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Following the publication of the new measurement of the anomalous magnetic moment of the
muon, the discrepancy between experiment and the theory prediction from the 𝑔−2 theory initiative
has increased to 4.2𝜎. Recent lattice QCD calculations predict values for the hadronic vacuum
polarization contribution that are larger than the data-driven estimates, bringing the Standard
Model prediction closer to the experimental measurement. Euclidean time windows in the time-
momentum representation of the hadronic vacuum polarization contribution to the muon 𝑔 − 2
can help clarify the discrepancy between the phenomenological and lattice predictions.
We present our calculation of the intermediate distance window contribution using 𝑁f = 2 + 1
flavors of O(𝑎) improved Wilson quarks. We employ ensembles at six lattice spacings below
0.1 fm and pion masses down to the physical value. We present a detailed study of the continuum
limit, using two discretizations of the vector current and two independent sets of improvement
coefficients. Our result at the physical point displays a tension of 3.9𝜎 with a recent evaluation
of the intermediate window based on the data-driven method.
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Intermediate window observable for the HVP contribution to the muon 𝑔 − 2 S. Kuberski

1. Introduction

Given a long-standing tension between experimental findings and Standard Model expectations,
the anomalous magnetic moment of the muon, 𝑎𝜇, is considered to be an excellent probe for physics
beyond the Standard Model at the high precision frontier. The combination of the first results of the
Fermilab Muon 𝑔− 2 Experiment [1] with the final result of the E821 experiment at BNL [2] yields
a 4.2𝜎 discrepancy with the theoretical estimate in the 2020 White Paper [3]. The uncertainty
of this theory prediction is dominated by the uncertainty of the leading-order hadronic vacuum
polarization (HVP) contribution, 𝑎hvp

𝜇 . The White Paper average for 𝑎hvp
𝜇 with an error of 0.6% is

based on evaluations of a dispersion integral involving hadronic cross section data in Refs. [4–9].
Given the foreseen reduction of the experimental uncertainties by upcoming results, the precision
of the theory prediction has to improve accordingly in the near future to scrutinize the discrepancy.

Lattice QCD offers the natural framework for an ab-initio computation of hadronic contributions
to 𝑎𝜇 and can therefore provide an independent alternative to the traditional data-driven evaluations.
Until recently, the uncertainty of lattice evaluations was too large to have an impact on global
averages of 𝑎hvp

𝜇 . Thanks to a number of recent algorithmic and conceptual improvements, the
evaluation of 𝑎hvp

𝜇 to sub-percent precision is in reach for a number of groups and a first result with
0.8% precision has been published by the BMW collaboration [10]. This result is in 2.1𝜎 tension
with the White Paper average and reduces the tension with the experimental average to 1.5𝜎. To
be able to quote a reliable theory prediction for 𝑎𝜇, this tension between data-driven and lattice
estimates has to be understood. Further precise lattice computations are urgently needed.

Time windows in the time momentum representation (TMR) of 𝑎hvp
𝜇 have been introduced in

Ref. [11], where a window at intermediate distance has been identified as being ideally suited for a
lattice evaluation. It is therefore a good testing ground to compare different lattice calculations at
high precision. Furthermore, the evaluation of the same quantity with data-driven methods helps
to shed light on the current discrepancies within theory predictions for 𝑎hvp

𝜇 . In these proceedings,
we summarize the findings of our work in Ref. [12] and discuss their implications.

2. Lattice setup

We work with 2 + 1 dynamical flavors of O(𝑎) improved Wilson fermions and a tree-level
improved Lüscher-Weisz gauge action in the isospin limit of QCD on ensembles by the Coordinated
Lattice Simulations (CLS) initiative [13]. Our set of 24 ensembles covers six lattice spacings in
the range [0.039 - 0.099] fm. The pion masses are found to be between 130 MeV and 420 MeV.
On each chiral trajectory, the sum of the bare quark masses is held constant, leading to a constant
O(𝑎) improved bare coupling 𝑔̃0. We employ open boundaries in the temporal direction to alleviate
the freezing of the topological charge [14], especially on the finest ensembles. An overview of the
ensembles used in this work can be found on the left panel of Fig. 1.

We compute the intermediate window contribution 𝑎win
𝜇 to 𝑎hvp

𝜇 in the TMR [15],

𝑎win
𝜇 ≡

(𝛼
𝜋

)2
∫ ∞

0
𝑑𝑡 𝐾 (𝑡)𝐺 (𝑡) [Θ(𝑡, 𝑡0,Δ) − Θ(𝑡, 𝑡1,Δ)] , (1)

from the spatially summed, zero-momentum correlation function 𝐺 (𝑡) of the electromagnetic
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Figure 1: Left: Overview of the ensembles used in this work. Two labels for one circle indicate two ensembles
with identical parameters but different volumes. Right: TMR integrand for the isovector contribution to 𝑎hvp

𝜇

(black crosses) at physical pion mass together with the short (SD), intermediate (win) and long-distance (LD)
contributions.

current, with a known QED weight function 𝐾̃ (𝑡) [16] and the smoothed step function Θ [11],

𝐺 (𝑡) = −𝑎
3

3

3∑︁
𝑘=1

∑︁
®𝑥

〈
𝑗em
𝑘 (𝑡, ®𝑥) 𝑗em

𝑘 (0)
〉
, Θ(𝑡, 𝑡 ′,Δ) ≡ 1

2 (1 + tanh[(𝑡 − 𝑡 ′)/Δ]) , (2)

with 𝑡0 = 0.4 fm, 𝑡1 = 1.0 fm andΔ = 0.15 fm. On the right panel of Fig. 1 we illustrate the integrand
of Eq. (2) (blue diamonds) together with the corresponding integrand for 𝑎hvp

𝜇 (black crosses), as
well as for the short- and long-distance contributions to the isovector contribution to 𝑎hvp

𝜇 . The
noisy long-distance tail of the integrand as well as the short-distance region which is the source
of potentially large cutoff effects, are suppressed in 𝑎win

𝜇 . Furthermore, the sizable finite-volume
effects on 𝑎hvp

𝜇 affect mostly the long-distance tail and are therefore reduced in the case of 𝑎win
𝜇 . We

find relative statistical uncertainties at the few per-mil level.
We employ two discretizations of the vector current: The local and the point-split version.

While only the former needs to be renormalized, both currents have to be O(𝑎) improved. We
utilize two sets of improvement coefficients and renormalization constants, set 1 based on Ref. [17]
and set 2 based on Refs. [18, 19]. Both sets remove O(𝑎) cutoff effects but higher order lattice
artifacts differ between the two, providing us with insight in our ability to perform reliable continuum
extrapolations. Before extrapolating our results to the continuum limit and interpolating them to
physical quark masses, we correct the isovector contribution for finite-size effects. As in Ref. [20],
we employ two procedures: At long distances 𝑡 > (𝑚𝜋𝐿/4)2/𝑚𝜋 , where only a few states contribute
significantly to the finite-volume isovector correlation function, we compute the difference between
finite and infinite-volume correlation function via the Meyer-Lellouch-Lüscher formalism [21–23]
and a Gounaris-Sakurai parametrization [24] of the time-like pion form factor. At short distances
that are more relevant for the intermediate window, we employ the method by Hansen and Patella
[25, 26] based on a monopole parametrization of the electromagnetic pion form factor in the space-
like region [27]. The resulting finite-size corrections are of the same order as the statistical errors
on each ensemble.

We extrapolate the isovector, isoscalar (without charm content) and the charm contribution
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Figure 2: Left: Study of the continuum extrapolation of 𝑎win,I1
𝜇 at the SU(3)f symmetric point. The black and

green data points correspond to the two sets of improvement coefficients. Right: Exemplary chiral-continuum
extrapolation of 𝑎win,I1

𝜇 . Each color indicates one value of the bare coupling. The curves show the fit function
evaluated at the corresponding lattice spacing. Data are shifted to physical 𝑋𝐾 . Figures taken from [12].

separately to the physical point according to the following functional form

𝑎
win, 𝑓
𝜇 (𝑋𝑎, 𝑋𝜋 , 𝑋𝐾 ) = 𝑎win, 𝑓

𝜇 (0, 𝑋exp
𝜋 , 𝑋

exp
𝐾

) + 𝛽2 𝑋
2
𝑎 + 𝛽3 𝑋

3
𝑎 + 𝛿 𝑋2

𝑎𝑋𝜋 + 𝜖 𝑋2
𝑎 log 𝑋𝑎

+ 𝛾0

(
𝑋𝐾 − 𝑋phys

𝐾

)
+ 𝛾1

(
𝑋𝜋 − 𝑋exp

𝜋

)
+ 𝛾2

(
𝑓ch(𝑋𝜋) − 𝑓ch(𝑋exp

𝜋 )
)
, (3)

where f denotes the flavor/isospin component and 𝑋𝑎 = 𝑎/√𝑡0 parametrizes the lattice spacing.
The dimensionless variables 𝑋𝜋 ∝ 𝑚2

𝜋 and 𝑋𝐾 ∝ 𝑚2
𝐾
+ 1

2𝑚
2
𝜋 are employed for the interpolation

to physical quark masses, and higher order effects in 𝑋𝜋 are described via one of the functions
𝑓ch(𝑋𝜋) ∈ {0; log(𝑋𝜋); 𝑋2

𝜋 ; 1/𝑋𝜋 ; 𝑋𝜋 log(𝑋𝜋)}. We are not able to determine all of the
parameters in Eq. (3) in a single fit. Instead, we test variations of the fit form by setting some of the
parameters 𝛽3, 𝛿 and 𝜖 to zero, by varying the functional form 𝑓ch and by performing cuts in the
pion mass and/or the lattice spacing. Our final estimate for the central value, the statistical and the
systematic uncertainty of the observable 𝑎win, 𝑓

𝜇 are determined from a model average [28] of the fit
results and their respective fit qualities.

3. Results
On the left panel of Fig. 2 we illustrate the continuum extrapolation of the dominant isovector

contribution to 𝑎win
𝜇 at the SU(3)f symmetric point, i.e., on the ensembles where 𝑚𝜋 = 𝑚𝐾 ∼

420 MeV. We show four sets of data based on the two discretization prescriptions of the vector
current and the two sets of improvement and renormalization procedures. Whereas the cutoff effects
differ substantially between the four data sets, we achieve consistent independent extrapolations to
the continuum limit. The universality of the continuum limit therefore provides a strong check of
our extrapolations. We note in passing that the data based on set 1 may be extrapolated with a single
term ∝ 𝑎2 over the full range of resolutions. Despite our good control over the continuum limit,
the variation of the ansatz for the continuum extrapolation contributes dominantly to the systematic
uncertainty of our final result.

On the right panel of Fig. 2 we illustrate a typical chiral-continuum fit using 𝑓ch = 1/𝑦̃ with
𝑦̃ = 𝑚2

𝜋/(8𝜋 𝑓 2
𝜋) to our data for 𝑎win,I1

𝜇 , where the dependence on 𝑋𝐾 has been projected out in
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Figure 3: Chiral-continuum extrapolation of contributions to 𝑎win
𝜇 . Each color indicates one value of the

bare coupling. The curves show the fit function evaluated at the corresponding lattice spacing. Data are
shifted to physical 𝑋𝐾 . Left: Isoscalar contribution. Right: Charm-connected contribution extrapolated in
𝑋𝜋 = Φ2 = 8𝑡0𝑚2

𝜋 . Figures taken from [12].

the plot. The data is well described over the full range of pion masses and, most importantly,
constrained by the ensembles close to physical quark masses. Performing variations in the fit form
and excluding data at large pion masses does not lead to a significant variation of the result at the
physical point. After taking the model average of our fits, we find

𝑎win,I1
𝜇 = (186.30 ± 0.75stat ± 1.08syst) × 10−10 . (4)

An example for a chiral-continuum extrapolation of the data for the isoscalar contribution excluding
the charm quark is shown on the left panel of Fig. 3. Although the noisy quark-disconnected
contribution enters for ensembles away from the SU(3)f symmetric point, we obtain precise data
thanks to the suppression of long-distance contributions. We restrict the model average to fits based
on functions 𝑓ch that are not singular in the chiral limit and arrive at

𝑎win,I0
𝜇

,𝑐/ = (47.41 ± 0.23stat ± 0.29syst) × 10−10 . (5)

The charm-connected contribution is calculated in the partially quenched setup on our 2 + 1
flavor configurations. We compute the vector current at three values of the quark mass close to the
charm quark mass and perform an interpolation to the point where the mass of the ground-state cs̄
pseudoscalar meson matches the physical 𝐷s meson mass. We employ a massive renormalization
scheme. Due to large cutoff effects in the local-local discretization of the correlation function, we
take only the local-conserved one into account in our fits. Since the strange quark mass is not
held constant along our chiral trajectory, we have to perform a mild chiral extrapolation of the
charm-connected contribution.1 After performing the model average, we obtain

𝑎win,c
𝜇 = (2.89 ± 0.03stat ± 0.03syst ± 0.13scale) × 10−10 . (6)

1Fixing the charm quark mass via the quark-connected contribution to the 𝜂c meson or via the flavor-averaged
combination 𝑚𝐷̄ = 2

3𝑚𝐷 + 1
3𝑚𝐷s , as in Ref. [29], could significantly reduce the pion mass dependence as both masses

are approximately constant on our chiral trajectory where 2𝑎𝑚l + 𝑎𝑚s is held constant. For both choices, no visible
dependence of the charm quark mass on the light quark masses has been found on our chiral trajectory in Ref. [30].
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including isospin-breaking corrections with the estimates by the ETM [42, 43], BMW [10] and RBC/UKQCD
[11] collaborations. The estimate based on the data-driven method of Ref. [44] is shown in red.

As detailed in Appendix D of Ref. [12], we estimate the effect of neglecting charm quarks in the
sea to be well below our uncertainties. We furthermore neglect the bottom quark contribution to
𝑎win
𝜇 that is expected to be much smaller than our current uncertainty [31].

We work in the isospin-symmetric setup of QCD. In order to compare our computation with
Nature at the sub-percent level, the effects of the non-degeneracy of the up- and down-quark masses
and QED have to be taken into account. We have performed a computation of 𝑎win

𝜇 in QCD+QED
using the technique of Monte Carlo reweighting [32–36] combined with a leading-order perturbative
expansion of QCD+QED around isosymmetric QCD in terms of the electromagnetic coupling 𝑒2

as well as the shifts in the bare quark masses Δ𝑚𝑢 ,Δ𝑚𝑑 ,Δ𝑚𝑠 [36–40]. A detailed description of
our setup can be found in Refs. [37, 38, 41]. Since the renormalization procedure differs from the
one used in the isosymmetric QCD calculation, we compute the relative correction due to isospin
breaking in the QCD+QED setup. So far, we have performed our computation on five ensembles
at three resolutions and pion masses in the range 215-352 MeV. The results are displayed on the
left panel of Fig. 4. Without performing an explicit extrapolation to the physical point, we estimate
the correction to be (0.3± 0.1)% of the isosymmetric contribution. We currently neglect the effect
of quark-disconnected diagrams as well as isospin-breaking effects in sea-quark contributions.
Furthermore, an investigation of finite-volume effects on the correction is in progress. We double
the uncertainty of our estimate to account for these unknown systematic effects before including the
correction in our final result.

Combining the results of Eqs. (4) to (6), we find

𝑎win,iso
𝜇 = 𝑎win,I1

𝜇 + 𝑎win,I0
𝜇

,𝑐/ + 𝑎win,c
𝜇 = (236.60 ± 0.79stat ± 1.13syst ± 0.05Q) × 10−10 , (7)

where an additional uncertainty due to the quenching of the charm quark is included. Our final
result, after including our estimate of isospin-breaking corrections, is

𝑎win
𝜇 = (237.30 ± 0.79stat ± 1.13syst ± 0.05Q ± 0.47IB) × 10−10 . (8)

4. Comparison of lattice results
To compare our results with the findings of other collaborations, we collect them in Fig. 5 in the

flavor decomposition instead of the isospin decomposition that we have discussed before.2 Since

2Note that the sum 𝑎
win,I1
𝜇 + 𝑎win,I0

𝜇
,𝑐/ is very well compatible with 𝑎win,ud

𝜇 + 𝑎win,s
𝜇 + 𝑎win,disc

𝜇 in our work, providing
an additional cross-check of our chiral-continuum extrapolations.
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Figure 5: Comparison of our results [12] (in units of 10−10) with other lattice calculations [10, 11, 42,
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quark-disconnected, charm, strange and light quark contributions. The result for 𝑎win

𝜇 in the isosymmetric
case is shown in the rightmost panel. Our results are represented by green circles and vertical bands. Results
that so far have only been presented at workshops are indicated by open symbols.

the writing of Ref. [12], three additional sets of results have appeared. The calculation in Ref. [43]
provides results for all flavor components for the intermediate and the short-distance windows. The
results of Refs. [45, 46] for the light-connected contribution have so far only been presented at
workshops. This light-connected contribution dominates 𝑎win

𝜇 , contributing about 87% to the total.
Let us first consider the subleading contributions 𝑎win,disc

𝜇 , 𝑎win,c
𝜇 and 𝑎win,s

𝜇 . Here, the results
of the different collaborations broadly agree, apart from slight tensions in 𝑎win,s

𝜇 . These tensions
are not large enough to have a significant impact on 𝑎win

𝜇 . The results in Refs. [43, 45] shift the
discussion concerning the status of 𝑎win,ud

𝜇 considerably. The results labeled RBC/UKQCD 18 [11]
and ETMC 21 [42] based on domain wall fermions and Wilson twisted-mass fermions, respectively,
deviate from the bulk of the results for 𝑎win,ud

𝜇 . In both cases, the extrapolation to the continuum
limit is quite long and based on a small number of lattice spacings. In ETMC 21, ensembles with
pion masses larger than 220 MeV have been used to compute 𝑎win

𝜇 . The new result ETMC 22
employs three ensembles around the physical pion mass and therefore, no chiral extrapolation is
necessary. With respect to RBC/UKQCD 18, data at a third, finer lattice spacing (about 0.073 fm)
at physical pion mass as well as a second discretization of the vector current has been added to
the analysis in RBC/UKQCD 22. If one takes into account these two updates, the agreement for
𝑎

win,ud
𝜇 between the different groups, working with a wide variety of fermion actions and strategies

to approach the physical point, is excellent.3
Based on the current status displayed in Fig. 5, there is little room for a significant shift in

the value for 𝑎win
𝜇 from lattice QCD. This is particularly important when our result, corrected

for quark-connected isospin-breaking and electromagnetic effects, and the result of Ref. [10] are
compared with a recent data-driven evaluation of the same quantity, see the right panel of Fig. 4.
A significant tension, 3.9𝜎 between our result and the result of Ref. [44], is found. The absolute

3We note that the comparison presented here contains an inherent ambiguity regarding the definition of the physical
point in isosymmetric QCD, see the contributions [47, 48] to this conference.
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deviation between our result for 𝑎win
𝜇 and the prediction in Ref. [44] is about half of the size of

the deviation between the White Paper average for 𝑎hvp
𝜇 and the lattice evaluation of the BMW

collaboration. Before a solid statement regarding the Standard Model prediction for 𝑎hvp
𝜇 can be

made, this discrepancy between data-driven and lattice evaluations has to be understood.

5. Outlook
The foreseen reduction of the experimental uncertainties for 𝑎𝜇 requires a corresponding

improvement of the precision of the SM prediction for 𝑎hvp
𝜇 . We aim to contribute to this task

by providing a determination of 𝑎hvp
𝜇 to sub-percent precision in the near future. The first precise

lattice result in Ref. [10] has opened up new questions due to a significant deviation from the well-
established dispersive evaluations. As a consequence, time windows in the Euclidean time integral
of the TMR are considered to be an ideal testbed to scrutinize the validity of lattice results. For the
intermediate-distance window, the cross-check of lattice results has been very successful. However,
the comparison with a data-driven evaluation of this quantity points to an even more significant
tension than in the case of 𝑎hvp

𝜇 . A similar deviation has been found for the closely related hadronic
running of the electromagnetic coupling in Ref. [20].

The investigation of other time windows than the one considered in this work may help to
shed light on the origin of the aforementioned discrepancies, see also the recent suggestions in
Refs. [44, 53]. The computation of the short-distance contribution to 𝑎hvp

𝜇 may help to probe the
continuum extrapolation of lattice results that makes up a significant fraction of the systematic
uncertainty of recent studies. To reach our goal of a sub-percent precision calculation of 𝑎hvp

𝜇 , the
main task is to decrease the statistical uncertainty of our calculation, especially at close-to-physical
quark masses. Noise reduction techniques in the computation of the vector correlation function, as
well as dedicated spectroscopy studies [54–56] will help us to achieve this goal.
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