of 8k threads provides suboptimal ME throughputs (as shown in Fig. 2, the
throughput plateau in 𝑔𝑔→ 𝑡𝑡𝑔𝑔 is only reached at around 16k). Second, even if the ME calculation
takes more than 90% of the total CPU time in the all-Fortran implementation, the overhead from
the rest quickly becomes the bottleneck if MEs are computed one or two order of magnitudes faster.
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The points above are concretely demonstrated by the results shown in Tables 1 and 2. With
respect to theME calculations for 𝑔𝑔→ 𝑡𝑡𝑔𝑔 in Fortran (or to the new no-SIMDC++ versions, which
have similar throughputs), the new vectorized C++ component achieves a speedup close to x8 for
doubles and x16 for floats on an Intel Gold 6148. The speedup of the overall workflow, however, is
limited to approximately x5 and x8, respectively, because the remaining Fortran components other
than the ME calculation (sampling algorithm, I/O, merging...), now become a significantly large
overhead in the total compute budget. The situation is even worse for GPUs: on a system including
a Silver 4216 CPU and a V100, where the scalar part of the madevent application represents 10%
of the overall CPU time in the all-Fortran version, Amdahl’s law limits the overall speedup to a
factor x10 (1 over 10%), even if that of the ME calculation alone is x149 for doubles and x224 for
floats. In these circumstances it is not even a problem that only 8k events per grid are used: even
if ME speedups of x247 and x515 can be achieved with larger grid sizes (as demonstrated by the
standalone application), Amdahl’s law would continue to limit the overall speedup to x10. While
these figures in the range of x5 to x10 are already very promising, it is therefore clear that further
optimizations on the MadEvent Fortran software, or porting further parts onto GPUs, could easily
improve the overall speedups. Larger overall speedups are in any case expected for more complex
physics processes, where the scalar component uses a lower fraction of the overall compute budget.

From a functionality point of view, the integration is already very advanced: in the tests
described above, replacing the Fortran MEs by their CUDA or C++ equivalents yields exactly the
same cross sections to within 2E-14 (2E-4) if doubles (floats) are used, and it also yields exactly
the same LHE unweighted event files, except for a reduced precision in event weights (only for
floats), and for two important differences: event-by-event helicities and leading QCD colors are
still missing in the LHE files generated using CUDA/C++ MEs. These are currently the two main
pieces that are still missing before we can release a new, faster, production version of MG5aMC
usable by the experiments, and are therefore our main development priority in the short term.
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