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Reconstructing the trajectories of charged particles from the collection of hits they leave in the
detectors of collider experiments like those at the Large Hadron Collider (LHC) is a challenging
combinatorics problem and computationally intensive. The ten-fold increase in the delivered lu-
minosity at the upgraded High Luminosity LHC will result in a very densely populated detector
environment. The time taken by conventional techniques for reconstructing particle tracks scales
worse than quadratically with track density. Accurately and efficiently assigning the collection of
hits left in the tracking detector to the correct particle will be a computational bottleneck and
has motivated studying possible alternative approaches. This paper presents a quantum-enhanced
machine learning algorithm that uses a support vector machine (SVM) with a quantum-estimated
kernel to classify a set of three hits (triplets) as either belonging to or not belonging to the same
particle track. The performance of the algorithm is then compared to a fully classical SVM. The
quantum algorithm shows an improvement in accuracy versus the classical algorithm for the inner-
most layers of the detector that are expected to be important for the initial seeding step of track

reconstruction.

INTRODUCTION

The Large Hadron Collider (LHC) is currently the
highest energy particle collider in the world. It accel-
erates beams of protons to almost the speed of light and
then collides them at a centre-of-mass energy of 13.6 TeV
at the centre of large, multi-purpose particle detectors
that are designed to reconstruct the outcome of those
collisions. Among the key physics objectives of the LHC
are precise measurements of the properties of the Higgs
boson, shedding light on the elusive particle(s) that may
constitute dark matter, and searching for a wide breadth
of new physics phenomena beyond the Standard Model
(SM) via exotic decay signatures like long-lived particles.

To attain these physics goals, the LHC is preparing
for an upgrade that will deliver an order of magnitude
more data to the experiments by increasing the intensity
of the proton beams, resulting in a higher instantaneous
luminosity and thus many more collisions taking place ev-
ery time the proton bunches cross [I]. At this upgraded
High Luminosity LHC (HL-LHC) the number of concur-
rent, overlapping proton-proton interactions (pileup) is
expected to reach up to 200, a significant increase from
the current average pileup of 40. Such a step change in
the running conditions of the collider will significantly
increase our capabilities to fulfil the goals of the LHC
programme. However, it also presents challenges. The
significant increase in detector occupancy will impact
the performance of the entire pipeline, including data ac-
quisition, processing, and analysis, as well as simulating

the collisions in the detector. This presents significant
overhead on the computational resources, with some el-
ements, such as reconstructing charged particle trajecto-
ries, becoming a major bottleneck.

To address these high demands on the computational
resources, numerous approaches are being pursued, rang-
ing from the development of more efficient algorithms
and the application of state-of-the-art machine learn-
ing techniques to the use of graphics processing units
(GPUs) [2, B] to execute code that is parallelizable.
One of the intriguing new avenues being pursued to
tackle these challenges is quantum computing. This new
paradigm offers a fundamentally new form of computing
by leveraging the phenomena of quantum mechanics and
opens the prospect of significantly speeding up our cur-
rent algorithms and performing calculations that could
only be done to some approximation with classical com-
puters.

Particle physics has seen a surge of interest in ascer-
taining how quantum computers may impact the future
of the field and establishing the scenarios in which they
may be most advantageous. The current Noisy Interme-
diate Scale Quantum (NISQ) devices [4], while a stepping
stone on the way to universal, fault-tolerant quantum
computers, have enabled many of these proof-of-principle
studies to be performed. This exploratory phase of ap-
plying current NISQ era quantum computers to challeng-
ing problems in particle physics will pave the way for the
emergence of new ideas and techniques needed to fully
exploit quantum computation and identify the specific
problems for which they are most suitable.



Quantum computing algorithms have been studied for
a range of different scenarios in high energy physics. The
calculation of simple scattering processes via the helicity
spinor formalism and the simulation of a parton shower
was demonstrated in [5]. A quantum walk framework was
proposed in [6], demonstrating that the parton shower is
more naturally and efficiently simulated using a quan-
tum walk in two dimensions. Quantum computing has
also been applied to jet clustering [7HI], classification of
collisions of interest from those that are not [T0HI2], and
anomaly detection in searches for new physics [13].

The challenging task of connecting the hits left by
charged particles in the tracking detector and associat-
ing them with the same particle has been studied from
several different perspectives including: quantum asso-
ciative memory to store all the different track patterns
and subsequently employ Grover’s search algorithm to
search through the database and recall the right track
pattern [I4]; quantum graph neural networks [I5] [16];
and quantum annealing devices to minimise an objective
function [I7HIY).

This paper approaches the problem of track recon-
struction by proposing a hybrid quantum-classical al-
gorithm that uses a support vector machine with a
quantum-estimated kernel. The problem is decomposed
into that of classifying short segments of tracks. Often
such segments can form the ‘seeds’ for extrapolating to
the full trajectory of the track. This ‘seeding’ step is
expected to be a large consumer of CPU time at the
HL-LHC [2]. Simplifications are implemented to fit the
limitations of the presently available quantum simulators.

DATA PREPROCESSING

This study utilises the TrackML dataset [20] 2I] which
has been widely used for proof-of-principle studies of clas-
sical machine learning algorithms and quantum-based
approaches. The dataset provides a simplified simula-
tion of the detector geometry and conditions expected
at the HL-LHC. It features a silicon tracking detector
with 9 cylindrical layers in the central region and disk
geometry in the forward regions, which is typically rep-
resentative of the ATLAS [22] and CMS detectors [23)].
The detector is segmented into three sub-detectors dif-
fering in their spatial resolution, with the inner pixel de-
tector comprising of 4 layers, followed by a short strip
detector of 4 layers and then a 2-layer long strip detec-
tor. These tracking detectors are immersed in a strong
magnetic field aligned with the direction of the proton-
proton beam, so charged particles moving through these
detectors will typically follow an approximately helical
trajectory and show curved trajectories in the transverse
x — y plane, the plane perpendicular to the beam line.
Figure[I| shows the layout of this virtual detector used to
produce the TrackML dataset and the coverage of each

sub-detector in the » — z plane, where r is the radial di-
mension and measures the distance from the beam line
and z is the distance along the beam line. For the analy-
sis in this paper, only the hits in the barrel region of the
detector are used to reduce the total number of hits to a
level that can be processed within the current computa-
tional constraints.

r [mm)

FIG. 1. A schematic of the virtual general-purpose detector
simulated in the TrackML challenge and the coverage of each
sub-detector in the r-z plane. Highlighted is the barrel region
used in the analysis. The numbers indicate the various de-
tector components and layers respectively. Original image is
taken from [20].

The TrackML dataset contains 10,000 simulated
events. The process of interest is top-antitop production
and overlaid on this ‘signal’ are 200 additional proton-
proton collisions to simulate the conditions expected at
the HL-LHC. This results in an average of 100,000 hits
per event in the tracking detector which must be associ-
ated with approximately 10,000 tracks.

The 3-dimensional spatial information for every hit in
the detector is provided and this information is used to
build the track candidates. The total number of possi-
ble combinations of those hits that can lead to a track
is very large. Identifying the correct combination of hits
that reconstruct the true trajectory of a particle is thus a
challenging combinatorics problem. Figure [2] illustrates
this by showing all hits for an event in the z—y plane of
the detector and a fraction of true reconstructed tracks
formed from a combination of those hits. To avoid un-
physical hit sequences which would dominate the result-
ing dataset, selection criteria are applied to reduce the
number of possible connections between hits in each event
such that they can be processed without overburdening
the computational resources. In addition, the problem is
formulated as a classification task, with track segments
consisting of a set of 3 hits in adjacent layers of the de-
tector, called triplets, being classified as belonging to a
single particle track or not.

The hits are described by three coordinates; r, ¢, and
z, where ¢ is defined as the angle around the z axis. A
total of 300 events have been processed for classification.
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FIG. 2. The 6518 hits in an example event in the z—y detector
plane (top) and a fraction of the true tracks reconstructed
from those hits (bottom). The hits come from 879 particles
which produced triplets in the barrel region. The 10 layers of
the detector for the barrel region are also shown. The blue,
red, and green layers correspond to the pixel, short strip and
long strip detectors, respectively.

The first step in constructing the triplets is to make a
dataset of doublets, which are defined as two consecu-
tive hits in the detector. Selection criteria are applied
to reduce the size of the doublet dataset and improve its
quality. The following observables are used in the selec-
tion; the intercept from the extrapolation of the doublet
to the z axis, zg, and the ratio %, as calculated from
the difference in ¢ and r between each hit forming the
doublet. This selection is summarised in Table[l] and was
originally implemented in [24].

The selection of triplets is based on the estimation of
the transverse momentum (pr) as determined from the
three hits, the 6-breaking angle and the ¢-breaking angle.
The angle 6 is defined in the r-z plane and a breaking
angle is that between the straight lines (connecting the

two hits in a doublet) of two doublets that form a triplet.
The triplet selection is summarised in Table [[I}

Variable ‘ Selection
X2 |<6x 10" [2d]
| z0] < 100 [mm]

TABLE I. The selection criteria applied to select doublets,
using the zp intercept from the extrapolation of the doublet
to the z axis and the ratio of the difference in ¢ and r between
each hit forming the doublet.

Variable Selection
f-breaking angle|< 0.05 — 0.07 [rad]
¢-breaking angle|< 0.05 — 0.12 [rad]

pr > 0.75 [GeV]

TABLE II. The selection criteria applied to select triplets
based on the estimated pr and the 6 and ¢ angles between two
doublets that form a triplet. A range of values is given when
the selection depends upon detector components traversed.

SUPPORT VECTOR MACHINE

The proposed algorithm utilises a support vector ma-
chine (SVM) [25], where a kernel function is calculated
either on a (simulated) quantum or a classical computer.
A support vector machine is a supervised machine learn-
ing algorithm that classifies data by drawing linear deci-
sion boundaries (hyperplanes) between different groups
of data. This paper focuses on discriminating between
two classes of data. It takes a training dataset of size
N of the form (x!,4'),..., (x",y"), where x* is an M-
dimensional vector and y’ = +1 for data that belongs
to one of two classes. The hyperplane is defined by
(w-x) + b =0, where w is the normal vector to the hy-
perplane and b is an offset. These parameters are deter-
mined during the learning process. For the simple case of
linearly-separable data, the training points x* of the two
classes are placed on either side of the decision boundary,
satisfying f(x') = sign ((w - x*) +b) = y;, where f(x) is
called the decision function. The points closest to the
hyperplane are called support vectors and the distance
between them and the hyperplane is called the margin.
The goal is to optimise the parameters of the hyperplane
such that the margin is maximised. Figure [3|shows a vi-
sual representation of this. Once the hyperplane has been
found, a previously unseen data point z can be classified
using the decision function.

The decision boundary is usually defined not in the
original data space but in a higher-dimensional feature
space obtained with a feature map ¢(x). This can intro-
duce non-linearity whilst keeping the decision boundary
linear. The goal of this operation is to achieve better



FIG. 3. A visual representation of two classes of data in a 2-
dimensional space, separated by a hyperplane (w-x)+b (solid
line). The highlighted points lying closest to the separation
plane are called support vectors and the dotted lines passing
through them define the margins.

separation of the two classes. Figure [4] shows a sim-
ple example of a feature map’s functionality. SVMs
are an example of a kernel method, where the kernel
k(x,y) = (¢(x)-¢(y)) is a function with arguments in the
original space of the data, defining a distance measure
between two points in the feature space. The remark-
able property of this function is that it returns the inner
product in the feature space, sidestepping the explicit
application of the feature map, which can become com-
putationally expensive for sophisticated feature spaces.
In support vector machines, this property can be utilised
to find the separation hyperplane. This is possible be-
cause linear learning machines can be expressed in a dual
representation, following the Karush-Kuhn-Tucker the-
ory [26]. During the optimisation of the dual problem,
one needs to find a kernel matrix Ky, = k(x,y) (an
N x N symmetric matrix) from all pairs of training data
points. Expressed in its dual form, the decision function
becomes:

N
y(x) = sign (Z yialk(x!, x) + b) , (1)
i=1
where o' are the coefficients which need to be opti-
mised. Just like quantum computing, kernel methods
perform implicit computations in a possibly intractably-
large Hilbert space through the efficient manipulation of
data inputs.

QUANTUM KERNEL ESTIMATION

Quantum computers can be utilised in kernel methods
if one considers a quantum circuit U (x) whose gates are
parametrised by the original features of some classical
data. The result of such a circuit before measurement
is a quantum state which exists in a higher-dimensional
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FIG. 4. A visual representation of a simple feature map

that takes an inseparable dataset in one-dimension to a two-
dimensional feature space. Separation with a linear hyper-
plane is possible in the new feature space.

Hilbert space. This is equivalent to a feature map. The
quantum state is defined as [27]:

x = p(x) = [$(x)) (Y ()], (2)

where |-) denotes the usual Dirac vector and p(x) is ob-
tained via

p(x) = U(x)pold (%), 3)

with an initial state pg. An all-zero initial state is used
with [1) = |0®M). The kernel associated with such a
feature map is obtained from [28§]:

k(z,%) = tr{p(2)p(x)} = [(W(@)(x)[*.  (4)

This inner product can be calculated from the transition
amplitude of two states;

(W@ [N = [0 U (@)U 0=)[*. (5

The circuit UT(z)U(x)|0®M) is run repeatedly over R
identical runs (shots). The fraction of measurements
yielding an all-zero output gives an estimation of the ker-
nel function for the two points x and z, which forms an
entry in the kernel matrix. Repeated evaluations for all
combinations of the input dataset give the full kernel ma-
trix. Similar states have large kernel matrix entries while
orthogonal points give k(x,z) = 0.

Feature maps of particular interest are those that are
difficult to calculate using classical means whilst provid-
ing good classification of data. Ideally, a kernel matrix re-
sulting from Eq. [ would produce results better than any
classical classifier and be calculated significantly faster on
a quantum device. The kernel function proposed in [28§]
is based on the 3-fold forrelation (‘Fourier correlation’)
problem [29]. The function is conjectured to have an
exponential separation in complexity between its quan-
tum and classical estimation. Further discussion of the
potential for speedup is presented later.



The kernel-generating circuit is of the form U(x) =
U¢(X)H®MU¢(X)H®M where H is the Hadamard gate
and

iy esx)[[2i]- (6)

SC[M] i€s

U¢(x = exp

Z; is a gate rotating the i-th qubit around the Z axis
on the Bloch sphere by an amount defined by ¢g(x). S
denotes a subset of qubits. Only subsets with |S| < 2 are
considered. The circuit for kernel estimation with U(x)
in the case of 3-dimensional data is shown in Fig.[5| Ideas
for generalising the circuit have been proposed in [30] and
[31]. Following the latter, we implement unitaries of the
form:

Upx) = exp | ia Z d)S(X)Haf , (7)
SC[M] i€S

where 0% € X,Y, Z and « is a constant factor to regulate
the degree of rotation of the qubits. An example of Ugx)
for 3-dimensional data can be found in Fig. [6]
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FIG. 5. Quantum circuit diagram used to estimate the kernel
and determine the inner product between two quantum states
shown for data with three features.

This quantum-estimated kernel is then used as input
to a classical support vector machine which performs the
training and classification. The full circuit thus takes
events of dimension M and projects them into an 2M-
dimensional quantum space where the hyperplane sepa-
rating the two classes of data is calculated.

RESULTS

Results from the quantum-enhanced algorithm pre-
sented in this section were obtained with o = 0.1,
or(x) = x, of = Z for single qubit rotations and
P1m(x) = (7 — @) (T — T), 0f,,, = Y1¥y, for two-qubit
rotations. These were compared to an RBF kernel [32],
defined as Kppp(x,z) = exp (—y|x — z[|?) with v = 1.
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FIG. 6. Circuit diagram used to calculate Uy(x) in the full
circuit, shown for a datapoint with three features, which cor-
respond to the spatial coordinates of a single hit in the track-
ing detector. The single-qubit gates are shown in pink and
two-qubit gates in blue.

To reduce generalisation error and model complexity, a
regularisation term C' can be included into the optimisa-
tion loss function. The optimal coefficients and classical
kernel type were found using a grid search [33] with cross
validation and a parameter scan optimising for valida-
tion score and training time. Large values of C result
in a larger penalty for overfitting. The optimal value of
C = 10° determined from this optimisation procedure
was used in both the classical and quantum kernels.

The metrics used to quantify the performance of the
classifiers are defined below, through the confusion ma-
trix shown in Table [IIl

‘ Predicted positive ‘ Predicted negative

Actual positive | True positive (TP)|False negative (FN)
Actual negative|False positive (FP)|True negative (TN)

TABLE III. Confusion matrix used in defining the perfor-
mance metrics for the classifiers used in triplet recognition.

Accuracy = TP+TN (8)
Y = TPYFPLTN4+FN’
. TP
EfﬁClenCy = m, (9)
TP
Purity = ——. 1
urity TPLED (10)

A good model is expected to score high in all three met-
rics. Accuracy gives an overall percentage of correct
guesses, efficiency is the fraction of actual true objects
correctly recognised and purity measures how often the
model mistakes a fake object for a true one.



Full detector triplets

The dataset used in the classification consists of
triplets that passed the preprocessing step described
above, which ensures a sample purity of 52% and 80%
for doublets and triplets, respectively and a 99% sample
efficiency in both datasets. An average of 4,600 triplets
remain per event. The spatial coordinates of each hit
in the triplet are used as the input data to the hybrid
algorithm. This results in a 9-qubit circuit. To accom-
modate the dataset into our current computational con-
straints, it is further divided into 16 equal sections in the
¢ plane, with each section subtending 21% radians in ¢. A
support vector machine is then defined for each of these
regions and the relevant quantum kernel estimated. The
data is divided into 50 events for training and 15 events
for testing, equivalent to a total of around 230,000 and
70,000 triplets, respectively. The performance of both the
classical algorithm and the quantum algorithm are eval-
uated using the three metrics defined above; accuracy,
efficiency and purity. Furthermore, since the preprocess-
ing step selects triplets that are more likely to form track
candidates, a benchmark scenario is introduced to illus-
trate the performance of the classical and quantum al-
gorithms on top of the preprocessed data. Triplets are
randomly selected from the dataset and the classical and
quantum classifiers are compared against this benchmark
to demonstrate the improvements in classification accu-
racy.

Figure [7] shows the dependence of the efficiency and
purity scores on relevant geometric and kinematic prop-
erties of the triplets; the angle ¢ of the first (innermost)
hit of the triplet, the pseudorapidity |n| of the triplet,
the true pr of the triplet, the number of true particles in
the event (particle multiplicity), and the number of hits
corresponding to a true track (track length). For fake
triplets, there is some ambiguity in determining the true
pr and track length, as the three hits can come from three
separate particles. In such cases, the choice was made to
define these variables using the particle associated with
the first hit. The two classifiers show mostly comparable
performance and a similar dependence on the observables
defined above. Efficiencies close to 1.0 are achieved for
most bins. Reduced values of the purity are observed in
regions with reduced number of triplets for training, such
as high-n and high-py. The accuracy scores of the clas-
sical and quantum algorithms as a function of the size
of the training data are shown in Fig. The training
size grows up to the computational limit imposed by the
quantum simulator. Whilst the overall performance of
the two algorithms follows a similar trend, the classical
algorithm performs slightly better at low training size
and the quantum algorithm shows a small advantage for
training size above 6,000 triplets. Both algorithms signif-
icantly outperform the benchmark scenario of randomly
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FIG. 7. Track reconstruction efficiency and purity for triplets
in the barrel detector as a function of ¢, |n|, pr, particle multi-
plicity, and the number of hits associated with the track (track
length). These are compared for the quantum-estimated ker-
nel and the classical kernel.

selecting triplets.

It is also instructive to study the performance of these
algorithms for different layers of the detector, as the de-
tector occupancy progressively decreases from the inner
to the outer layers. Figure [9] shows the comparison be-
tween the quantum and classical algorithms for the effi-
ciency and purity in layers 1-9 of the detector. While the
efficiency and purity are similar between the two algo-
rithms for the full detector, the largest difference in pu-
rity occurs for triplets identified in the first layer of the
detector (the first hit is in the first layer). Since triplet
formation is part of the seeding step used in many track
reconstruction algorithms, we study the performance of
our algorithms for triplets identified in the inner detector,
with the first hit being in the first layer of the detector.
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FIG. 9. Efficiency and purity as a function of the detector
layer, starting from the innermost layer nearest the centre of
the detector. Layers 1—4 correspond to the pixel detector,
layers 5—8 belong to the short strip detector and layers 9 and
10 are the long strip detector. Triplets are binned by their
innermost hit.

Innermost triplets

This section presents results when restricting the clas-
sification of triplets to those in the innermost layers of
the tracking detector, with the three hits of a triplet in
the first three layers. The reduction in the total number
of triplets per event allows more events to be processed
before reaching the computational limit. The dataset
is split into 240 events for training and 60 events for
testing, equivalent to about 230,000 and 60,000 triplets,
respectively. The efficiency and purity as a function of
triplet parameters are shown in Fig. and the accu-
racy is shown as a function of the size of training data
in Fig. The accuracy indicates a clearer separation
between the quantum and classical performances. We
see a continued trend of better purity for the quantum-
enhanced classifier and a more comparable performance
in terms of efficiency.
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FIG. 10. Track reconstruction efficiency and purity for triplets
in the inner detector barrel region as a function of ¢, |n|,
pr, particle multiplicity, and the number of hits associated
with the track (track length). These are compared for the
quantum-estimated kernel and a classical kernel.

POTENTIALS OF QUANTUM SPEEDUP

In general, we can assume that the evaluation of the
matrix elements dominates the complexity of the SVM
[34]. Thus, the complexity of the algorithm is C =
O(BN?), where the 3 factor depends on the kernel type
and method used. For a single value of the kernel, the
quantum complexity is Bg = O(e™2) for some additive
error € [28,[35]. The current best classical algorithm pro-
posed in [36] has Bc = O(e"32%"). Demanding that
Bg < Bc for e = 1073 results in a possible advantage for
M = 20.

In [35] it has been shown that in order for the full ker-
nel matrix to approximate the ideal kernel, the propaga-
tion of the desired accuracy into the classification with
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an SVM causes g to pick up a non-negligible scaling
with training size N; Bg — B, = O(N3e2). It is possi-
ble that a similar analysis could introduce an N-scaling
to Bc. Regardless, it appears that at the current stage,
quantum kernel estimation could provide possible advan-
tage for small datasets where the data has many features.
For the triplet classification data presented in this pa-
per, nine features were used. We envisage that possible
speedup may be obtained if we extend the length of the
track segments considered in the classification task.

Another point to consider for quantum kernel estima-
tion is the noise on current quantum devices. In [37],
the authors show that the presence of noise can cause
kernel entries produced with Eq. [6] evaluated over differ-
ent input data to concentrate around some fixed value.
The difference between any kernel entry and that value
becomes exponentially small with the number of qubits.
This results in an exponential number of shots necessary
to resolve kernel entries for successful training. This de-
pendence would have to be added into 8¢g in order for
the required precision to be obtained.

Some proposals for different quantum kernel estima-
tion methods can be found in [35], where a probabilistic
algorithm calculates only a subset of the kernel entries
and [38] where the estimation of the entire kernel matrix
scales linearly with training size N. Further studies could
include empirical tests of classical and quantum complex-
ities, study of noise effects in simulations and real quan-
tum devices as well as implementation of other proposed
quantum kernel estimation techniques in the context of
high energy physics.

SUMMARY

Reconstructing the trajectories of charged particles at
particle colliders like the Large Hadron Collider is a
challenging, computationally intensive problem. This is
expected to become increasingly complex with the up-
graded Large Hadron Collider (HL-LHC) where O(10°)
hits in the tracking detector must be quickly and accu-
rately connected to form around 10,000 tracks. This pa-
per presents a hybrid quantum-classical algorithm with
a support vector machine (SVM) using a quantum-
estimated kernel to classify track segments or seeds for
this challenging track reconstruction problem. Using a
publicly available dataset that simulates a generic parti-
cle detector for the HL-LHC, we apply a selection criteria
to select doublets (set of two consecutive hits) and sub-
sequently triplets (set of three consecutive hits). The
proposed algorithm classifies these triplets as either be-
longing to a particle track or not. A comparison is made
between the performance of a quantum-estimated kernel,
a classical kernel, and randomly selected triplets from the
dataset. A similar level of performance is achieved for
the quantum and classical algorithms. However, when
only the triplets from the inner part of the tracking de-
tector are considered, the quantum algorithm shows an
improvement in accuracy scores against the classical al-
gorithm. This is promising as the innermost layers are
expected to be the most important for the seeding pro-
cedure at the HL-LHC. This is the first implementation
of a quantum-kernel SVM approach to the track recon-
struction problem.
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