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Abstract

The recent upgrade of the LHCb experiment pushes data processing rates up to 40
Tbit/s. Out of the whole reconstruction sequence, one of the most time consuming
algorithms is the calorimeter reconstruction. It aims at performing a clustering
of the readout cells from the detector that belong to the same particle in order
to measure its energy and position. This article presents a new algorithm for the
calorimeter reconstruction that makes use of graph data structures to optimise
the clustering process, that will be denoted Graph Clustering. It outperforms the
previously used method by 65.4% in terms of computational time on average, with
an equivalent efficiency and resolution. The implementation of the Graph Clustering
method is detailed in this article, together with its performance results inside the
LHCb framework using simulation data.

ar
X

iv
:2

21
2.

11
06

1v
1 

 [
he

p-
ex

] 
 2

1 
D

ec
 2

02
2



Submitted to Eur. Phys. J. C

© 2022 CERN for the benefit of the LHCb collaboration. CC BY 4.0 licence.

ii

https://creativecommons.org/licenses/by/4.0/


ii



1 Introduction

LHCb is one of the four main experiments at the LHC at CERN. It consists of a forward-
arm spectrometer detector designed to measure the production and decay properties of
charm and beauty hadrons with high precision [1, 2]. Starting in 2022, a major upgrade
has taken place in order to adapt the luminosity rates of the experiment to the LHC
conditions in Run 3. It implies an increment of the instantaneous luminosity by a factor
five to L = 2×1033cm−2s−1 [3] and a readout rate of 30MHz, or a maximum data rate of 40
Tbit/s for all the subdetectors. In these conditions, collisions which are of interest for many
LHCb analyses reach the MHz level in the detector’s geometrical acceptance [4]. Therefore,
the event selection process is expected to provide an offline-quality reconstruction within
the throughput requirements. With the vision of future upgrades implying even tighter
time constraints, the LHCb reconstruction needs to be as optimal as possible.

Among the five most time-consuming algorithms in the High Level Trigger 2 (HLT2)
sequence of LHCb, the calorimeter reconstruction was the fourth one with the order
of 15% of the total cost. To make a significant improvement, the data reconstruction
process from this specific sub-detector has been a target to optimise. In this article, a new
algorithm for calorimeter reconstruction called Graph Clustering is presented. In terms
of execution time, Graph Clustering outperforms the previous method by up to 65.4%
with an equivalent efficiency. Overall, it provides an average throughput reduction of
9.8% in the whole HLT2. Furthermore, it is currently the default solution for calorimeter
reconstruction in the upcoming Run 3.

This article is aimed to give a background in other reconstruction methodologies used
for similar problems, specifically in High Energy Physics, in Section 2. In Section 2.1, an
introduction to the Electromagnetic Calorimeter (ECAL) of LHCb is given. Section 3
provides an extensive detail of the Graph Clustering implementation. Finally, in Section
4 a review of the performance of the algorithm is given, followed by a discussion and
conclusions.

2 Background

Calorimeter data reconstruction can be understood as a clustering problem, as it aims to
group the energy deposits from particles following a set of rules. Classical unsupervised
clustering algorithms use extensive recursive functions to create clusters according to
metrics related to distance or density [5]. Despite the cluster concept, the calorimeter
reconstruction strategy for LHCb has not much in common with classical clustering
algorithms, due to the strong physics and execution time requirements.

Focusing on the field of calorimetry in High Energy Physics, the Cellular Automaton
has been a benchmark solution for many years [6]. LHCb has been using this strategy for
Runs 1 and 2. In 2004 an approach using spanning trees was proposed, using this flexible
data structures to exploit the neighbourhood definitions in general calorimeter data [7],
but it does not consider the cluster separation needed in LHCb. Graph data structures
started to appear in the field with the increasing popularity of deep learning in the form
of a neural model based on graphs [8]. Several approaches have used these graph neural
networks on layered calorimeters [9, 10] showing promising results on clustering energy
deposits in consecutive calorimeter layers. However, the LHCb calorimeter geometry
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is bi-dimensional. Within this context, other approaches have also used graph neural
networks [11] and convolutional neural networks [12, 13] with similar conditions as ECAL
in LHCb. That said, the inference of some deep learning models is still not mature enough
to be incorporated in the LHCb software framework.

Graph structures have demonstrated to be suited for calorimeter data. Hence, the
Graph Clustering algorithm stores the calorimeter digits into graphs and makes use of its
flexible neighbourhood properties to define the clusters. Moreover, it follows the same
reconstruction principles from the Cellular Automaton strategy, which has proved to give
a good performance in terms of reconstruction efficiency.

2.1 Detail of the Electromagnetic Calorimeter

The LHCb experiment has a subset of eight dedicated detectors to acquire data from
the particles generated in the LHC collisions. The electromagnetic calorimeter is one of
them. Its main purpose is the identification of hadrons, electrons and photons, and the
measurement of their energies and positions [14]. The ECAL has a rectangular shape
of 7.8 × 6.3 m2 and is placed perpendicular to the accelerator beam pipe. The energy
measurement area is segmented into individual square-shaped modules. Each module is
made from lead absorber plates interspaced with scintillator tiles as active material. The
general structure is segmented in three different rectangular shaped regions, as can be
seen in Figure 1.

Figure 1: The electromagnetic calorimeter 3d view from behind the detector towards the
interaction point [14].

Although all modules have the same size of 12× 12 cm2, the number of readout cells
on a module depends on the region. The inner region is the closest to the beam pipe
and has the highest occupancy of incident particles. Thus, it has the highest granularity
among the three regions, with nine readout cells of 4× 4 cm2 per module. The middle
region surrounds the inner one and has four readout cells of 6× 6 cm2 per module. The
outer region has a single readout cell of 12× 12 cm2 per module.
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The output data obtained from the ECAL modules are the values from each readout
cell concerning the accumulated energy deposited by incident particles in a collision event
with 12 bit precision. Since particles may deposit energy in more than one readout cell, the
energy deposits need to be reconstructed and clustered together with the ones belonging to
the same particle. This process is precisely the cluster reconstruction for the calorimeter.
The current definition of a calorimeter cluster stands for a 3× 3 block of readout cells
around an energy peak. Studies have been done regarding the cluster shapes [15] where
a combination of 2 × 2 and swiss-cross cluster shapes show promising performance for
high luminosity, although the 3× 3 cluster is used as a base for masking other shapes on
clusters. Hence, the definition of 3× 3 readout cell clusters is maintained through all the
regions of the detector.

3 Method

The baseline idea behind the Graph Clustering algorithm is to use graphs as a data
structure to store the event digits. It transforms the calorimeter digits into independent
graph structures, where only relevant digits for a cluster are contained into isolated graphs.
Following graph theory nomenclature, each energy digit from an event is represented as a
vertex v in the graph, also called node. The relations between digits, representing links to
the same cluster, are defined as directional edges (u, v) between the source digit node u
and the target node v. By design, the target nodes of all edges in the graph are the seeds
of the reconstructed clusters, where a seed is defined as a local maximum energy digit
in the calorimeter grid over a threshold of 50 MeV in transverse energy. With this, the
cluster seeds can be easily identified as nodes with only incoming edges. Furthermore, a
node can be linked to more than one seed if it is susceptible to have energy deposits from
more than one particle. These particular cases are called overlap cells. Overall, the graph
derived from an event may contain structures like the example shown in Figure 2.

Figure 2: An example of two clusters with overlapping cells on the calorimeter on the left and
its graph representation on the right.

The following subsections describe in detail the four steps needed in the Graph
Clustering reconstruction process.

3.1 Sorting

To achieve the mentioned representation of the digits, the algorithm needs to make an
efficient insertion of the edges into the graph structure. Since all the edges are based on
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the cluster seeds, the initial key point is to identify seed candidates. As defined previously,
a cell in the ECAL grid is considered a seed if it is a local maximum and has a minimum
transverse energy value of 50 MeV. A local maximum in this context defines a cell that
has the highest energy value among its distance one neighbours in the calorimeter grid.
This definition is the same as the one used in the Cellular Automaton algorithm [6].

In order to process the seed candidates of an event in the first place, all the digits above
50 MeV need to be sorted by decreasing traverse energy value. In the proposed algorithm,
the sorting is computed using Introspective Sorting [16], which is a hybrid sorting algorithm
that combines three different methods to provide fast average performance and optimal
worst-case performance.

3.2 Insertion

The role of the insertion step is to build the graph edges between the event digits such
that the graph structures of Figure 2 are obtained. A pseudo-code notation of this process
is stated in Algorithm 1.

Algorithm 1 Graph insertion

1: G⇐ directional weighted graph
2: for each energy, id ∈ sortedDigits do
3: if id not inserted in G then
4: if id is local maxima then
5: add node id in G
6: for each nenergy, nid ∈ neighbours of id do
7: add node neid and edge (neid, id, w = 1) in G
8: if id is a merged π0 candidate then
9: add id and nid to mergedP i0

10: end if
11: end for
12: end if
13: else if id ∈ mergedP i0 then
14: seed = first seed from id in G
15: for each nenergy, nid ∈ neighbours of id do
16: if energy > nenergy & nid not in G then
17: add node neid and edge (neid, id, w = 1) in G
18: end if
19: end for
20: end if
21: end for

It essentially iterates over each sorted digit. That digit may have already been inserted
in the graph. If so, this means it is a neighbour of a more energetic digit. In that case, it
cannot be a seed since there cannot be two adjacent maxima by construction, except for
the case of merged π0s, which is explained in section 3.2.1. Therefore, that digit is not
inserted. On the other hand, if the digit has not yet been inserted on the graph, it can be
either a seed or a residual digit, meaning it is not a local maximum and does not have any
seed on its neighbourhood. To distinguish between the two, the algorithm checks if that
digit is a local maximum. If it is the case, the seed is inserted in the graph together with
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all its neighbour digits linking them with edges to the seed. The default weight value for
all edges is one.

Additionally, if a merged π0 candidate is identified following the metrics described in
section 3.2.1, there is a second seed added to the same cluster. The neighbours of the
second seed are also linked with an edge to the first seed if they are not already inserted
and if its energy deposit is lower than the energy of the first seed.

At the end of the insertion step, the clusters are already grouped in the graph. However,
the overlap cases still need to be processed to adjust the weight of the overlap edges.

3.2.1 Merged π0 case

One of the reconstruction requirements for the LHCb calorimeter is the correct identifica-
tion of neutral pions, π0, which decay into two photons before reaching the calorimeter.
Depending on the energy and momentum of the π0, the two photons arrive at the calorime-
ter with a certain separation. If the photons are distanced enough to be reconstructed as
two separate clusters, it is called a resolved π0. Otherwise, the two photons may travel
very close to each other and reach the calorimeter at one cell distance or less. In that
case, the reconstruction is done as a single cluster, since the definition of maxima does
not allow two adjacent cluster seeds. When photons are not separable, it is then called
merged π0 case. Hence, the super-cluster from a merged π0 can be bigger than the 3× 3
window around the seed as can be seen in Figure 3.

Figure 3: Diagram representation of π0 cluster cases on the calorimeter. From left to right:
the two photons are separable and without overlap, it is a resolved π0. The two photons are
separable but have three overlapping digits, it is however a resolved π0. The two photons are
not separable, it is a merged π0 and is reconstructed as a single cluster bigger than 3× 3.

The cluster shape used in π0 reconstruction tools in LHCb is a mask of 5 × 5 cells
around the seed [17]. Therefore, the residual energy outside the 3× 3 window of a merged
π0 is crucial, as it contains part of the energy from the second photon. That is why
the Graph Clustering algorithm adapts the shape of potential merged π0 candidates,
expanding the cluster up to the neighbours of the second most energetic digit in the
cluster. The only source of information available to make this selection at run time is the
energy deposits of the 3× 3 cluster. Therefore, we have studied the relation between the
two most energetic digits as a ratio labeled R1 to define a threshold on which to make
the cluster expansion. Over 46.000 samples of single π0 deposits from B0 → π+π−π0

decays simulated using Run 3 conditions have been studied. Figure 4 shows a normalised
histogram of the R1 ratio for π0 samples and also for photon samples from B0 → K∗γ in
Run 3 conditions. Given the difference in the two distributions, the threshold for R1 is set
to 25. The chosen value ensures that the residual energy left outside the cluster is less than
9% for the studied π0 samples and that the cluster expansion affects an average of 8.2%
of the clusters in an event. Further studies have determined that small variations around
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10% of the selected threshold value do not significantly change the time complexity of the
algorithm nor the π0 resolution. Moreover, a second threshold for merged π0 candidates
concerning the minimum energy of the cluster seed is set to 1000 MeV, as only high energy
π0s are reconstructed as merged according to the data studied.

Figure 4: Normalized histogram of the energy ratio between the second most energetic digit and
the cluster seed for photon samples and π0 samples.

3.3 Connected Components

All the clusters are already grouped together after the insertion step. To retrieve them
from the graph, we need to search for the sub-graphs where all the nodes are connected
to each other by some path, ignoring the direction of edges. This is defined by the
weakly connected components of the original graph. In the proposed algorithm, this is
implemented as a depth-first search [18], which explores an entire graph exploring all its
branches as far as possible before backtracking. Its time complexity is O(| V | + | E |) [19]
where V is the number of vertices or nodes in the graph and E is the number of edges.
Once all the vertices of the graph are visited, the groups of nodes on each weakly connected
component are obtained.

3.4 Analysis of Clusters

The processing of each weakly connected component can be done independently of the
others, since it contains only the relevant nodes for a cluster. In case there is more than
one cluster in a connected component, the overlap fractions are calculated and assigned
to the respective edge weights. Either way, the independent clusters are then stored as
reconstructed clusters. Algorithm 2 shows a pseudo-code of this step of the reconstruction.
Only connected components with more than one vertex are considered as reconstructed
clusters. Any isolated vertex is likely to be residual energy deposits from a cluster and
should not be considered a reconstructed cluster itself.

In Algorithm 3 a pseudo-code version of the overlap weight calculation is provided.
This function iterates through all the vertices in a connected component. It searches for
overlap vertices, identified by having two or more output edges, and accumulates the
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Algorithm 2 Analysis of connected components

1: for each wcc ∈ weaklyConnectedComponents do
2: if wcc.size() > 1 then
3: calculate overlap weights (Algorithm 3)
4: for each id ∈ wcc do
5: if id in-edges > 1 & id out-edges == 0 then
6: add id as a cluster seed to clusters
7: for each vertex connected to id do
8: add vertex as entry of id in clusters
9: end for

10: end if
11: end for
12: end if
13: end for

energy of all the connected nodes on all the clusters involved in the overlap, including
the energy of the overlapping node equally fractioned for every involved cluster. Then, a
weight is computed for every overlapping edge as the fraction between the energy of the
target cluster and the sum of all the clusters involved in the overlap.

Algorithm 3 Calculate overlap weights

1: clusterEnergy ⇐ empty map
2: for each vertex ∈ wcc do
3: if vertex out-edges >= 2 then
4: for each end vertex ∈ vertex out-edges do
5: energy = accumulate energy from the nodes linked to end vertex.
6: energy+ = end vertex energy / num out-edges.
7: store energy to clusterEnergy
8: end for
9: totalEnergy = accumulate clusterEnergy energies with entries ∈ vertex out-edges

10: for each end vertex ∈ vertex out edges do
11: weight = clusterEnergy at end vertex

totalEnergy
12: set edge (vertex, end vertex,w = weight)
13: end for
14: end if
15: end for

At the end of this last step, all the reconstructed clusters from an event are stored.

4 Results

All the algorithm tests have been done within the GAUDI framework [20, 21]. For
comparison purposes, this paper evaluates the performance of the Graph Clustering
algorithm and the Cellular Automaton algorithm as it has been a benchmark solution
until now. Both are tested with the same Monte Carlo data from B0 → K∗γ simulations
using Run 3 conditions.

The quality of the reconstruction in calorimeter algorithms in LHCb is evaluated using
metrics of efficiency, energy resolution and position resolution. The efficiency is defined as
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the fraction between reconstructed particles over reconstructible particles in a set of events.
Reconstructible particles are photons that have deposited at least 90% of its energy in the
calorimeter cells. On the other hand, reconstructed particles are reconstructible particles
matching a cluster from which at least 90% of its energy belongs to that particle. This
ratio is later referred to as match fraction. Table 1 shows that Graph Clustering has a
higher efficiency than the Cellular Automaton, with 1.02% more reconstructed clusters.

Table 1: Efficiency results in number of reconstructed versus reconstructible clusters from 80,000
B0 → K∗γ events.

Algorithm Reconstructible Reconstructed Efficiency (%)

Graph Clustering 43234 35313 81.68± 0.19
Cellular Automaton 43234 34872 80.66± 0.19

On the other hand, the cluster resolution metric aims to measure the difference in
energy and position between the reconstructed clusters and the associated Monte Carlo
particles. Resolutions are evaluated for γ and π0 particles. For both cases, we evaluate the
difference in position on the X and Y axis and the difference in energy as a percentage.
For γ resolution, a total of 80.000 simulation samples of B0 → K∗γ decays have been used,
and another 80.000 samples of B0 → π+π−π0 decays have been used for π0 resolution.
The study accounts for all the clusters with a match fraction higher than 0.9 since it is
the standard match threshold for a cluster to be considered reconstructed in terms of
efficiency.

Figure 5 shows the energy distribution for both methods, before any corrections are
applied [22], where ∆E stands for the difference in reconstructed energy and truth energy
of a cluster. It can be seen that for both γ and π0 samples the two distributions look
very alike. For energy resolution, Graph Clustering is slightly more shifted to negative
values, but overall it can be said that the resolution in energy is equivalent to the Cellular
Automaton one.

Figure 5: Normalized histograms of the energy resolution with no corrections for clusters with a
match fraction over 0.9 using γ samples in the top plot and π0 samples in the bottom plot.

Regarding the position resolution, Figure 6 shows that the x and y distributions have
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again an equivalent behavior for both methods. For simplicity, only the π0 resolutions are
shown for position, since the differences with γ samples are minimal.

Figure 6: Normalized histograms of the X axis resolution at the top and the Y axis resolution
at the bottom. Both using π0 samples and clusters with a match fraction over 0.9 with no
corrections.

Regarding the execution time, it is defined as the time elapsed between the first and
the last lines executed in an algorithm. Figure 7 shows a plot of the execution time
in arbitrary units as a function of the number of digits per event. The plotted time
measurements are obtained as the average measured time from all the events with the
same number of digits, from a total of 100.000 events from B0 → K∗γ simulation. As can
be seen from the figure, for events with less than 150 digits, the Cellular Automaton is
faster. However, from that point on, Graph Clustering outstands the benchmark algorithm
showing a flatter complexity curve. Furthermore, the average number of digits per event
from the analysed samples is 1520 digits. At that complexity level, Graph Clustering is
65.4% faster than Cellular Automaton on average.

5 Discussion and Conclusions

Graph Clustering has shown to improve the computational complexity of the calorimeter
reconstruction in LHCb. Furthermore, it is the default reconstruction solution for the
ongoing Run 3 data taking period. The baseline of the algorithm is to reproduce the same
reconstruction steps as in the previously used algorithm, the Cellular Automaton, but
with an optimized codification using graph data structures. Hence, it is expected and
observed to have similar results compared to the benchmark in terms of efficiency and
resolution.

Graphs have demonstrated to be suited for calorimeter reconstruction. Within the
proposed implementation, such data structures also provide a flexible interpretation of
the neighbour cells in the calorimeter grid. This could also be used to adapt the shape
of the clusters to an optimized pattern depending on the region at reconstruction time
and significantly accelerate its execution. Currently, the definition of an optimal cluster
shape for ECAL clusters is being studied considering pileup and overlap effects as well as
precision.

Within the steps of the presented Graph Clustering, as mentioned in section 3.4,
the analysis of each connected component is completely independent of the rest of the
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Figure 7: Execution time measured in arbitrary units as a function of the number of digits per
event for the Cellular Automaton algorithm and the Graph Clustering algorithm. On top of
them, a fitted curve for every algorithm is shown.

graph. Although it is not the most time consuming part of the algorithm, it represents a
27.3% of the total algorithm’s execution time, which could benefit from parallel execution.
In the context of the first level of the trigger system (HLT1) ran in GPUs, calorimeter
reconstruction is at a preliminary stage. The current implementation builds simplified
clusters with lower efficiency and resolution than the benchmark. In that direction, there
is currently work in progress on adapting the presented Graph Clustering logic to a CUDA
algorithm optimized for parallel architectures.

As a final conclusion, the complexity curve that Graph Clustering exhibits makes it a
useful alternative for other calorimeters with higher occupancy. Furthermore, the vision
of future upgrades in the LHCb calorimeter is a challenging opportunity to test the limits
of this algorithm.
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