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Abstract The recent upgrade of the LHCb experiment
pushes data processing rates up to 40 Tbit/s. Out of the whole
reconstruction sequence, one of the most time consuming
algorithms is the calorimeter data reconstruction. It aims at
performing a clustering of the readout cells from the detec-
tor that belong to the same particle in order to measure its
energy and position. This article presents a new algorithm for
the calorimeter data reconstruction that makes use of graph
data structures to optimise the clustering process, that will
be denoted Graph Clustering. It outperforms the previously
used method by 65.4% in terms of computational time on
average, with an equivalent efficiency and resolution. The
implementation of the Graph Clustering method is detailed
in this article, together with its performance results inside the
LHCb framework using simulation data.

1 Introduction

LHCb is one of the four main experiments at the LHC at
CERN. It consists of a forward-arm spectrometer detector
designed to measure the production and decay properties of
charm and beauty hadrons with high precision [1,2]. Starting
in 2022, a major upgrade has taken place in order to adapt
the luminosity rates of the experiment to the LHC conditions
in Run 3. It implies an increment of the instantaneous lumi-
nosity by a factor of five to L = 2 × 1033cm−2s−1 [3] and
a readout rate of 30 MHz, or a maximum data rate of 40
Tbit/s for all the subdetectors. In these conditions, collisions
which are of interest for many LHCb analyses reach the MHz
level in the detector’s geometrical acceptance [4]. Therefore,
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the event selection process is expected to provide an offline-
quality reconstruction within the throughput requirements.
With the vision of future upgrades implying even tighter time
constraints, the LHCb reconstruction needs to be as optimal
as possible.

Among the five most time-consuming algorithms in the
High Level Trigger 2 (HLT2) sequence of LHCb, the
calorimeter data reconstruction was the fourth one with
around 15% of the total cost. To make a significant improve-
ment, the data reconstruction process from this specific sub-
detector has been a target to optimise. In this article, a new
algorithm for calorimeter data reconstruction called Graph
Clustering is presented. In terms of execution time, Graph
Clustering outperforms the previous method by up to 65.4%
with an equivalent efficiency. Overall, it provides an average
throughput reduction of 9.8% in the whole HLT2. Further-
more, it is currently the default solution for calorimeter data
reconstruction in the upcoming Run 3.

This article is aimed to give a background in other recon-
struction methodologies used for similar problems, specif-
ically in High Energy Physics, in Sect. 2. In Sect. 3, an
introduction to the Electromagnetic Calorimeter (ECAL) of
LHCb is given. Section 4 provides an extensive detail of the
Graph Clustering implementation. Finally, in Sect. 5 a review
of the performance of the algorithm is given, followed by a
discussion and conclusions.

2 Background

Calorimeter data reconstruction can be understood as a clus-
tering problem, as it aims to group the energy deposits from
particles following a set of rules. Classical unsupervised clus-
tering algorithms use extensive recursive functions to create
clusters according to metrics related to distance or density
[5]. Despite the cluster concept, the calorimeter data recon-
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struction strategy for LHCb has not much in common with
classical clustering algorithms, due to the strong physics and
execution time requirements.

Focusing on the field of calorimetry in High Energy
Physics, the Cellular Automaton has been a benchmark solu-
tion for many years [6]. LHCb has been using this strat-
egy for Runs 1 and 2. In 2004 an approach using span-
ning trees was proposed, using this flexible data structures to
exploit the neighbourhood definitions in general calorime-
ter data [7], but it does not consider the cluster separation
needed in LHCb. Graph data structures started to appear
in the field with increasing popularity of deep learning in
the form of a neural model based on graphs [8]. Several
approaches have used these graph neural networks on layered
calorimeters [9,10] showing promising results on clustering
energy deposits in consecutive calorimeter layers. However,
the LHCb calorimeter geometry is bi-dimensional. Within
this context, other approaches have also used graph neural
networks [11] and convolutional neural networks [12,13]
with similar conditions as ECAL in LHCb. That said, the
inference of some deep learning models is still not mature
enough to be incorporated in the LHCb software framework.

Graph structures have demonstrated to be suited for
calorimeter data. Hence, the Graph Clustering algorithm
stores the calorimeter digits into graphs and makes use of
its flexible neighbourhood properties to define the clusters.
Moreover, it follows the same reconstruction principles from
the Cellular Automaton strategy, which has proved to give a
good performance in terms of reconstruction efficiency.

3 Detail of the electromagnetic calorimeter

The LHCb experiment has a subset of eight dedicated detec-
tors to acquire data from the particles generated in the LHC
collisions. The electromagnetic calorimeter is one of them.
Its main purpose is the identification of electrons and pho-
tons, and the measurement of their energies and positions
[14]. The ECAL has a rectangular shape of 7.8 × 6.3 m2

and is placed perpendicular to the accelerator beam pipe.
The energy measurement area is segmented into individ-
ual square-shaped modules. Each module is made from lead
absorber plates interspaced with scintillator tiles as active
material. The general structure is segmented in three differ-
ent rectangular shaped regions, as can be seen in Fig. 1.

Although all modules have the same size of 12 × 12 cm2,
the number of readout cells on a module depends on the
region. The inner region is the closest to the beam pipe and
has the highest occupancy of incident particles. Thus, it has
the highest granularity among the three regions, with nine
readout cells of 4 × 4 cm2 per module. The middle region
surrounds the inner one and has four readout cells of 6 × 6

Fig. 1 The electromagnetic calorimeter 3d view from behind the detec-
tor towards the interaction point [14]

cm2 per module. The outer region has a single readout cell
of 12 × 12 cm2 per module.

The output data obtained from the ECAL modules are
the values from each readout cell concerning the accumu-
lated energy deposited by incident particles in a collision
event with 12 bit precision. The digitized value is converted
to MeV as the measure of energy. Another measure used in
the data reconstruction is the transverse energy, which is cal-
culated using the measured energy of a cell and its angular
position in the ECAL. Since particles may deposit energy in
more than one readout cell, the energy deposits need to be
reconstructed and clustered together with the ones belong-
ing to the same particle. This process is precisely the cluster
reconstruction for the calorimeter. The current definition of
a calorimeter cluster stands for a 3 × 3 block of readout cells
around an energy peak. Studies have been done regarding
the cluster shapes [15] where a combination of 2 × 2 and
swiss-cross cluster shapes show promising performance for
high luminosity, although the 3 × 3 cluster is used as a base
for masking other shapes on clusters. Hence, the definition
of 3 × 3 readout cell clusters is maintained through all the
regions of the detector.
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Fig. 2 An example of two clusters with overlapping cells on the calorimeter on the left and its graph representation on the right

4 Method

The baseline idea behind the Graph Clustering algorithm is
to use graphs as a data structure to store the event digits.
It transforms the calorimeter digits into independent graph
structures, where only relevant digits for a cluster are con-
tained into isolated graphs. Following graph theory nomen-
clature, each energy digit from an event is represented as a
vertex v in the graph, also called node. The relations between
digits, representing links to the same cluster, are defined as
directional edges (u, v) between the source digit node u and
the target node v. By design, the target nodes of all edges in
the graph are the seeds of the reconstructed clusters, where
a seed is defined as a local maximum energy digit in the
calorimeter grid over a threshold of 50 MeV in transverse
energy. With this, the cluster seeds can be easily identified
as nodes with only incoming edges. Furthermore, a node
can be linked to more than one seed if it has energy deposits
from more than one particle. These particular cases are called
overlap cells. Overall, the graph derived from an event may
contain structures like the example shown in Fig. 2.

The following subsections describe in detail the four steps
needed in the Graph Clustering reconstruction process.

4.1 Sorting

To achieve the mentioned representation of the digits, the
algorithm needs to make an efficient insertion of the edges
into the graph structure. Since all the edges are based on the
cluster seeds, the initial key point is to identify seed can-
didates. As defined previously, a cell in the ECAL grid is
considered a seed if it is a local maximum and has a mini-
mum transverse energy value of 50 MeV. A local maximum
in this context defines a cell that has the highest energy value
among a 3 × 3 cell area around it in the calorimeter grid.
This definition is the same as the one used in the Cellular
Automaton algorithm [6].

In order to process the seed candidates of an event in the
first place, all the digits above 50 MeV need to be sorted
by decreasing transverse energy value. In the proposed algo-
rithm, the sorting is computed using Introspective Sorting
[16], which is a hybrid sorting algorithm that combines three
different methods to provide fast average performance and
optimal worst-case performance.

4.2 Insertion

The role of the insertion step is to build the graph edges
between the event digits such that the graph structures of
Fig. 2 are obtained. A pseudo-code notation of this process
is stated in Algorithm 1.

Algorithm 1 Graph insertion
1: G ⇐ directional weighted graph
2: for each energy, id ∈ sortedDigits do
3: if id not inserted in G then
4: if id is local maxima then
5: add node id in G
6: for each nenergy, nid ∈ neighbours of id do
7: add node neid and edge (neid , id, w = 1) in G
8: if id is a merged π0 candidate then
9: add id and nid to mergedPi0
10: end if
11: end for
12: end if
13: else if id ∈ mergedPi0 then
14: seed = first seed from id in G
15: for each nenergy , nid ∈ neighbours of id do
16: if energy > nenergy & nid not in G then
17: add node neid and edge (neid , id, w = 1) in G
18: end if
19: end for
20: end if
21: end for

It essentially iterates over each sorted digit. That digit may
have already been inserted in the graph. If so, this means it
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Fig. 3 Diagram representation of π0 cluster cases on the calorimeter.
From left to right: the two photons are separable and without overlap,
it is a resolved π0. The two photons are separable but have three over-

lapping digits, it is however a resolved π0. The two photons are not
separable, it is a merged π0 and is reconstructed as a single cluster
bigger than 3 × 3

is a neighbour of a more energetic digit. In that case, it can-
not be a seed since there cannot be two adjacent maxima by
construction, except for the case of merged π0s, which is
explained in Sect. 4.2.1. Therefore, that digit is not inserted.
On the other hand, if the digit has not yet been inserted on
the graph, it can be either a seed or a residual digit, mean-
ing it is not a local maximum and does not have any seed
on its neighbourhood. To distinguish between the two, the
algorithm checks if that digit is a local maximum. If it is the
case, the seed is inserted in the graph together with all its
neighbour digits linking them with edges to the seed. The
default weight value for all edges is one.

Additionally, if a merged π0 candidate is identified fol-
lowing the metrics described in Sect. 4.2.1, there is a second
seed added to the same cluster. The neighbours of the second
seed are also linked with an edge to the first seed if they are
not already inserted and if its energy deposit is lower than
the energy of the first seed.

At the end of the insertion step, the clusters are already
grouped in the graph. However, the overlap cases still need
to be processed to adjust the weight of the overlap edges.

4.2.1 Merged π0 case

One of the reconstruction requirements for the LHCb
calorimeter is the correct identification of neutral pions, π0,
which decay into two photons before reaching the calorime-
ter. Depending on the energy and momentum of the π0, the
two photons arrive at the calorimeter with a certain separa-
tion.

If the seeds of the two photons are distanced more than
one cell, they will be reconstructed as separate clusters. This
case is called a resolved π0. Otherwise, the two photons may
travel very close to each other and reach the calorimeter at
one cell distance or less. In that case, the reconstruction is
done as a single cluster, since the definition of maxima does
not allow two adjacent cluster seeds. When photons are not
separable, it is then called merged π0 case. Hence, the super-
cluster from a merged π0 can be bigger than the 3×3 window
around the seed as can be seen in Fig. 3.

Fig. 4 Normalized histograms of the energy ratio between the second
most energetic digit and the cluster seed for photon samples and π0

samples

There are other dedicated algorithms in the LHCb sequence
that use the output of the calorimeter data reconstruction,
together with other detector data, to properly identify and
classify π0 particles. The cluster shape used in these cases
is a mask of 5 × 5 cells around the seed [17]. Therefore, the
residual energy outside the 3 × 3 window of a merged π0

is crucial, as it contains part of the energy from the second
photon. That is why the Graph Clustering algorithm adapts
the shape of potential merged π0 candidates, expanding the
cluster up to the neighbours of the second most energetic
digit in the cluster.

To avoid adding complexity to the data reconstruction
algorithm, the energy deposits of the 3×3 cluster are the only
source of information used to find a metric that can provide
a soft selection filter for merged π0 candidates at run time.
Therefore, we have studied the relation between the two most
energetic digits as a ratio labeled R1. Figure 4 shows a nor-
malized histogram of the R1 ratio for over 46,000 samples of
single π0 deposits from B0 → π+π−π0 decays simulated
using Run 3 conditions compared to photon samples from
from B0 → K ∗γ decays also simulated using Run 3 condi-
tions. The main difference between the two distributions is
that the majority of photons have an energy ratio between 0
and 25 whereas π0 tend to have higher energy ratios in most
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cases. Therefore, the algorithm sets a threshold of value 25
in R1 to determine if a cluster needs to be expanded more
than 3 × 3. This value has been optimized and ensures that
the residual energy left outside the cluster is less than 9% for
the studied π0 samples and that the cluster expansion affects
an average of 8.2% of the clusters in an event. Further stud-
ies have determined that small variations around 10% of the
selected threshold value do not significantly change the time
complexity of the algorithm nor the π0 resolution.

Moreover, given that only high energetic pi0s will be
merged, a second threshold is added cutting the seed can-
didates under 1 GeV in the merged π0 candidate selection.
This value has been chosen according to the π0 samples stud-
ied since it is the minimum seed value for a π0 to be merged
and not resolved.

4.3 Connected components

Once the insertion is finished, the graph structure contains all
the relevant energy digits as nodes linked with the elements of
each cluster and other overlapping clusters, if any. From this
point on, the algorithm needs to process each cluster or group
of overlapping clusters separately. Using graph theory termi-
nology, a subset of nodes from a graph connected by some
path is called a weakly connected component. Therefore, to
retrieve the list of nodes that belong to the same cluster or
group of overlapping clusters, the algorithm needs to find all
the weekly connected components of the graph. In the pro-
posed algorithm, this process is implemented as a depth-first
search [18], which explores an entire graph exploring all its
branches as far as possible before backtracking. Its time com-
plexity is O(| V | + | E |) [19] where V is the number of
vertices or nodes in the graph and E is the number of edges.
Once all the vertices of the graph are visited, the nodes and
edges on each weakly connected component are obtained.

4.4 Analysis of clusters

The final step of the reconstruction is to analyze each weakly
connected component to resolve the overlap cases if any and
transform the graph clusters into the output cluster format.
The processing of a weakly connected component can be
done independently of the others, since each one contains
only the relevant nodes and edges for a cluster.

The analysis of clusters consists on iterating through the
list of weekly connected components following the pseudo-
code in Algorithm 2. Only connected components with more
than one node are considered as reconstructed clusters. Any
isolated node is likely to be a residual energy deposit from a
cluster and should not be considered a reconstructed cluster
itself.

If there is more than one seed in a connected component,
there is at least one cell overlapping between two clusters. In

Algorithm 2 Analysis of connected components
1: for each wcc ∈ weaklyConnectedComponents do
2: if wcc.si ze() > 1 then
3: calculate overlap weights (Algorithm 3)
4: for each id ∈ wcc do
5: if id in-edges > 1 & id out-edges == 0 then
6: add id as a cluster seed to clusters
7: for each vertex connected to id do
8: add vertex as entry of id in clusters
9: end for
10: end if
11: end for
12: end if
13: end for

that case the overlap resolution, defined in Algorithm 3, con-
sists in assigning a fraction of the energy of the overlapping
cell to each of the seeds linked to it. The fraction is calculated
as a function of the energy of the clusters and is stored as the
weight of an edge.

Algorithm 3 Calculate overlap weights
1: cluster Energy ⇐ empty map
2: for each vertex ∈ wcc do
3: if vertex out-edges >= 2 then
4: for each end_vertex ∈ vertex out-edges do
5: energy = accumulate energy from the nodes linked to

end_vertex .
6: energy+ = end_vertex energy/num out-edges.
7: store energy to cluster Energy
8: end for
9: totalEnergy = accumulate cluster Energy energies with

entries ∈ vertex out-edges
10: for each end_vertex ∈ vertex out edges do
11: weight = cluster Energy at end_vertex

totalEnergy
12: set edge (vertex, end_vertex, w = weight)
13: end for
14: end if
15: end for

Entering in more detail, this algorithm iterates through all
the vertices in a connected component. It searches for overlap
vertices, identified by having two or more output edges, and
accumulates the energy of all the connected nodes on all the
clusters involved in the overlap. The energy of the overlap
node is equally fractioned among the number of involved
clusters to avoid accounting it more than once. Then, the
weight of every overlapping edge is computed as the fraction
between the energy of the target cluster and the sum of all
the clusters involved in the overlap.

5 Results

All the algorithm tests have been done within the GAUDI
framework [20,21]. For comparison purposes, this paper
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Table 1 Efficiency results in number of reconstructed versus recon-
structible clusters from 80,000 B0 → K ∗γ events

Algorithm Reconstructible Reconstructed Efficiency (%)

Graph clustering 43234 35313 81.68 ± 0.19

Cellular automaton 43234 34872 80.66 ± 0.19

evaluates the performance of the Graph Clustering algorithm
and the Cellular Automaton algorithm as it has been a bench-
mark solution until now. Both are tested with the same Monte
Carlo data from B0 → K ∗γ simulations using Run 3 condi-
tions.

The quality of the reconstruction in calorimeter algorithms
in LHCb is evaluated using metrics of efficiency, energy reso-
lution and position resolution. The efficiency is defined as the
fraction between reconstructed particles over reconstructible
particles in a set of events. Reconstructible particles are pho-
tons that have deposited at least 90% of their energy in the
calorimeter cells. On the other hand, reconstructed particles
are reconstructible particles matching a cluster from which at
least 90% of their energy belong to that particle. This ratio is
later referred to as match fraction. Table 1 shows that Graph
Clustering has a higher efficiency than the Cellular Automa-
ton, with 1.02% more reconstructed clusters.

On the other hand, the energy resolution and position res-
olution metrics aim to measure the difference in energy and
position between the reconstructed clusters and the associ-
ated Monte Carlo particles. Resolutions are evaluated for γ

and π0 particles. For both cases, we evaluate the difference
in position on the X and Y axis and the difference in energy
as a percentage. For γ resolution, a total of 80,000 simulation
samples of B0 → K ∗γ decays have been used, and another
80,000 samples of B0 → π+π−π0 decays have been used
for π0 resolution. The study accounts for all the clusters with
a match fraction higher than 0.9 since it is the standard match
threshold for a cluster to be considered reconstructed in terms
of efficiency.

Figure 5 shows the energy distribution for both methods,
before any corrections are applied [22], where �E stands for
the difference in reconstructed energy and truth energy of a
cluster. It can be seen that for both γ and π0 samples the two
distributions look very alike. For energy resolution, Graph
Clustering is slightly more shifted to negative values, but
overall it can be said that the resolution in energy is equivalent
to the Cellular Automaton one.

Regarding the position resolution, Fig. 6 shows that the
X and Y distributions have again an equivalent behavior for
both methods. For simplicity, only the π0 resolutions are
shown for position, since the differences with γ samples are
minimal.

Regarding the execution time, it is defined as the time
elapsed between the first and the last lines executed in an

Fig. 5 Normalized histograms of the energy resolution with no cor-
rections for clusters with a match fraction over 0.9 using γ samples in
the top plot and π0 samples in the bottom plot

algorithm. Figure 7 shows a plot of the execution time in
arbitrary units as a function of the number of digits per event.

The plotted time measurements are obtained as the aver-
age measured time from all the events with the same number
of digits, from a total of 100,000 events from B0 → K ∗γ
simulation. The figure also includes error bars from the stan-
dard deviation of the samples with the same number of digits.
This error reflects the small variation of complexity that the
algorithm may have according to the distribution of the digits
in the event as well as, more significantly, the variations in
the available resources from the distributed computing envi-
ronment where the tests have been executed. Taking as a
reference the fitted curves from the plot, for events with less
than 150 digits, the Cellular Automaton is faster. However,
from that point on, Graph Clustering outstands the bench-
mark algorithm showing a flatter complexity curve. Further-
more, the average number of digits per event from the anal-
ysed samples is 1520 digits. At that complexity level, Graph
Clustering is 65.4% faster than Cellular Automaton on aver-
age.
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Fig. 6 Normalized histograms of the X axis resolution at the top and
the Y axis resolution at the bottom. Both using π0 samples and clusters
with a match fraction over 0.9 with no corrections

Fig. 7 Execution time measured in arbitrary units as a function of the
number of digits per event for the Cellular Automaton algorithm and
the Graph Clustering algorithm. On top of them, a fitted curve for every
algorithm is shown

6 Discussion and conclusions

Graph Clustering has shown to improve the computational
complexity of the calorimeter data reconstruction in LHCb.
Furthermore, it is the default reconstruction solution for the

ongoing Run 3 data taking period. The baseline of the algo-
rithm is to reproduce the same reconstruction steps as in the
previously used algorithm, the Cellular Automaton, but with
an optimized codification using graph data structures. Hence,
it is expected and observed to have similar results compared
to the benchmark in terms of efficiency and resolution. The
observed efficiency is consistent with the efficiencies in Run
1 and Run 2. It is considered good in terms of performance
since the definition of a reconstructible particle does not take
into account noise or other fully overlapping particles, known
as the pileup effect. Hence, the data reconstruction efficiency
is not expected to reach 100% but gives an overall idea of the
algorithms performance.

Graphs have demonstrated to be suited for calorimeter
data reconstruction. Within the proposed implementation,
such data structures also provide a flexible interpretation of
the neighbour cells in the calorimeter grid. This could also be
used to adapt the shape of the clusters to an optimized pattern
depending on the region at reconstruction time and signifi-
cantly accelerate its execution. Currently, the definition of
an optimal cluster shape for ECAL clusters is being studied
considering pileup and overlap effects as well as precision.

Within the steps of the presented Graph Clustering, as
mentioned in Sect. 4.4, the analysis of each connected com-
ponent is completely independent of the rest of the graph.
Although it is not the most time consuming part of the algo-
rithm, it represents a 27.3% of the total algorithm’s execu-
tion time, which could benefit from parallel execution. In the
context of the first level of the trigger system (HLT1) ran
in GPUs, calorimeter data reconstruction is at a preliminary
stage. The current implementation builds simplified clusters
with lower efficiency and resolution than the benchmark. In
that direction, there is currently work in progress on adapting
the presented Graph Clustering logic to a CUDA algorithm
optimized for parallel architectures.

As a final conclusion, the complexity curve that Graph
Clustering exhibits makes it a useful alternative for other
calorimeters with higher occupancy. Furthermore, the vision
of future upgrades in the LHCb calorimeter is a challenging
opportunity to test the limits of this algorithm.
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