EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH ORGANISATION EUROPEENNE POUR LA RECHERCHE NUCLEAIRE

CERN - PS DIVISION

PS/ CA/ Note 99-13

INITIAL MEASUREMENTS OF THE VERTICAL BOOSTER TRANSFER MAGNETIC SEPTUM 10 (BTSMV 10)

J. Borburgh

Geneva, Switzerland 18 May 1999

1. Introduction

In the frame work of the project "PS for LHC" the Booster energy was increased from 1 GeV to 1.4 GeV as from the run in 1999. Over the past few years already the ejection septa in the booster rings, a septum magnet in the transfer line to the PS (BTSMV 20), and the septum injection magnet in the PS ring have been modified to handle the increased beam energy. These new generation septum magnets have been constructed as pulsed current magnets, instead of DC current magnets as previously installed. During the shut down of January 1999 the Booster Transfer Vertical Septum Magnet 10, (referred to as BTSMV10) was replaced by a pulsed current version, capable of handling the increased beam energies. This report describes the initial tests of these magnets and their spares.

2. The layout of the BTSMV 10

The BTSMV 10 consists of two separate septum magnets and their respective vacuum tanks. BT1 SMV10 is the recombination septum in the Booster – PS transfer line, that recombines the 1^{st} booster ring with the 2^{nd} , and BT4 SMV10 is the recombination septum in the Booster – PS transfer line, that recombines the 4^{th} booster ring with the 3^{rd} . Previously one rectangular vacuum tank was used to house both septum magnets. Now two circular vacuum tanks are used to house each one septum magnet. In appendix 1 the layout of the septa magnets is shown as seen from the exterior of the accelerator rings. Each tank is also equipped with beam observation equipment on the down stream side of the magnets.

3. The measurements

Before installation the magnets were tested. In the final assembly the two tanks are stacked on top of each other and the two tanks have each the individual power supply. The transformer used for the tests was the same as used in the machine. A capacitor bank of 3 mF was used. This resulted in an approximate 3 half-sine pulse. Figure 1 shows circuit diagram.

Figure 1: The circuit diagram

The circuit specifications were:

Capacitance C	3 mF
Transformer	12:1

The measurement equipment used was:

Impedance meter	H.P. Model
Current Transformer	Pearson Model 1423 (1 V/kA)
Digitizer	Tektronixs 7612D
Data handling	PC 486 running Labview
Scope (for current measurements)	H.P. Model 54601 A

3.1 Inductance measurements

Using the H.P. impedance meter the values of resistance and inductance was measured at point A in the circuit diagram. After measuring the total impedance, another measurement was taken when a short circuit was made at point D. This is at the feedthrough of the tank. This allows to derive the inductance of the magnet itself. Another measurement was taken with a short circuit where the horizontal stripline from the transformer joins the vertical stripline of the tanks. This measurement allows to derive the inductance and resistance of the magnet, including the flexible, and vertical striplines. Since the tanks BT4 SMV10 have slightly longer striplines, compared to the ones of BT1 SMV10, the measurements were done for each type. Table 1 reproduces the results.

Impedance (µH)	BT1 SMV10	BT4 SMV10
No short	410.2	416.6
Short at end horizontal stripline	53.0	54.4
Short circuit at Feedtrhough	Not done	99.4
Derived magnet impedance	Not done	2.20
Derived magnet + striplines impedance	2.48	2.52

Table 1: The impedances of BT1/BT4 SMV10

The theoretical value of the inductance per magnet is $2.2 \,\mu\text{H}$ (see appendix 2 for the theoretical pre-calculations of the magnet) so the measured value is as expected, taking into account the measurement tolerances.

3.2 Magnetic measurements

Using a power supply based on the circuit as shown in figure 2, with a pulse repetition rate of approximately 4.5 seconds, a series of measurements were recorded in order to determine the magnetic field in the gap and the fringe fields. The field in the gap was measured to determine the actual punctual values as well as the integrated field (JBdl) from which the equivalent magnetic length of the magnet was calculated.

The measurements we taken with the Tektronics digitizer and transferred to a PC running a Labview application as described in Cern Note PS/PA/95-13. In appendix 3 the results of all magnetic measurements are shown.

The gap field

As the result of the B field and integrated B field measurements in the gap, the magnetic equivalent length was derived at different currents. Table 2 shows the minimum and maximum measured for each magnet. The equivalent magnetic length of all the magnets is 996 mm with a measurement error of ± 3 mm mainly due to the alignment error of the measurement coils. A three dimensional finite element calculation predicted 1003 mm, so the measured value is lower than expected. The poor model used to calculate the magnet in TOSCA, necessary to avoid a too big amount of elements could explain this. The model used for the finite element calculation follows the general outlines as described in CERN Note PS / CA / 97 - 27.

Magnet coil number	Lowest measurement (mm)	Highest measurement (mm)
3	994	998
4	994	999
5	993	997
6	995	997

Table 2: Resume of magnetic equivalent lengths as measured at different currents for each magnet

The fringe field

Also the integrated fringe field, the field next to the septum conductor outside the gap, has been measured. The results are reproduced in appendix 3, and in figure 2 the relative integrated fringe field with respect to the gap field at 27.2 kA (necessary for 1.4 GeV operation) is illustrated as function of the distance to the septum. No great variation between the magnets can be observed, and at 55 mm the fringe field level drops below 1/1000 of the gap field.

Figure 2: The relative fringe field at 27.2 kA for the BTSMV10 magnets as installed in the Booster Transfer line in January 1999

The end field

For completeness also the end field was measured for the different magnets. The end field is measured in the middle of the gap, starting at the magnet extremity moving outwards, into the air. The leak field measured over there, is taken into account when doing the integrated gap field measurement, but was measured punctually for verification purposes. The results are tabulated in appendix 3.

3.3 Miscellaneous

In appendix 4 the identification of the coils, tanks and feedthroughs is well indicated for future reference. Also the water flow is mentioned as measured at 12 bar.

To support the last magnetic steel lamination at the extremities, next to the cross over conductors, all BTSMV 10 magnets have a 1.5 mm stainless steel non magnetic lamination at these ends installed, to prevent movement of the last magnetic gap lamination due to the pulsing magnetic fields. Also Vespel clamping plates are installed to provide additional support to this stainless steel lamination. The layout of this mechanical support is of identical layout as the one described in note CERN PS / CA / Note 98 - 11 for the modified SMH 16.

For the record also the water flow tests for all coil manufactured, have been included in appendix 5. The first two coils (20.01 and 20.02) have been used for magnet BTSMV 20 and its spare. Coils 3 to 6 have been used on the magnets for BTSMV 10. What can be noticed is that there is no wide spread in flow rate at a given pressure between the various coils. The measured flow is 10% lower than of the calculated flow rate, due to approximations concerning bends in the water circuits in the calculation. However this can still be considered as largely sufficient, given the relatively low RMS power losses in the coil.

4. Conclusions

The BTSMV10 magnets have been tested before installation in the Booster – PS Transfer line in January 1999. The magnetic equivalent length was found to be 996 ± 3 mm, which is 7 mm shorter than the calculated length. This could be explained by a poor model used for the calculations. This was necessary to keep the number of elements of the model low enough to be handled by the computer. Compared to measurements done on BTSMV 20, a magnet of the same type, a 2 mm lower magnetic length was found, but this difference is within the error margin.

The fringe field was measured as well. The integrated fringe field for a typical magnet is $1 \%_0$ of the integrated gap field at 55 mm from the septum conductor. At 5 mm from the septum blade the integrated fringe field is typically $8 \%_0$ of the integrated gap field. This is considered as sufficiently low, given the magnets use in a beam transfer line.

The inductance measurements show a value of $2.2 \,\mu\text{H}$ per tank as measured from the feedthrough. This measured value is slightly lower than what could be expected theoretically. This is likely due to the use of less suitable measurement equipment.

Appendix 1. Layout of BTSMV10.

BT4 SMV10, in the top tank, BT1 SMV10 in the lower tank

Appendix 2. Magnet characteristics for proton operation

- Magnet pre calculations for 800 MeV protons Magnet pre calculations for 1.0 GeV protons Magnet pre calculations for 1.4 GeV protons -
- -
- -

M.THIVENT Version 12 Mai 1992 Modifie R, L pour monospire, hydraulique revise 2/8/94 J. Borburgh PREDETERMINATION SEPTUM MAGNETIQUE SM

5.May.99

SMCALC.XLS

Edition du :

PW prot:jb

BT SMV 10 version pulsee

particularités

DONNEES			RESULTATS	PROTONS	
particules electrons : e protons : p	р		Masse au repos mo	0.94	Gev/c2
quant.mouvt : MV Energie cin. : EC	ec		Energie cinétique	0.8000	GeV
			Quantité de mouvement	1.4642	Gev/c
Energie cinétique Ec =	0.8	GeV	beta	0.8415	
			gamma	1.8511	
Déflexion requise	79.3	mrad	beta*gamma	1.5577	
Epaisseur du septum	5	mm	Déplact. après espace de gliss	39.4914	mm
Hauteur du Gap	60.4	mm			
Profondeur du Gap	116	mm	Champ intégré B*L	0.387	T.m
Longueur magnetique equivalent	996	mm	Induction dans le Gap	0.389	Т
Espace de glissement	0	m	Champ magn. H=B/uo	3.09E+05	A/m
Monospire donc	1	spire	Courant nécessaire	18678	A
Epaisseur cond. retour	8.8	mm	Valeur efficace du courant	671	А
Hauteur de conducteur retour	60.4	mm	densité de courant eff.	2.27	A/mm2
Résistivité du cuivre (1.72E-2	0.0172	mO.mm	Résistance de l'aimant	0.104	mOhms
module d'Elasticité (12500	12500	daN/mm2	Inductance de l'aimant	2.26	uH
Forme de l'impulsion			Puissance dissipée	0.047	kW
DC, 1/2 sinus: S, trapèze: T	S		Energie stockée	394	J
1/2 période de l'impulsion	3.1	ms			
Période de récurence (cycle tot.	1.2	S			
taux de répétition de l'impulsion de co	urant			116	p en mm
Systeme de refroidissement				60.4	h en mm
pression différentielle	12	bar			
nombre du circuits	2			193.7	L en mm
septum	-				2 011111
forme element de refroidissement	rec			215.8	H en mm
Cote horizontal	5	mm		2.010	
Cote vertical	30.2	mm			
forme du passage d'eau	circ		Débit d'eau total	4.32	l/min
Diametre trou	2	mm	Débit dans chaque spire	2.16	I/min
			vitesse de l'eau dans septum	11.47	m/s
conducteur retour			dT total d'eau	0.17	к
forme element de refroidissement	rec				
Cote horizontal (mm)	8.8	mm	Force septum /cond fond	361.47	daN
Cote vertical (mm)	30.2	mm	Flèche max . septum (appui	0.008	mm
forme du passage d'eau	rec		moment flech.max. (appui	2.74	mm*daN
Cote horizontal	3.6	mm	contrainte maxi <5 (appui	0.66	daN/mm2
Cote vertical	2.2	mm	Masse culasse (sans poutre	249	kg
Matiere	. - ·		section cond. septum	295.7168147	mm2
maximum admissible champ dans le f	0.58	Т	Section refroidissement septur	6.283185307	mm2

M.THIVENT Version 12 Mai 1992 Modifie R, L pour monospire, hydraulique revise 2/8/94 J. Borburgh

PREDETERMINATION SEPTUM MAGNETIQUE

SMCALC.XLS

5.May.99

_S

Edition du :

PW prot:jb

BT SMV 10 version pulsee

particularités

DONNEES			RESULTATS	PROTONS	
particules electrons : e protons : p	р		Masse au repos mo	0.94	Gev/c2
quant.mouvt : MV Energie cin. : EC	ec		Energie cinétique	1.0000	GeV
			Quantité de mouvement	1.6971	Gev/c
Energie cinétique Ec =	1	GeV	beta	0.8748	
			gamma	2.0638	
Déflexion requise	79.3	mrad	beta*gamma	1.8054	
Epaisseur du septum	5	mm	Déplact. après espace de gliss	39.4914	mm
Hauteur du Gap	60.4	mm			
Profondeur du Gap	116	mm	Champ intégré B*L	0.449	T.m
Longueur magnetique equivalent	996	mm	Induction dans le Gap	0.450	т
Espace de glissement	0	m	Champ magn. H=B/uo	3.58E+05	A/m
Monospire donc	1	spire	Courant nécessaire	21648	А
Epaisseur cond. retour	8.8	mm	Valeur efficace du courant	778	А
Hauteur de conducteur retour	60.4	mm	densité de courant eff.	2.63	A/mm2
Résistivité du cuivre (1.72E-2	0.0172	mO.mm	Résistance de l'aimant	0.104	mOhms
module d'Elasticité (12500	12500	daN/mm2	Inductance de l'aimant	2.26	uH
Forme de l'impulsion			Puissance dissipée	0.063	kW
DC , 1/2 sinus : S , trapèze : T	S		Energie stockée	529	J
1/2 période de l'impulsion	3.1	ms			
Période de récurence (cycle tot.	1.2	s			
taux de répétition de l'impulsion de con	urant			116	p en mm
Systeme de refroidissement		r		60.4	h en mm
pression différentielle	12	bar			
nombre du circuits	2	L		194.0	L en mm
septum					
forme element de refroidissement	rec			216.4	H en mm
Cote horizontal	5	mm .			
Cote vertical	30.2	mm .			
forme du passage d'eau	circ		Débit d'eau total	4.32	l/min
Diametre trou	2	mm	Débit dans chaque spire	2.16	l/min
			vitesse de l'eau dans septum	11.47	m/s
conducteur retour			d⊤ total d'eau	0.22	К
forme element de refroidissement	rec				
Cote horizontal (mm)	8.8	mm	Force septum /cond fond	485.55	daN
Cote vertical (mm)	30.2	mm	Flèche max . septum (appui	0.011	mm
torme du passage d'eau	rec		moment flech.max. (appui	3.68	mm*daN
Cote horizontal	3.6	mm	contrainte maxi <5 (appui	0.88	daN/mm2
Cote vertical	2.2	mm	Masse culasse (sans poutre	250	kg
Matiere			section cond. septum	295.7168147	mm2
maximum admissible champ dans le f	0.67	т	Section refroidissement septur	6.283185307	mm2

Sepmcmor	۱
----------	---

 M.THIVENT
 Version 12 Mai 1992
 Edition du
 :

 Modifie R, L pour monospire, hydraulique revise 2/8/94 J. Borburgh
 FREDETERMINATION SEPTUM MAGNETIQUE
 SMCALC.XLS

5.May.99

PW prot:jb

BT SMV 10 version pulsee

particularités

DONNEES

particules electrons : e protons : p	р	
quant.mouvt : MV Energie cin. : EC	ec	
		.
Energie cinétique Ec =	1.4	GeV
Déflexion requise	79.3	mrad
Epaisseur du septum	5	mm
Hauteur du Gap	60.4	mm
Profondeur du Gap	116	mm
Longueur magnetique equivalent	996	mm
Espace de glissement	0	m
Monospire donc	1	spire
Epaisseur cond. retour	8.8	mm
Hauteur de conducteur retour	60.4	mm
Résistivité du cuivre (1.72E-2	0.0172	mO.mm
module d'Elasticité (12500	12500	daN/mm2
Forme de l'impulsion	•	
DC, 1/2 sinus : S, trapèze : T	S	
1/2 période de l'impulsion	3.1	ms
Période de récurence (cvcle tot.	1.2	s
taux de répétition de l'impulsion de co	urant	
Systeme de refroidissement	40	
pression différentielle	12	bar
nombre du circuits	2	
forme element de retroidissement	rec	
Cote norizontal	5	mm
	30.Z	mm
forme du passage d'eau	0110	
Diametre trou	2	1000
conducteur retour		
forme element de refroidissement	rec	
Cote horizontal (mm)	8.8	mm
Cote vertical (mm)	30.2	mm
forme du passage d'eau	rec	
Cote horizontal	3.6	mm
Cote vertical	2.2	mm
A4-41		
matiere maximum admissible champ dans le fi	0.85	т
maximum aumissible champ dans le ic	0.00	

RESULTATS	PROTONS	
Masse au repos mo	0.94	Gev/c2
Energie cinétique	1.4000	GeV
Quantité de mouvement	2.1429	Gev/c
beta	0.9158	
gamma	2.4894	
beta*gamma	2.2797	
Déplact. après espace de gliss	39.4914	mm
Champ intégré B*L	0.566	T.m
Induction dans le Gap	0.569	Т
Champ magn. H=B/uo	4.53E+05	A/m
Courant nécessaire	27335	A
Valeur efficace du courant	982	А
densité de courant eff.	3.32	A/mm2
Résistance de l'aimant	0.104	mOhms
Inductance de l'aimant	2.26	uH
Puissance dissipée	0.100	kW
Energie stockée	844	J
	116	p en mm
	60.4	h en mm
	193.6	L en mm
	215.6	H en mm
Débit d'eau total	4.32	l/min
Débit dans chaque spire	2.16	l/min
vitesse de l'eau dans septum	11.47	m/s
dT total d'eau	0.36	К
Force septum /cond fond	774.18	daN
Flèche max . septum (appui	0.017	mm
moment flech.max. (appui	5.87	mm*daN
contrainte maxi <5 (appui	1.41	daN/mm2
Masse culasse (sans poutre	248	kg

mm2

mm2

Appendix 3. Magnetic measurement results

- Magnetic measurements in the gap
- Magnetic measurements of the fringe field
- Magnetic measurements of the end field

BTSMV 10 Gap Measurements

coil 1:	diameter 5 mm	0.03693 m2
coil 2	l=1300 mm	0.05769 m2/m

BT4 1/12/98 tank2

l (kA)	V.s	B(mT)	Vs	Bdl(mT.m	Leq (mm)
	CO	il 1	CO	il 2	
17.2	1.27E-02	342.7	1.98E-02	342.3	999
18.6	1.37E-02	370.2	2.13E-02	369.8	999
19.9	1.46E-02	395.0	2.27E-02	393.0	995
21.6	1.60E-02	433.2	2.48E-02	430.4	994
25.1	1.87E-02	506.7	2.91E-02	503.7	994
27.2	2.03E-02	548.2	3.14E-02	545.0	994

BT1 9/12/98 tank1

2.03E-02

27.2

17.2	1.28E-02	346	1.99E-02	344.1
18.6	1.38E-02	374	2.15E-02	371.9
19.9	1.48E-02	399.9	2.30E-02	399
21.6	1.61E-02	434.5	2.49E-02	432.3
25.1	1.88E-02	510.1	2.93E-02	507.4

550.8

3.16E-02

995 994

998

995

995

994

547.5

BT4	23/3/99	tank4			
17.2	1.28E-02	346.2	1.98E-02	344.4	995
18.6	1.38E-02	372.9	2.15E-02	371.8	997
19.9	1.48E-02	400.6	2.30E-02	398.9	996
21.6	1.61E-02	436.1	2.51E-02	434.4	996
25.1	1.88E-02	510.1	2.93E-02	507.5	995
27.2	2.04E-02	551.8	3.17E-02	549.1	995

BT1	4/5/99 t	tank3			
17.2	1.28E-02	346.3	1.98E-02	343.8	993
18.6	1.38E-02	373.9	2.14E-02	371.6	994
19.9	1.49E-02	402.4	2.31E-02	400.1	994
21.6	1.62E-02	438.9	2.52E-02	437.5	997
25.1	1.89E-02	511.4	2.93E-02	508	993
27.2	2.05E-02	554.9	3.18E-02	551.2	993

BTSMV 10 End field measurements

coil 1: diameter 5 mm 0.03693 m2

BT4	1/12/98	tank2		
distance of center of coil to outside endplate in mm	V.s	B (mT)	V.s	B (mT)
	1.0 GeV	(21.6 kA)	1.4GeV (27.2 kA)
0	6.71E-04	18.16	8.85E-04	23.90
10	3.40E-04	9.20	4.37E-04	11.82
20	1.92E-04	5.21	2.44E-04	6.62
30	1.17E-04	3.18	1.51E-04	4.09
40	7.53E-05	2.04	1.00E-04	2.72
50	5.25E-05	1.42	6.80E-05	1.84
60	3.70E-05	1.00	4.74E-05	1.28
70	2.80E-05	0.76	3.67E-05	0.99
80	2.14E-05	0.58	2.79E-05	0.75

BT1 9/12/98 tank1

0	6.163E-04	16.69	8.573E-04	23.21
10	3.260E-04	8.83	4.294E-04	11.63
20	1.840E-04	4.98	2.451E-04	6.64
30	1.147E-04	3.11	1.516E-04	4.11
40	7.525E-05	2.04	9.931E-05	2.69
50	5.170E-05	1.40	6.807E-05	1.84
60	3.731E-05	1.01	4.891E-05	1.32
70	2.700E-05	0.73	3.487E-05	0.94
80	1.997E-05	0.54	2.634E-05	0.71

BT4

24/3/99 tank4

0	3.136E-04	19.32	9.081E-04	24.59
10	3.681E-04	9.97	4.692E-04	12.71
20	2.040E-04	5.52	2.703E-04	7.32
30	1.274E-04	3.45	1.630E-04	4.41
40	8.350E-05	2.26	1.080E-04	2.93
50	5.831E-05	1.57	7.595E-05	2.06
60	4.171E-05	1.13	5.514E-05	1.47
70	3.047E-05	0.83	3.941E-05	1.07
80	2.354E-05	0.64	3.063E-05	0.83

BT1	4/5/99 tank3					
0	7.325E-04	19.84	8.835E-04	23.92		
10	3.634E-04	9.84	4.655E-04	12.60		
20	2.046E-04	5.54	2.664E-04	7.21		
30	1.268E-04	3.43	1.625E-04	4.40		
40	8.233E-05	2.23	1.057E-04	2.86		
50	5.592E-05	1.51	7.308E-05	1.98		
60	3.977E-05	1.08	5.148E-05	1.39		
70	2.903E-05	0.79	3.755E-05	1.02		
80	2.125E-05	0.57	2.797E-05	0.76		

BTSMV 10 Integrated Fringe field measurements

coil 2	l=1300 mm	0.05769 m2/m
coil 3	l=1.3 m	0.058077 m2/m

511	1/16/00	toar mail					
distance to septum (mm)	V.s	B.dl (mT.m)	1/1000	V.s	B.dl (mT.m)	1/1000	
	1.	0 GeV (21.6 k	A)	1.40	GeV (27.2 k	(A)	-
5	1.99E-04	3.445	8.0	2.54E-04	4.4	8.1	coil 2
15	1.13E-04	1.957	4.5	1.36E-04	2.359	4.3	coil 2
25	6.03E-05	1.044	2.4	7.93E-05	1.374	2.5	coil 2
35	4.06E-05	0.7045	1.6	5.50E-05	0.9533	1.7	coil 2
45	2.86E-05	0.4959	1.2	4.01E-05	0.6951	1.3	coil 2
55	2.36E-05	0.4048	0.9	3.36E-05	0.5819	1.1	coil 2
65	2.00E-05	0.346	0.8	2.87E-05	0.4967	0.9	_coil 2

BT4 1/12/98 tank2

BT1	9/12/98	tank1					
5	2.15E-04	3.725	8.6	2.703E-04	4.685	8.6	coil 2
15	5 1.08E-04	1.877	4.3	1.231E-04	2.133	3.9	coil 2
25	5.63E-05	0.9753	2.3	7.341E-05	1.273	2.3	coil 2
35	3.63E-05	0.6284	1.5	5.166E-05	0.8954	1.6	coil 2
45	2.73E-05	0.4737	1.1	3.915E-05	0.6787	1.2	coil 2
55	2.24E-05	0.389	0.9	3.166E-05	0.5487	1.0	coil 2
65	5 1.94E-05	0.3369	0.8	2.640E-05	0.4576	0.8	coil 2

BT4 24/3/99 tank4

5	1.95E-04	3.378	7.8	2.529E-04	4.384	8.0	coil 2
15	9.59E-05	1.662	3.8	1.222E-04	2.119	3.9	coil 2
25	5.20E-05	0.901	2.1	6.977E-05	1.209	2.2	coil 2
35	3.53E-05	0.6127	1.4	4.859E-05	0.8423	1.5	coil 2
45	2.78E-05	0.4813	1.1	3.830E-05	0.6639	1.2	coil 2
55	2.31E-05	0.4	0.9	3.248E-05	5.63E-01	1.0	coil 2
65	2.07E-05	0.3591	0.8	2.825E-05	0.4896	0.9	coil 2

BT1 4/5/99 TANK3

5 2.31E-04 3.976 9.2 2.912E-04 5.014 9.2 Coil 15 1.25E-04 2.154 5.0 1.543E-04 2.657 4.9 Coil 25 6.50E-05 1.12 2.6 8.382E-05 1.443 2.6 Coil 35 4.06E-05 0.699 1.6 5.548E-05 0.9553 1.7 Coil 45 2.98E-05 0.5136 1.2 4.031E-05 0.694 1.3 Coil 55 2.36E-05 0.4065 0.9 3.273E-05 0.5636 1.0 Coil 65 2.02E-05 0.3477 0.8 2.753E-05 0.474 0.9 Coil								
151.25E-042.1545.01.543E-042.6574.9Coil256.50E-051.122.68.382E-051.4432.6Coil354.06E-050.6991.65.548E-050.95531.7Coil452.98E-050.51361.24.031E-050.6941.3Coil552.36E-050.40650.93.273E-050.56361.0Coil652.02E-050.34770.82.753E-050.4740.9Coil	5	2.31E-04	3.976	9.2	2.912E-04	5.014	9.2	Coil 3
25 6.50E-05 1.12 2.6 8.382E-05 1.443 2.6 Coil 35 4.06E-05 0.699 1.6 5.548E-05 0.9553 1.7 Coil 45 2.98E-05 0.5136 1.2 4.031E-05 0.694 1.3 Coil 55 2.36E-05 0.4065 0.9 3.273E-05 0.5636 1.0 Coil 65 2.02E-05 0.3477 0.8 2.753E-05 0.474 0.9 Coil	15	1.25E-04	2.154	5.0	1.543E-04	2.657	4.9	Coil 3
35 4.06E-05 0.699 1.6 5.548E-05 0.9553 1.7 Coil 45 2.98E-05 0.5136 1.2 4.031E-05 0.694 1.3 Coil 55 2.36E-05 0.4065 0.9 3.273E-05 0.5636 1.0 Coil 65 2.02E-05 0.3477 0.8 2.753E-05 0.474 0.9 Coil	25	6.50E-05	1.12	2.6	8.382E-05	1.443	2.6	Coil 3
45 2.98E-05 0.5136 1.2 4.031E-05 0.694 1.3 Coil 55 2.36E-05 0.4065 0.9 3.273E-05 0.5636 1.0 Coil 65 2.02E-05 0.3477 0.8 2.753E-05 0.474 0.9 Coil	35	4.06E-05	0.699	1.6	5.548E-05	0.9553	1.7	Coil 3
55 2.36E-05 0.4065 0.9 3.273E-05 0.5636 1.0 Coil 65 2.02E-05 0.3477 0.8 2.753E-05 0.474 0.9 Coil	45	2.98E-05	0.5136	1.2	4.031E-05	0.694	1.3	Coil 3
65 2.02E-05 0.3477 0.8 2.753E-05 0.474 0.9 Coil	55	2.36E-05	0.4065	0.9	3.273E-05	0.5636	1.0	Coil 3
	65	2.02E-05	0.3477	0.8	2.753E-05	0.474	0.9	Coil 3

Appendix 4.	Magnet number	rs, coil and feedt	hrough identification

tank	magnet	coil	feedthrough	Туре	
2	4	4?	PH08	BT4	installed in Booster transfer line 1999
1	3	3	PH09	BT1	installed in Booster transfer line 1999
3	3?	6	PH10	BT4	spare
4	1?	5	PH11	BT1	spare

Water flow: 3.72 l/min. at 12 bar ΔP

BTSMV 10/20 water flow measurements of individual coils.

	calculated	smv20.01	20.02	20.03	20.04	20.05	20.06	20.07	20.08	20.09	20.10
P (bar)	Q (I/min)	Q (l/min)									
		18/10/96	21/10/96	16/9/97	10/2/98	10/2/98	10/2/98	10/2/98	30/4/98	30/4//98	30/4/98
0	0	0	0	0	0	0	0	0	0	0	0
4	2.3	2.2	2.22	2.12	2.08	2.11	2.06	2.1	2.1	2.16	2.08
6	2.9	2.65	2.74	2.66	2.64	2.67	2.62	2.62	2.72	2.64	2.6
8	3.4	3.08	3.2	3.1	3.02	3.04	3.09	2.98	3.12	3.08	3.04
10	3.9	3.45	3.56	3.5	3.46	3.38	3.44	3.36	3.5	3.44	3.38
12	4.3	3.88	3.94	3.8	3.76	3.84	3.84	3.76	3.84	3.85	3.74
16	5.09			4.44	4.47	4.38	4.35	4.47	4.38	4.44	4.44

Distribution

Septa Section M. Chanel J.P. Riunaud K. Schindl H. Schönauer