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1 . OPEN-LOOP PROPERTIES OF AN R.F, ACCELERATED BEAM 

1.1 The Synchrotron Motion_ Equations 

We are going to look at various forms of beam-controlled 
acceleration. To do this we put the system of beam plus R.F, field in 
the form of a possible element in a servo-system, with some inputs 
and outputs. This element is the part that we cannot easily change : 
the servo-system has to be designed around it. 

For outputs vie shall take detectable quantities Δφ , 
phase of R.F. relative to beam, and Δ R , beam radial displacement*. 

For inputs one can consider the things that affect 
the process of acceleration : 

Ω1 deviation of frequency programme from ideal 
value (correctly linked to B ) . 

V peak accelerating volts (per turn, say) on the 
cavities. 

V. volts appropriate to the rate of rise of field. 
Β 

* 
Betatron oscillations are disregarded. 
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We shall only consider Ω1 . The others are of interest, 
particularly as one ought to study the effect of perturbations in them, 
but let us concentrate first on our basic servo-system which uses 
only Ω1 as input point (Ref. 5 ) . 

We can linearize and simplify the equations for the 
synchrotron motion to : 

(1) 

The quantities a and b are interpreted as follows 
(see Fig. I ) . 

Particles at ΔR say positive have higher energy than 
they would have at ΔR. = 0. They go round the machine faster and 
tend to arrive earlier, if we are below transition energy, conversely 
if above. This means a changes continuously from negative, before 
transition, to positive after. 

Δ R or Δ 
Ρ Before transition 

ΔR or Δ 
Ρ After transition 

Phase stable 

Figure I 

Phase stable 
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One knows that equations like ( 1 ) have bounded oscillating 
solutions if a and b are of opposite signs (otherwise the particles 

• go rapidly to infinites). So we make b changes discontinuously. 

Transition time Transition time 

This is done by suitable choice of operating point : 

cos φ 
s + -

φs 30° 150° 

1 . 2 Fr equency _Tolerances 

One reason beam control was designed for the CPS right 
from the start is the question of frequency tolerances, so let us 
look at them. 

Suppose Ω1 ≠ 0 is constant, and we look at the 
possible steady state condition ΔR. = Δφ =0 
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What does thi s mean quanti tati vel y  ? I f  we are wel l  above 
transi t i on , a ari ses j ust f rom ci rcumf erence consi derati ons. Wi th mean 

radi us 100 m, + 10-4 f requency error wi l l  make - 1 cm di spl acement. 

One does not need to be terr i bl y cl ose to transi t i on f or 
the si tuati on to be say 10 t i mes worse : 

I t i s di f f i cul t to be more preci se on thi s poi nt : to put 
the equati ons i n the form we have them and to make si mpl e arguments about 
the way they behave, we have to treat the coef f i ci ents (a, b and the 
more f undamental  quant i t i es f rom which they are deri ved) as constants. 

:(< 

Thi s i s not too bad i f  they change sl owl y , but near transi t i on they 
change f ast . I  am not sure that anyone has real l y  cal cul ated what 
f requency tol erances would make i t  possi bl e to pass transi t i on wi thout 
beam control , but there may be somethi ng i n the earl y  l i terature. 

A  qual i tat i ve pi cture of  what happens at transi t i on 
i n such oi rcumstances i s shown i n Fi g. 1 of  Ref erence 1. 

Constant- gradi ent machines are easi er , partl y  because one 

does not have t .o ,pass trans.:L t i  on energy, partl y  because thei r rati o 
aperture / mean radi us i s much bi gger . 

* But mi sl eadi ng if you try  t o cal cul ate the adi abati c damping. 
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1.3, The Synchrotron Equations in the Form of trasfer Functions 

In the usual way we replace by p, or sometimes 
by j ω and one can represent this system "by* : 

Δφ 

AR 
Ω1 

Figure II 

with transfer properties which come directly from ( 1 ) : 

(2) 

where we have simplified the expressions a little by putting ωφ = √ab , 
ωφ is, of course, just the frequency of synchrotron oscillations, 
which we oould easily have obtained directly from ( 1 ) 

Reminder : Ω 's for RF frequency and ω f
s for frequencies involved in 

the synchrotron motion. 
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Bef ore consider i ng cl osed l oops l et us j ust l ook at some 
of  the f eatures of  t he transf er f uncti ons. 

A t t he f requency w = w the denominators vani sh, so one 
cp 

can have some b.cp and b.R wi thout any i nput 01 • The system has an 
osci l latory transient of  constant ampl i tude, so no damping. The damping 
of  phase os.ci l lat i ons whi ch you probabl y know occurs when one accel er at es 
i n a proton synchrotron i s due t o the time-var.~ation of  the coef f i ci ents, 
whi ch we have decided to negl ect, and does not appear i n the transf er 
f uncti ons . 

I n the l imi t  of l ow f r equencies, w ~ 0 , one has 

DC characteri sti cs 

corresponding to what we al ready ment i oned i n connecti on wi th the RF 
f requency t ol er ances . One can see f r om ( 2) that (3) i s al so i n good 
approximati on true f or any f requencies of  perturbat i on l ow compared 

wi th w q> • 

Vie may al so l ook at the response t o a uni t i mpul se 
( del ta f uncti on) i n 01. Since the Lapl ace transf or m of  the unit 
impul se i s j ust 1, al l  we need to do i s l ook up the i nverse 
Lapl ace transf orms of  : 
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so we find the response : 

To understand this it is only necessary to see what is 
the physical interpretation of a unit impulse in Ω1 , We jump the 
frequency Ω1 to infinity for zero time, in such a way that the 
integral is 1. This is just equivalent to jumping the phase of 
the RF system by one radian. 

RP in RF out 

A = one radian phase advanced network 

F igur e III 

There is no instantaneous effect on the protons, 
so they find themselves suddenly one radian away from φS and 

S 
start oscillating freely from this initial condition. 

A unit step function in Ω1 can be dealt with by the 
usual techniques too. It also results in undamped oscillations, 
and the only other interesting fact that it discloses is the 
DC shift in ΔR. which we have already calculated twice. 

Clearly one would like to have a beam-control system which 
eliminates these undamped transients. One reason for this is because 
our equations of notion are not, in fact, linear ; consequently such 
oscillations of the bunches as a whole will in time be converted 
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to oscillations of tho partidos within the bunch, so increasing 
the phase-spread and energy spread of the beam. 

The last thing I want to mention before considering a 
closed loop system is the question of noise. Suppose Ω1 contains 
noise : it is, I think, physically obvious that a system whose 
transient response is an undamped sinusoidal is bad from the point of 
view of response to noise, Tho .noise arising in any short interval 
of time will produce a transient .which lasts forever, and all later 
noise will add statistically to it, so the amplitude can be expected 
to increase with time without limit. So one would like to produce 
a system in which the transient response is rapidly damped, so that 
noise would only build up the amplitude to some finite level, for 
at any instant of time only the recently-arrived noise would be 
effective. 

It is perhaps worth remarking that a delta function 
(unit impulse) has a uniform Fourier spectrum, the same as has 
white noise ; so the transient response to a delta function can 
in fact enable one to calculate rather directly the response to 
white noise. More about noise without beam control is in Ref. 2. 

2. CLOSED-LOOP PROPERTIES OF AN RF ACCIiL RATED B E A M 

2.1- Feed-back from _ radial, position ..of the beam 

The first closed loop system that I shall consider is a 
type which we 'do not use on the CPS but is the first type to be 
proposed and used on a synchrotron (Ref. 3) · 

* Noise on Ω1 means, of course some, random F.M. of the acceleration 
frequency programme ; this is not the same as a noise voltage on 
the cavities in addition to tho RF sinusoid. 
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If the main thing that worries us is the big radial 
excursions that result from small errors in the frequency programme, 
the obvious thing is to servo the radial position of the beam. 

Ω 
e Ω 1 

Δφ 

ΔR. 

Radial reference 
signal 

Figure IV 

The radial position of the beam is compared with some 
reference value (which may well be zero if we want to accelerate 
in the middle of the aperture), and the difference is fed back in 
such a way as to change the frequency. There arc many ways of -drawing 
the diagram for such a set-up : note that (to avoid changing the 
formulae that we already have) we have kept Ω1 to mean the frequency 
error applied to the beam and introduced Ω for the error of the 

e 
frequency programme. 
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The radial error signal AR that we detect and compare 
and feed back is of course the average over the individual protons 
in the beam, and it is only this average behaviour that we shall 
bo able to influence directly * by the servo-system that we consider. 

The response of AR to programme errors for this 
closed-loop system is given by the usual formula 

(4) 

where we have μ 2 and where β is within practical limits, 

whatever we care to make li. 

It is clear that to improve the situation with respect to 
programme frequency tolerances we must have a high open-loop gain β μ 2 

at least for all low frequencies (low compared with ωφ ), so one has 
the usual approximate relation for systems with high open-loop gain : 

To give an example, one might make β such that AR 
is, say, 1. cm for a programme frequency error of 1 %, so giving 
reasonable frequency tolerances. 

We already mentioned that the phase-spread and energy-spread of particles 
around the average can be influenced indirectly (by way of the 
non-linearities) : adversely by transients, favourably by a beam 
control system that suppresses transients. 
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Working for the moment in relative units for Ω etc., 
we have then to make : 

We have already seen that for low frequency components 
in the perturbation, we have : 

(at high energies, and 
more near transition) 

So the open-loop is a hundred or more for a useful 
value of /S.What is the transient response of such a system ? 

Putting our expression for μ 2 into (4) we get ; 

If β is just a simple coefficient one can 
conveniently write thus : 

This is of the same form as we had before we chosed the 
loop (2 ) , but with a higher apparent resonant frequency. 

PS/4497 



- 12 -

We have seen 1that t o get anythi ng usef ul  out of the 

f eedback we oust have ~µ2 l ar ge cor,1par od wi th one at low f requoncie s 
2 and thi s amounts t o sayi ng fJb l arge coopared wi th w~ so the 

ef fG ct on the transient behavi our i s j ust t o r ai se the f ree osci l l at i on 

f requency of the systea f roo · WIP t o wr ' and thi s wi l l  be a substanti al  
f actor. The f eedback has not al ter ed the f ac t t hat the t ransi ent r esponse 

contai ns an undaraped osci l l at i on , and docs no t help wi th respect t o 
the noi se prob l en nor the other bad ef f ect s of transient s. 

Wo ar e very ouch i n the si tuat i on of someone who does not 

l i ke t he elasti c osci l l ati ons of  a nechani cal  syst en , so they 

add a oor e povvcrf ul  spr i ng t o the exi sti ng one : thi s i ncreases 

the resonant f requency , and makes the systen ouch sti f f er agai nst 

DC or l ow- f requency f orces , but does not produce any dDD.ping . 

Evidentl y  i t  would be i nter est i ng to consider the case 

where the transf er f uncti on fJ of t he r eturn pa th i s raore compl i cat ed 
than ~ siuple cons t ant coef f i ci ent : i n parti cul ar , one ni ght put 

an i ntegr at i on i n : 

thi s means the f eedback goes t o i nf i ni ty  at zero f r equency, and , ·as 

i s wel l  known , reduces to zer o the DC error 6R associ ated wi th 

a DC or step- f uncti on i n 0 • e 

The stabi l i ty  and transi ent response of  Fig . rl 

wi t h thi s type of p i s ~n i nteresti ng exerci se i n servo- theory 

but we do not have t i ne to di scuss i t  her e. 
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2,2 Phase-Look 

We now consider a system in which we measure Δφ and feed 
this back into the RF frequency, so our block diagram becomes : 

Δφ 

AR 

Figure_v 

We look first at the open-loop gain, which is : 

(5) 

One sees immediately that (unless we include a stage 
of integration in β, to make β go to infinity like ρ or faster 
as ρ approaches zero) this quantity β1 μ 1 0 as ρ → 0 . 

So this form of feedback does nothing about our problem 
of DC frequency tolerances : the at DC is just as bad as it was 

Q 
without the feedback. 
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Before abandoning phase lock on these grounds, lot us 
look at the transient response of this system. One finds very easily : 

(6) 

(7 ) 

Nov; these are interesting, as we have managed to introduce 
a ρ term into the denominators, and this changes the characteristics 
from those of a resonator without damping to those of a damped resonator. 
We can, and in the CPS phase-lock system we in practice do, make β 1 

large enough to have this damping much stronger than critical damping. 
The condition for this is β1 >> ωφ . 

φ 
7 — 1 

The CPS phase-lock system has β1 about 2.10' s , 
while φ is never higher than 5·104 radians/sec, so this is very 
largely satisfied. 

Under these conditions we can factorize this denominator : 

(8) 

with approximately : 
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This is a system with two simple real decaying time-constants. 
Perhaps it is interesting to consider an electrical analogue : I take 
an L-C resonant circuit and damp it by putting a very small resistor 
across it : 

L 

Figure VI 

C 

Nearly all the charge in the capacitor disappears very quickly, 
with time-constant RC« On the other hand the current in the inductor 
will continue to flowfbr a long tine, the time-constant being 

In our case any phase error of the bean nearly all disappears 
very fast, because of the strong feedback : this justifies the expression 
phase-lock for such a system. On the other hand any radial displacement 
of the beam tends to persist with a long time-constant, because the 
feedback results in there being only a very small Δφ to move the bean 
across the chamber. 

On the basis of (6), (7) and (8) and a table of Laplace 
transforms the response of Δφ or ΔR to an impulse or step-function 
in Ω1 can very easily be written down if one wants them. 

The fact that most of the transient in Δφ is very brief 
is particularly interesting from the point of view of the noise problem. 

PS/4497 



- 16 -

Wi th t ho equat i ons we have used t her e i s no l i ni t  t o (J 1 

but i n . pr o.ct i co t her e wi l l  be del ay s and phase-shi f ts whi ch r.mst b e 

t o.ken i nto account at hi gh f r equencies , and l ooked at i n r el at i on 
t o thu st abi l i ty  no.r gi ns of t ho syst er.1 . Thi s has been done by Schnel l  
(Ref . 4) . Ther e i s one vur y i nt er est i ng poi nt a.b out t hi s f or f requenci es 
subs t antial l y  above w~ one can , i n good O.ypr oxir.l at i on , negl ect 

2 
w~ i n any of  the exp:·essi ons t hat vm ho.ve used , and , i n part i cular , 
i n (5) , the l oop gai n , whi ch b ocor:1es : 

thi s does not contai n any r ef er ence t o t ho pr opert i es of t he bean . 

So t he pr obl on of t ho sto.b i l i  t y of our phase- l ock servo i n t ho high 
f requency r egi on who r e t he dolo.ys o.nd phase- shi f ts i n fJ 1 begi n 

t o enter i s j ust t ho sarne whot hur wo servo onto t ho beo.m or servo 
onto sono other RF si gnal . I n t ho CPS , t hi ngs aro arranged so t hat 
when not servood onto t ho bean one i s ser vood ont o t he pr ogr o.ono 

RF i nstead . 

The f act that one has t o t7lake a syst on wi th r easonabl e 
st abi l i ty  na.r gi ns cloos of course nean t hat P1 must be no.de t o f al l  

of f sui tabl y at hi gh f requenci es , nnd set s a l i ni t  t o how big one 
can oake i t at l ow f r equenci es . 

Ono r.mst o.dni t t hat t he hi gh f requency part of t he 

transi ent r esponse , i f  ono wr i tes i t J.own on the basi s of (J1 

bei ng a const ant coef f i c i ent wi t hout f requency dopendanco or 

phase shi f t , wi l l  cer tai nl y  be cooplet ol y r.1i sl oadi ng i n pr acti ce. 

PS/4497 



- 17 -

Since we are soon going to add another loop, and want to avoid 
too much complication, we shall write down the "medium-frequency" 
approximation to some of our expressions. This is done by assuming fβ1 

large and taking only the middle term of our denominators. Then (6) 

and (7) be come : 

(9) 
medium 
frequencies 

With β1 »ωφ OL, this approximation is good over a wide band 
centred (logarithmically) on .ωφ 

2 3 Phase-Look with Radial jPosition Feedback 

Je have shown that phase-lock, with as high as possible a 
feedback coefficient β\ , is good from the point of view of noise, but 
we still have to do something about reducing the response of AR to zero 
frequency or very low frequency perturbations in Ω1 . This is done by adding 
a radial sorvo loop. 

Let us look at things physically for a moment, Suppose 
v;e detect a non-zero ΔR (say positive) and want to bring the beam 
back to ΔR = 0. To do this we shall have to give the beam a bit less 
acceleration for a while. 

There are only two reasonably direct ways of doing this, 
and both were considered for the CPS : 

- a) Reduce the RF amplitude. 

- b) Change the Δφ . 
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The second i s the one we use, and t he onl y one I shal l  
di scuss . 

.Since rve al ready have a phase serv o, the way chosen 
t o change .6cp wi th a r ndial  error signal , wi th some coef f i ci ent { 32 

i s f ed i n at the point r.1arked A on l i 'i g. V. 

Fi rst i t  i s convenient t o draw the phase- l ock syste~ 
r adial l oop open, arranged i n a di f f erent way f rom Fig. V. 

Programme 
error 0 

0 

The transf er f uncti on f rom the i nput .6cp t o the 

output 6R i s : 

Vlo cal l  thi s µ R because we are go i ng to treat i t  

as the f orward gai n of the radial  l oop . 
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Now close the radial loop : 

 

β-2 

Figure VIII 

Radial signal 
reference 

The open-loop gain of this radial loop we look at first, 
for if it is large we can use the large-loop gain approximation, 
which is convenient : 

In the DC case, zero frequency, μ ι is zero and 
μ 2 is , so we have : 

One sees that β2 will need to bo switched from positive 
before transition to negative after, because ' a is negative before, 
positive after. This is physically obvious when one goes back and 
considers what is the purpose of β2 · 
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Let us check whether this zero-frequency open-loop gain of 
the radial loop is in fact large. working for the moment in millimetres 
and kHz, the GPS phase-lock loop has approximately : 

βA = 5 0 kHz/degree 

And the radial error signal is fed back with about : 

β2 = 2 degrees/mm 

so β1 β2 is about 100 kHz/mm. The bunch-frequency change with 
radius, a, is biggest at injection, where it is about : 1 kHz/mm. 
So we have DC open loop gain radial ~ 100 at injection. 

It is more (because a is less) at other energies, and, 
in particular, tends to infinity as transition is approached. 

This very well justifies working in the approximation 
that radial loop gain is high at zero frequency. You will remember 
that we had, for programme errors, before closing the radial loop : 

DC 
Radial loop open 

Closing the radial loop we just divide this by the radial 
open loop gain and get : 

DC 
Radial loop cpLosed 

independent of a. 
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The radial open-loop gain (9) in the medium frequency 
region becomes,: 

If I put in ρ = JΩ and the numbers, and calculate 
the (ω at which this falls to 1/j I find at injection an ω 
corresponding to about 2 kHz, which is fairly well below the 
synchrotron oscillation frequency. At higher energies, except 
the immediate neighbourhood of transition, this is even more true. 

Thus the open-loop gain of the radial servo is small, 
and it has little effect on the behaviour of the system, except 
at the very lowest frequencies where we need it. 

As one may suppose, the radial response when we try 
to change radius is slow with this system (order of 10 ms time-constant 
at top energy). This is less of a disadvantage than one might guess, 
because there is risk of overloading the system if one tries to move 
the radius too fast. 

Suppose I put 20 mm into the radial reference : the first 
thing that happens is that (φref jumps 40° and pretty soon after 
Δφ servoes onto this and the beam starts moving radially at a rate 
determined by the RF working at 40° away from stable phase. 
Evidently the physical limits mean that we could not go much faster 
(especially if it is towards the outside). So there is not much 
interest in considering trying to get a faster time-constant in 
the radial response. 

H. G-. Hereward 
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