
Available on CMS information server CMS CR -2022/273

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
07 December 2022 (v4, 19 January 2023)

RPC Phase-2 Link System Remote Programming
for the CMS HL-LHC Upgrade

Behzad Boghrati for the CMS Muon Collaboration

Abstract

The high luminosity LHC upgrade of the CMS RPC electronics system for the low-eta region includes
the RPC link system upgrade and back-end electronics. The link system, as an off-detector electron-
ics, comprises control boards and link boards. The electronics will be installed in the Compact Muon
Solenoid (CMS) tower racks in the underground experimental cavern (UXC), and during the exper-
iment run, there will be no access to these cards. Therefore, any further Field Programmable Gate
Array (FPGA) firmware modification could only be carried out by remote programming techniques.
Moreover, FPGA firmware must be designed to detect failures and automatically keep flashbacks of
the original configuration memory. This work will explain how the remote programming procedure is
implemented into the link system and how the RPC back-end electronics will handle it.

Presented at RPC2022 XVI Workshop of Resistive Plate Chamber and Related Detector at Cern in Sept. 2022



RPC Phase-2 Link System Remote Programming for the CMS HL-LHC Upgrade

M. Ebrahimia,
on behalf of the CMS Muon Group

aSchool of Particles and Accelerators Institute for Research in Fundamental Sciences (IPM) P.O. Box 19395-5531 Tehran Iran.

Abstract

The High-Luminosity LHC upgrade of the Compact Muon Solenoid (CMS) RPC electronics system for the low-η region includes
the RPC link system upgrade and back-end electronics. The link system, as an off-detector electronics, comprises control boards
and link boards. The electronics will be installed in the CMS tower racks in the underground experimental cavern (UXC), and
during the experiment run, there will be no access to these cards. Therefore, any further Field Programmable Gate Array (FPGA)
firmware modification could only be carried out by remote programming techniques. Moreover, FPGA firmware must be designed
to detect failures and automatically keep flashbacks of the original configuration memory. This work will explain how the remote
programming procedure is implemented into the link system and how the RPC back-end electronics will handle it.

Keywords: Phase-2 Upgrade, RPC Link System, RPC back-end electronics, Slow Controller, Remote Programming, FPGA
PACS: 0000, 1111
2000 MSC: 0000, 1111

1. Introduction

The present Resistive Plate Chambers (RPC) cover the pseu-
dorapidity (η) region below 1.9 in the CMS experiment [1].
RPC chambers use between three and eighteen on-detector
frontend electronics boards (FEB) [2]. The fired RPC strip
signals are amplified, discriminated, shaped, and transferred to
low-voltage differential signals (LVDS) by the FEB. The LVDS
signals are transmitted to the off-detector electronics known as
the RPC link system through twisted pair round cables. In
the link system, a time-stamp is assigned to every incoming
hit signal, and together with the strip number, they are sent
to the next trigger layer. This system will be functional until
the end of LHC Run3 data taking, when they will be replaced
by brand new electronics for the High-Luminosity LHC (HL-
LHC) "Phase-2" upgrade [3].

The new link system [4], similar to the legacy link system [5,
6], contains 216 control boards (CB) and 1376 link boards (LB).
Every CB and three/six/nine LB are shaping a link system card
pack and installed into a customized VME crate called Link
Board Box (LBB). Figure 1 shows the final prototype of the new
link system card packs. The electronics have been designed
using the Xilinx Kintex-7 FPGA device and coded with a high-
level hardware description language (VHDL). Using this FPGA
family, it is feasible to achieve the main goals of the link system
upgrade, which are to improve the timing resolution of the RPC
muon hit to 1.56 ns and to meet the HL-LHC requirements by
enhancing the data transmission bandwidth to 10.24 Gbps.

The RPC architecture for the Phase-2 upgrade is shown in
Fig. 2. The new link system will be installed in the CMS un-

Email address: ebrahimi@ipm.ir (M. Ebrahimi)

Figure 1: RPC Phase-2 link system card pack prototype

derground cavern tower racks and run in a radiation environ-
ment. As a result, the link board and control board firmware
must be mitigated for radiation effects such as bit flip in the
digital flip-flops, SRAM and configuration memory, known as
a single event upset (SEU). Moreover, there will be no access
to these electronics during the physics run. In case of necessity
for FPGA firmware modification, it is neither feasible to access
UXC nor to plug a programmer into every single board. The
only bridge between the link system in the cavern and the con-
trol room on the surface is the RPC back-end electronics (BEE),
as shown in Fig. 2. Therefore, using the RPC BEE and develop-
ing an FPGA remote programming technique for the link board
and control board is essential.

2. The link system remote programming concept

The main idea for remote programming is to program the
link system FPGA through the RPC back-end electronics (Fig.

Preprint submitted to Nuclear Instruments and Methods in Physics Research A January 18, 2023



Figure 2: RPC Phase-2 upgrade architecture and Layer-1 trigger.

3). In this way, each FPGA receives the new configuration from
BEE in bytes format, called updated bitstream. It stores them in
a specific location on the external flash memory, known as the
update image area. After transferring all bytes to the updated
image area, back-end electronics inform the FPGA that the file
transmission is completed. In the next step, FPGA reboots and
reconfigures itself from the updated image area.

To secure FPGA not booting from a corrupted updated image
file, the FPGA must be able to reliably fallback and configure
from a well-proven old working version called the golden im-
age area. Typically, the golden image area is always kept the
same to ensure its known good condition for all cases. In Xil-
inx FPGA, conventional remote update solutions use the FPGA
built-in MultiBoot and Fallback features. The MultiBoot fea-
ture enables the FPGA to selectively load a bitstream from a
specified address in flash memory. If the FPGA detects a con-
figuration error, the Fallback feature resets the FPGA. It retries
the configuration from address zero of the flash memory that
keeps the beginning address of the golden image area [7].

The main drawback of this method is that it takes twice the
standard configuration time to detect a failure in the updated
image area and reconfigure FPGA with the reserved golden bit-
stream. Indeed, this programming solution only relies on the
FPGA try-and-recover method, which can degrade the system’s
reliability. To have a reliable and robust programming solution
and quick FPGA configuration time, we assigned the program-
ming operation through the programming algorithm for the bit-
stream update process. Part of this programming algorithm is
implemented in BEE, and other parts are deployed on the con-
trol and link boards. In this solution, after verifying that the
updated bitstream is correctly received and stored in the flash
memory, the critical switch word is set to ON, which means
FPGA should jump to the updated bitstream area. Otherwise,
the critical switch word stays on its default OFF value that con-
ducts FPGA to load its configuration from the golden image
area.

3. Remote programming handler in the RPC back-end
electronics

As already mentioned, the only bridge between the link sys-
tem and the control room is the RPC back-end electronics

Figure 3: Slow Control and Remote Programming Chain. From the top, The PC
software and update bitstream file generator, RPC back-end electronics, control
board, and link board.

2



Figure 4: GBT link 120-bit frame format (top), 80-bit remote programming
payload carried out by the GBT link user data field (bottom).

Figure 5: GBT frame exchanges between Slow Controller (left) and Control
Board (right).

(Fig. 3). These systems are connected via optical links. The
radiation-mitigated firmware in the control board and link board
is implemented into the FPGA. Three parts of the firmware mit-
igation solution in the control board are using triple modular
redundancy, internal scrubbing, and a robust data transmission
line coding that allows the correction of bursts of errors caused
by SEU.

The CERN standard GBT link encoding is deployed in the
control board FPGA to keep the data transceiver SEU tolerant.
In practice, a sequence of up to 16 consecutive incorrectly re-
ceived bits can be corrected by the GBT link encoding. In the
GBT link protocol, every 88-bit transmitted data requires an ex-
tra 32-bit code, known as Forward Error Correction (FEC), for
error recovery at the receiver side. The GBT link frame (Fig.
4) comprises 120 bits, including 4 bits of the frame header (H),
4 bits of slow control (SC), 32 bits used for FEC, and 80 bits
for user data. This frame is transmitted on every bunch crossing
(25 ns), resulting in a line data rate of 4.8 Gbps.

The same line encoding and interface must be implemented
in the RPC back-end electronics, which firmware is previously
tested and validated on the KC705 evaluation board. This
firmware is called "slow controller". Three kinds of functional-
ities or commands have been developed for the slow controller.
Command type A is dedicated to reading and writing the link

system and FEB parameters; type B reads the link system his-
tograms, diagnostics, and data monitoring; command type C is
for remote programming. These command types are supervised
by the Slow Controller State Machine (SC-SM).

Regarding remote programming, the main scope of this
work, when a command of type C is issued, the following steps
are executed by the slow controller and the control board state
machines:

1. At the beginning, an 80-bit remote programming payload
(Fig. 4, bottom) carried out by the GBT link (Fig. 4, top),
and containing

(a) remote programming instruction opcode “00100” (5-
bit),

(b) reserved bits R3 and R4 (2-bit) “00”,
(c) bitstream length (21-bit),
(d) 40 bits don’t-care (’X’) data payload,
(e) reserved bits R1, R2, R5, and R6 with "0" content,
(f) control or link board selection bit (CB/LB) set to "0",
(g) link board address (4-bit) set to "0000", and
(h) type C command (3-bit) set to "011"

is sent continuously by the back-end electronics to the con-
trol boards (Fig. 5, top-left).

2. Once the control board receives the GBT frame and its
80-bit remote programming payload, it erases the update
area in the flash memory, and responds to the back-end
electronics with an identical as a received frame, except
for R3 and R4 2-bit changes from “11” to “00” to inform
that the remote programming command is received, and it
is ready to receive the rest of the bitstream file.

3. When the back-end electronics receives a reply from the
control board, it sends the length of the bitstream and the
first data word (32-bit) that should be stored in the first
memory address in the flash update area.

4. After the control board receives a new GBT frame, it stores
the bitstream in the external flash memory. In response, it
decrements the bitstream length and sends it back to the
back-end electronics.

5. This procedure will continue until the last word of the bit-
stream, which bitstream length reaches the one; this state
is shown in Fig. 5 by index N-5. Once the control board
receives the last bitstream word, it replaces all fields of
frames with ones and sends the GBT frame back to the
back-end electronics.

6. By receiving the last GBT frame with all fields set to one,
the back-end electronics realizes that the control board has
received all the words of the bitstream file. Therefore, it
sends the last received frame again to the control board
to inform that the data transmission is completed (Fig. 5,
index N-3), and then it goes to the idle state (Fig. 5, index
N-2).

7. Once the control board receives the GBT transmission
completion frame, it arrests the reset pin of the FPGA for
reloading its configuration memory from the new update
bitstream file (Fig. 5, index N).

3



Figure 6: Schematic representation of the firmware of the control board state
machine (CB-SM) and the Serial Flash Programmer (SFP) in the control board.

4. The link system remote programming firmware

The control board firmware comprises

1. the CB state machine,
2. the GBT link transceiver,
3. the serial flash programmer (SFP),
4. the RPC FEB controller,
5. the clock manager and jitter cleaner,
6. the ADC controller, and
7. the front panel bus controller.

In remote programming, like other slow control commands, the
frames and bitstreams are received by the GBT link receiver
and processed by the CB state machine. The CB-SM manages
the SFP to erase, verify, and reprogram the external flash mem-
ory update area with the newly received bitstream. Figure 6
illustrates the schematic representation of the firmware of the
CB-SM, SFP controller, and connection of the external flash
memory to the SFP interface ports.

In the control board, once the remote programming com-
mand is received, the CB-SM enables the SFP controller by
setting the Reset/Enable input to logic low and waits until the
SFP Erase-ok flag is set to logic one (Fig. 7, top). After com-
pleting this state, the SFP Erase-ok, check ID, and Ready status
flags are set to the logic one (Fig. 7, middle) to show that the
update area of the flash memory is erased and SFP is ready to
receive the new update bitstream file. The CB-SM checks the
status of these flags, and when it realizes that all of them are
active, it gives the green light to the slow controller to send the
new update bitstream file.

In practice, we prefer to minimize the programming time for
which, instead of sending one frame from the slow controller to
the CB, a burst of 1024 frames is sent. In the control board, the
GBT link receiver buffers the received data to the FIFO mem-
ory. Once something is written into the memory, its empty flag
changes and informs the CB-SM that new data is available. In
the next step, the CB state machine reads the FIFO memory

Figure 7: SFP controller output status flags. On the top, the SFP controller
is erasing the flash update area. For this reason, the Ready/Busy flag (row
6) shows logic low. In the middle, the flash is erased (row 3), and the SFP
controller is ready (row 6) for a new command. At the bottom, the flash is
programmed (row 5) and verified for zero error (row 7), and the SFP controller
is ready for further requests (row 6).

and transfers each word to the flash update area. When the en-
tire update bitstream is transferred to the CB flash memory, the
corresponding cyclic redundancy check (CRC) value calculated
by the PC software is written on the last location of the flash up-
date area.

Finally, the SFP controller checks the entire update area, cal-
culates the CRC value of the received area, and compares it
with the primary CRC value to ensure that the new update area
is error-free. The SFP controller changes the critical switch
word to the ON value to complete the programming process.
Additionally, it sets the program-ok flag to logic one (Fig. 7,
bottom) to inform the CB state machine that programming the
flash update area with the new update bitstream had been suc-
cessful. Once the CB-SM realizes that the flash update area is
programmed correctly with a new bitstream file, it arrests the
FPGA reset pin to force it for reconfiguration. As a result of
this warm boot, the FPGA reads the first location of the flash
memory, and due to the critical switch word being ON, it jumps
to the update area and reloads the FPGA configuration memory
with the new update area.

The remote programming of the link board FPGA is iden-
tical. In this case, the update bitstream is forwarded to the
destination link board through the front panel bus controller
and the front panel PCB board. The data transmission between
these electronics is under the supervision of the front panel con-
trollers, which are implemented in FPGA firmware.

4



5. Conclusion

The new Phase-2 RPC link system will be installed in the
CMS UXC tower racks and run in a radiation environment.
During the HL-LHC run period, it is mandatory to be able to
access these electronics remotely and, in case of necessity, up-
date their firmware. This work explains the firmware and the
link protocol for the RPC link system and back-end electron-
ics. This firmware has been tested on the last version of the link
system prototypes and the RPC back-end electronics emulator,
called the slow controller. The total time needed for remote
programming of an FPGA is less than a few seconds.

6. Acknowledgements

We would like to acknowledge the enduring support for the
Upgrade of the CMS detector and the supporting computing in-
frastructure provided by the following funding agencies: FWO
(Belgium); CNPq, CAPES and FAPERJ (Brazil); MES and
BNSF (Bulgaria); CERN; CAS, MoST, and NSFC (China);
MINCIENCIAS (Colombia); CEA and CNRS/IN2P3 (France);
SRNSFG (Georgia); DAE and DST (India); IPM (Iran); INFN
(Italy); MSIP and NRF (Republic of Korea); BUAP, CINVES-
TAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); PAEC
(Pakistan); DOE and NSF (USA).

References

[1] CMS Collaboration, The CMS experiment at the CERN LHC, JINST 3
(2008) S08004. doi:http://dx.doi.org/10.1088/1748-0221/3/08/S08004.

[2] M. Abbrescia, et al., New developments on front-end electron-
ics for the cms resistive plate chambers, Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrome-
ters, Detectors and Associated Equipment 456 (1-2) (2000) 143–149.
doi:http://dx.doi.org/10.1016/S0168-9002(00)00980-3.

[3] CMS Collaboration, The Phase-2 Upgrade of the CMS Muon Detectors,
CERN-LHCC-2017-012 CMS-TDR-016 (2018).

[4] B. Boghrati, et al., CMS phase-2 upgrade of the RPC Link Sys-
tem, JINST 16 (2021) C05003. doi:http://dx.doi.org/10.1088/1748-
0221/16/05/C05003.

[5] K. Bunkowski, et al., Diagnostic tools for the rpc muon trig-
ger of the cms detector-design and test beam results, IEEE
Transactions on Nuclear Science 52 (6) (2005) 3216–3222.
doi:http://dx.doi.org/10.1109/TNS.2005.860174.

[6] K. Bunkowski, et al., Synchronization methods for the pac rpc trigger
system in the cms experiment, Measurement Science and Technology 18
(8) (2007) 2446–2455. doi:http://dx.doi.org/10.1088/0957-0233/18/8/020.

[7] R. Kuramoto, Quickboot method for fpga design remote update, Xilinx
Application Note: 7 Series FPGAs XAPP1081 (v1.1) (2013) 1–41.

5


