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DeeLeMa : Missing information search with Deep Learning for Mass estimation
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We introduce DeeLeMa, a deep learning-based network for the analysis of energy and momentum in
high-energy particle collisions. This novel approach is specifically designed to address the challenge of
analyzing collision events with multiple invisible particles, which are prevalent in many high-energy
physics experiments. DeeLeMa is constructed based on the kinematic constraints and symmetry of
the event topologies. We show that DeeLeMa can robustly estimate mass distribution even in the
presence of combinatorial uncertainties and detector smearing effects. The approach is flexible and
can be applied to various event topologies by leveraging the relevant kinematic symmetries. This
work opens up exciting opportunities for the analysis of high-energy particle collision data, and
we believe that DeeLeMa has the potential to become a valuable tool for the high-energy physics
community.

I. INTRODUCTION

Despite the numerous neutrinos generated during par-
ticle collisions, the detectors at the Large Hadron Collider
(LHC) are unable to observe them directly [1, 2]. In ad-
dition to neutrinos, other elusive particles such as Dark
Matter candidates, including Weakly Interacting Massive
Particle (WIMP) [3, 4], Axions [5, 6], are also challenging
to detect as they pass through the detector without leav-
ing discernible signals [7, 8]. Such entities are termed
as ‘invisible particles’ in the realm of collider physics.
Their existence isn’t directly observed but is inferred by
leveraging the principles of energy and momentum con-
servation, which highlight discrepancies in momentum or
energy within an event.

The LHC, like other hadronic collider experiments,
measures the scattering processes involving the partonic
constituents of hadrons; Within this context, the recon-
struction of the longitudinal component of missing mo-
mentum along the beam axis (referred to as the longitu-
dinal direction) poses a substantial challenge. Further-
more, the formidable nature of this endeavor becomes
particularly pronounced when multiple invisible parti-
cles are simultaneously generated within the same event.
This challenging issue is conventionally called the “miss-
ing information problem” of invisible particles.

Researchers commonly employ ‘transverse’ quantities
to address the challenge from the longitudinal informa-
tion. These transverse quantities are defined along di-
rections perpendicular to the beam axis and include the
transverse momentum (pT =

√
p⃗2⊥) and transverse en-

ergy (ET ≡
√
m2 − p2T ) as observable parameters. Over

the past decade or more, many kinematic variables have
been devised and proposed, primarily tailored for the ex-
periments at the LHC, such as the stransverse mass or
the Cambridge MT2 [9–11], M2 [12–14], and their ex-
tensions [11, 15–18]. However, it is worth noting that
introducing more complex kinematic variables while aid-
ing in obtaining missing information can also introduce
additional complexities in data analysis. The precision

of these variables may not always meet the desired level
due to inherent complexities and uncertainties, including
combinatorial errors and detector effects. For a compre-
hensive overview, see e.g., Ref. [19].
This paper introduces an innovative approach to ad-

dress the challenges posed by missing information prob-
lems in collider physics. [20–26] Instead of relying on in-
tricate kinematic variables, our proposed method lever-
ages the power of Deep Neural Networks (DNNs), cap-
italizing on the recent rapid advancements in machine
learning techniques [27–36].
DNNs have emerged as a versatile tool capable of han-

dling vast datasets and capturing intricate correlations
among diverse features. This capability renders them
exceptionally well-suited to tackle the complexities as-
sociated with missing information. Our newly developed
kinematics-solving machine integrates the physical condi-
tions and symmetries inherent in event shapes, is named
“DeeLeMa .” This acronym, derived from “Deep Learn-
ing for Mass Estimation,” encapsulates the essence of
our machine’s function. DeeLeMa represents a cutting-
edge approach to the problem of kinematics estimation
in collider physics, promising more robust and accurate
results compared to traditional methods reliant on com-
plex kinematic variables. The detail of the architecture is
presented in the GitHub page1, where one can download
DeeLeMa code with examples.

II. DeeLeMa FRAMEWORK

Our study is dedicated to unveiling concealed infor-
mation within the complex landscape of high-energy col-
lider events. We aim to achieve this objective by har-
nessing observable data, specifically the four-momenta
of detected particles. Event topology, symmetry princi-
ples, and the steadfast application of conservation laws

1 https://github.com/Yonsei-HEP-COSMO/DeeLeMa
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FIG. 1: General event shape with visible ({pi}i=1,2,··· ,Nvis)
and invisible ({qj}j=1,2,··· ,Ninv ) momenta in the final state.

furnish constraints on the kinematic variables governing
these events.

To illustrate, we examine a cascade event configura-
tion consisting of Nvis visible particles and Ninv invisi-
ble particles in the final state, which can be succinctly
represented as:

pp →
Nvis︷ ︸︸ ︷

v1v2 · · · vNvis

Ninv︷ ︸︸ ︷
i1i2 · · · iNinv .

Our primary goal is to utilize the input information en-
capsulated in the four-momenta of visible particles, de-
noted as pi for i = 1, 2, · · · , Nvis, to precisely determine
the momenta of each invisible particle in the final state,
which we designate as qj for j = 1, 2, · · · , Ninv. Nonethe-
less, it is crucial to notice that this kinematic problem be-
comes mathematically underdetermined when the count
of unknown variables, Ninv, surpasses the constraining
relationships governing each event’s momenta.

Utilizing a physics-informed machine learning ap-
proach, we build a model that decodes concealed informa-
tion in collider events under a given event topology. Cen-
tral to this approach are two functions: L, our loss func-
tion for neural optimization, and the function K serves
as a mechanism that encapsulates kinematic relationships
crucial for reconstructing the momenta of invisible par-
ticles. These functions are based on physical relations
such as the on-shell mass conditions for the intermediate
particles and the constraints on the transverse momen-
tum. The structure of our DNN machine is schematically
depicted in Fig. 1:

• The event topology of the specific event is T , and
the kinematic relations among momenta are encap-
sulated in K.

• The input for DeeLeMa is the visible informa-
tion from the measured momenta {pi}, i =
1, 2, · · · , Nvis.

• The expected output from DeeLeMa is the recon-
structed momenta of the invisible particles {qj},
j = 1, 2, · · · , Ninv.

• The loss function L enforces the machine to learn
to reconstruct the invisible information under the
given event topology T and the kinematic relations
K.

Additionally, we introduce the auxiliary parameters x̃
which act to force target physical variables x (i.e. invari-
ant mass) to converge into a single value for all training
events. The corresponding auxiliary parameters x̃ ap-
pear globally in all events, allowing the neural network
to learn that the events come from the same physical
process. Thus, they are introduced as global, trainable
parameters based on prior knowledge from T . Conse-
quently, DeeLeMa works to optimize the reconstruction
of invisible momenta by minimizing the loss function L,
which is defined in terms of the reconstructed kinematic
quantities q̂ and the auxiliary parameters x̃, subject to
the kinematic relations K.

III. DeeLeMa FOR PAIR PRODUCTION
PROCESS

In this section, our primary focus lies on the pair
production of mother particles during particle collisions,
where each of these particles subsequently decays, fol-
lowing identical decay chains. Under such circumstances,
the scenario involves an even number of both visible and
invisible particles, denoted as (Nvis, Ninv) = (2n, 2m).
Here, the terms n and m correspond to the visible and in-
visible particles in each respective branch. Exploiting the
inherent symmetry of this situation, we find that there
are precisely 8m unknown components originating from
the 2m invisible four-momenta, along with (n + m + 2)
constraints stemming from kinematic relations.
Mathematically speaking, the system becomes solvable

when the condition (n + m + 2) ≥ 8m or equivalently
n ≥ 7m − 2 is satisfied. A pertinent illustration is the
case of m = 1, wherein a single invisible particle emerges
in each of the decay chain branches. In this scenario, the
system can be effectively solved when n ≥ 5. It is note-
worthy to mention that earlier analyses on systems in-
volving n = 3,m = 1 have been documented in previous
works (see [23–25]), particularly when multiple events of
the identical process were considered.
We now delve into a challenging ‘unsolvable’ problem

characterized by the parameters n = 2 and m = 1, vi-
sually represented in Fig. 2. This specific configuration
corresponds to an event topology of (Nvis, Ninv) = (4, 2).
A prominent example of this event topology is found in
the dilepton process of tt̄ events, where both top quarks
undergo leptonic decay, leading to t → bW → b(ℓνℓ).
In a more general context, we contemplate the pair pro-
duction of mother particles, denoted as A1 and A2, with
subscripts 1 and 2 signifying the respective branches of
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FIG. 2: Symmetric event topology for Nvis = 4, Ninv = 2.

decay. Each Ai subsequently decays into a visible parti-
cle ai and an intermediate heavy state Bi. Ultimately, Bi

undergoes a semi-invisible decay into a visible particle bi
and an invisible particle Ci in branches i = 1 and i = 2.
The event can be succinctly expressed as:

pp → A1A2 → (a1(pa1
)B1)(a2(pa2

)B2),

B1 → b1(pb1)C1(q1),

B2 → b2(pb2)C2(q2).

Here, pai
and pbi symbolize the momenta of visible

particles, while qi represents the momentum of the cor-
responding invisible particles Ci. Despite the apparent
simplicity of this event topology, it is fundamentally un-
derdetermined from a kinematic perspective, rendering
the separate measurement of each invisible particle’s mo-
mentum unattainable.

To define the loss function, we first select a set of “tar-
get variables” {x}, such as the invariant masses of the in-
termediate states and invisible out-coming particles. For
our specific example:

E←−−−−−−−→

B


x#1 = (mA1 ,mB1)

#1 ⊕ (mA2 ,mB2)
#1

...
x#N = (mA1 ,mB1)

#N ⊕ (mA2 ,mB2)
#N

Consider a batch of dataset consisting of N training
events. The Event-wise information, denoted as E , is
derived from the symmetric event topology. This implies
that identical particle masses are consistent, making E
an independent piece of information for each event.

On the other hand, the Batch-wise information, rep-
resented by B, signifies that all training events are as-
sociated with the same physical event. We introduce
auxiliary parameters, like m̃A and m̃B , to ensure that
the masses across all events in a batch remain consistent
(e.g., mA1

of all events are the same, and so on). This B
information is dependent on the entire batch of events.

FIG. 3: Schematic representation of the role of the loss
function in simultaneously bringing dE (blue double-headed
arrow) and dB (red double-headed arrow) closer throughout

the learning process t = 0 to t = T .

Finally, our loss function is defined as:

Ltot ≡
1

|B|

|B|∑
i=1

 ∑
f∈{A,B}

L#i
f


L#i
f ≡ dE(m

#i
f1
,m#i

f2
)

+
[
dB(m̃f ,m

#i
f1
) + dB(m̃f ,m

#i
f2
)
]
,

(1)

where |B| represents the batch size, indicating the num-
ber of events in a batch B, #i denotes the event in-
dex, and f is the target variable, either A or B. The
functions dE(x1, x2) and dB(x1, x2) are distance functions
for Event-wise and Batch-wise information, respectively.
They satisfy mathematical conditions: (d1) d(x1, x2) > 0
if x1 ̸= x2, d(x1, x1) = 0, (d2) d(x1, x2) = d(x2, x1),
(d3) d(x1, x2) ≤ d(x1, y) + d(y, x2) for any y in the sam-
ple. Various distance functions can be used, such as
d(x1, x2) = |x1 − x2|, |x1 − x2|2, or |x2

1 − x2
2|. The ap-

propriate choice depends on the specific physical process
under study.

We illustrate the training procedure of DeeLeMa in

FIG. 3. The target variable points (x#i
1 , x#i

2 ) are rep-
resented within spaces X1 and X2, accompanied by the
scalar value of the auxiliary parameter, x̃. By minimiz-
ing the loss function in Eq.(1) from the initial learning
step at t = 0 to the end of training at t = T , we ensure
that spaces X1 and X2 come closer together. Addition-
ally, the overall distribution of points within these spaces
becomes more compact, leading to a reduction in their
spread or dispersion. This compactness and reduction in
dispersion are facilitated by the inclusion of the auxiliary
parameter x̃.

For a comprehensive model implementation of
DeeLeMa, refer to Appendix A.
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IV. TEST OF DeeLeMa PERFORMANCE

In pair production, practical experiments often en-
counter issues with the misidentification of branches.
Termed the combinatorics problem, this complication can
result in erroneous kinematic relations, leading to sub-
stantial uncertainties in the derived solutions. To quan-
tify the extent of this contamination, we introduce the
parameter EC , defined as the fraction of incorrectly as-
signed events relative to the overall number of events,
expressed as:

EC ≡ wrong

wrong + correct
. (2)

We assess the efficacy of DeeLeMa through three dis-
tinctive test runs:

• Test run (A) is conducted using a toy model fea-
turing fixed values of mA = 1000 GeV, mB =
800 GeV, and mC = 700 GeV, with no combinato-
rial errors (EC = 0).

• Test run (B) mirrors (A) but incorporates vary-
ing rates of combinatorial errors, specifically EC =
0, 10%, 20%, 50%. This test aims to investigate
the influence of combinatorial errors on the perfor-
mance of DeeLeMa.

• Test run (C) is executed on the standard model
tt̄ and t → Wb → (ℓν)b processes, encompassing
EC = 20% and accounting for detector smearing
effects. We consider this test run to closely simulate
a realistic scenario.

We compare the results with those obtained using other
existing methods: the transverse mass variable MT2 and
the on-shell constrained invariant mass variables M2CC ,
which use similar constraints as DeeLeMa. We use the
YAM2 package [37] to calculate M2 optimally.

A. Toy model

1. Toy model test with no contamination (EC = 0)

We selected narrow width values for mA, mB , and
mC at 1000 GeV, 800 GeV, and 700 GeV, respectively.
The correlation heatmap in FIG. 4 displays the rela-
tionship between the reconstructed momenta (horizon-
tal axis) and the true momenta (vertical axis) for the

DeeLeMa method (left) and the M
(ab)
2CC method (right)

applied to the toy example with EC = 0. Ideally, the
diagonal line (red, solid line) should represent perfect ef-
ficiency with precon. = ptrue. As shown in the figure,
the DeeLeMa method (left) exhibits a strong diagonal
correlation pattern, indicating high accuracy in recon-

structing the momenta. In contrast, the M
(ab)
2CC method

(right) shows a weaker and more scattered correlation

pattern, implying a lower accuracy in momentum recon-
struction. This demonstrates the superior performance
of DeeLeMa over traditional methods.
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FIG. 4: [Toy] The correlation heatmap of the reconstructed
momenta and the true momenta from the DeeLeMa (left)

and M
(ab)
2CC (right) for the toy example with EC = 0.
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FIG. 5: [Toy] The reconstructed mass distributions of B

and A using DeeLeMa (upper), and MT2, M
(b)
2CC and M

(ab)
2CC

(bottom) for the toy example with EC = 0.

The upper panel of FIG. 5 shows the reconstructed
mass distributions of B and A obtained with DeeLeMa for
the toy example with EC = 0. The blue dashed lines indi-
cate the reconstructed masses ofmB1,2

andmA1,2
, respec-

tively. The red vertical lines indicate the true masses, and
the black dashed-dotted line shows the auxiliary mass
after training. In the bottom panel, we compare the re-
sults with two existing methods based on MT2 (gray)
and M2CC with suitable subsystems (b) and (ab) (orange
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and green), respectively [15]. We can see that the recon-
structed mass distributions with DeeLeMa are well cen-
tered around the true values, while the MT2 distribution
shows the physical mass at the end-point of the distribu-

tion, which often causes errors. The M
(b)
2CC for mB and

the M
(ab)
2CC for mA show slightly improved performances,

but still DeeLeMa provides the best results.
The disparity arises from the manner in which global

information is assimilated during the machine learning
training phase, primarily facilitated through the auxiliary
parameter x̃. Conversely, in the context of the MT2 or
M2 method, global information is solely derived from sta-
tistical outcomes, primarily centered around kinematic
endpoints. While numerous events are typically clus-
tered around these endpoints, leading to a reconstruction
of momenta close to the actual values, there is a lack of
subsequent optimization within the MT2 or M2 based
reconstruction process.

Consequently, the precision is notably diminished, with
the kinematic endpoints becoming less distinct, particu-
larly when grappling with combinatorial ambiguities and
accounting for the effects of detector smearing. Sub-
sequently, this degradation in accuracy will be demon-
strated in the subsequent sections.

2. Toy model test with contamination (EC > 0)

To explicitly see the effect of combinatorics contami-
nation, we conducted comprehensive test runs incorpo-
rating the possibility of combinatorial errors, with a con-
cise summary of DeeLeMa ’s performance presented in
TABLE I. In these instances, the peak positions have
displayed a slight shift towards larger values, owing to
the influence of inaccurately assigned data implying a
relatively higher mass. Despite accommodating up to
20% in combinatorial errors, DeeLeMa exhibits sustained
resilience and commendable performance, accurately re-
constructing masses within the 5−10% range of the true
values.

Notably, for cases where EC ≤ 20%, the reconstructed
masses are within the vicinity of O(1)% of the true val-
ues, attesting to DeeLeMa ’s remarkable ability to miti-
gate the impacts of combinatorial challenges effectively.
Collectively, our findings underscore DeeLeMa ’s reliabil-
ity and robustness as a method proficient in the precise
reconstruction of masses, even in the face of demanding
conditions prevalent in collider environments.

B. Realistic test with standard model tt̄

We finally present the results of our investigation on
a more realistic case, the top quark pair production at
the LHC, where top quarks decay semi-leptonically as
tt̄ → (b W+) (b̄ W−) → (b ℓ+ ν) (b̄ ℓ− ν̄). In this case,
we consider finite width effects with σt = 1.4915 GeV,
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FIG. 6: [Realistic tt̄] The reconstructed mass distributions

of B and A using DeeLeMa (upper), and MT2, M
(b)
2CC and

M
(ab)
2CC (bottom) for the tt̄ example.

σW = 2.0476 GeV, and mt = 173.0 GeV, mW = 80.4190
GeV for the top quark and W boson, respectively. More-
over, we also account for the uncertainties related to
the detector resolution. We simulated detector effects
by applying Gaussian smearing to the momenta. How-
ever, to achieve more accurate results, we encourage the
use of a more realistic detector simulation. For the two
b jets, we applied Gaussian smearing with jet pT val-
ues of {10, 20, 30, 50, 100, 400, 1000} GeV and energy res-
olutions of {40, 28, 19, 13, 10, 6, 5}%, respectively [26, 38].
We took the combinatorial ambiguity at EC = 20% for
our simulation.

We present the results obtained using DeeLeMa in
Fig. 6 (upper). The distributions for the reconstructed
masses (mt, mW ) show robust peaks near the true values
(red vertical line), albeit slightly widened. To compare
the performance of DeeLeMa with conventional methods,

we also present the results obtained usingM
(ab)
2CC andMT2

variables (lower). DeeLeMa provides more accurate re-
sults compared to conventional methods. In conventional
methods, we need to read the endpoints in the lower dis-
tributions, which can be challenging in practice due to
realistic effects from finite widths, detector smearing, and
combinatorial mismatches.

V. CONCLUSION

We introduce DeeLeMa , a deep learning-based ap-
proach to analyze high-energy particle collisions with
multiple invisible particles. DeeLeMa can reconstruct the
event’s invisible momenta and masses, even when multi-
ple invisible particles are involved. Focusing on a chal-
lenging problem with (Nvis, Ninv) = (4, 2), we demon-
strate the efficiency of DeeLeMa : compared to conven-
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EC m̃X [ GeV ] mX ± σ [ GeV ]

[ % ] m̃A m̃B mA1 mA2 mB1 mB2

0 1001.34 799.95 1000.45 ± 13.31 999.93 ± 13.59 799.59 ± 8.95 799.42 ± 9.05

10 1001.46 800.47 1007.41 ± 32.21 1007.18 ± 31.90 802.26 ±16.79 802.11 ± 16.55

20 1005.16 802.25 1013.56 ± 43.24 1013.14 ± 42.24 804.59 ± 21.82 804.41 ± 21.75

50 1010.73 807.61 1028.94 ± 62.56 1029.27 ± 61.39 810.87 ± 31.80 810.97 ± 31.59

TABLE I: The summary table for combinatorial efficiency EC .

tional methods that rely on kinematic variables such as
MT2 or M2, DeeLeMa delivers a significant improvement
in accuracy. The reconstructed masses show sharp peaks
in the distribution, and the results are robust against the
combinatorial problem of misidentification of final state
particles and detector-smearing effects. In conclusion,
DeeLeMa has the potential to contribute to advances in
the field as a new solid tool.
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Appendix A: The detail of Model

The DeeLeMa is constructed using the PyTorch pack-
age [39] and the Lightning library [40] as the front-end,
with the Adam optimizer [41] for training. The model
is trained on GPUs with a specified batch size and num-
ber of epochs as summarized in TABLE. II. Additionally,
we employ the GELU (Gaussian Error Linear Unit) acti-
vation function [42] with a tanh approximation and ap-
ply batch normalization. The detailed architecture and
hyperparameters are available on the associated GitHub
page1.

Model Nnode Nlayer η |B| epoch mC ∆minit
B ∆minit

A d

Toy 256 5 10−2 2048 100 700 0.3 0.3 L1

tt̄ 256 5 5× 10−4 2048 100 0 0.3 0.3 L1

TABLE II: Hyperparameters used for the result plots in
IV. Nnode denotes the number of nodes in each hidden
layer, Nlayer represents the number of hidden layers, η
refers to the learning rate, |B| is the batch size, and

epoch signifies the number of epochs.
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Buc, E. Fox, and R. Garnett (Curran Associates, Inc.,
2019).

[40] W. Falcon and The PyTorch Lightning team, PyTorch
Lightning (2019).

[41] D. P. Kingma and J. Ba, Adam: A method for stochastic
optimization (2017), arXiv:1412.6980 [cs.LG].

[42] D. Hendrycks and K. Gimpel, Gaussian error linear units
(gelus) (2023), arXiv:1606.08415 [cs.LG].

https://doi.org/10.1007/JHEP03(2013)134
https://arxiv.org/abs/1212.1720
https://arxiv.org/abs/1212.1720
https://doi.org/10.1007/JHEP08(2014)070
https://arxiv.org/abs/1401.1449
https://doi.org/10.1088/1126-6708/2009/03/143
https://arxiv.org/abs/0810.5576
https://doi.org/10.1088/1126-6708/2009/11/096
https://doi.org/10.1088/1126-6708/2009/11/096
https://doi.org/10.1007/JHEP04(2010)086
https://arxiv.org/abs/0911.4126
https://doi.org/10.1103/PhysRevLett.105.051802
https://arxiv.org/abs/0910.3679
https://arxiv.org/abs/2206.13431
https://arxiv.org/abs/hep-ph/0312317
https://doi.org/10.1103/PhysRevD.71.035008
https://arxiv.org/abs/hep-ph/0410160
https://doi.org/10.1088/1126-6708/2007/12/076
https://arxiv.org/abs/0707.0030
https://arxiv.org/abs/0707.0030
https://doi.org/10.1103/PhysRevLett.100.252001
https://doi.org/10.1103/PhysRevLett.100.252001
https://arxiv.org/abs/0802.4290
https://doi.org/10.1103/PhysRevD.80.035020
https://arxiv.org/abs/0905.1344
https://doi.org/10.1088/1126-6708/2009/09/124
https://arxiv.org/abs/0907.5307
https://doi.org/10.1007/JHEP10(2019)154
https://arxiv.org/abs/1906.02821
https://arxiv.org/abs/1906.02821
https://arxiv.org/abs/2102.02770
https://doi.org/10.1038/s41586-018-0361-2
https://arxiv.org/abs/2209.07559
https://arxiv.org/abs/2112.03769
https://arxiv.org/abs/2112.03769
https://arxiv.org/abs/2211.08420
https://arxiv.org/abs/2105.10126
https://arxiv.org/abs/2210.01178
https://doi.org/10.1140/epjc/s10052-022-10714-1
https://arxiv.org/abs/2203.03662
https://doi.org/10.1103/PhysRevD.105.014004
https://arxiv.org/abs/2010.13469
https://arxiv.org/abs/2010.13469
https://doi.org/10.1007/JHEP07(2020)111
https://arxiv.org/abs/2003.11787
https://doi.org/10.1016/j.cpc.2021.107967
https://doi.org/10.1016/j.cpc.2021.107967
https://arxiv.org/abs/2007.15537
https://arxiv.org/abs/2007.15537
https://doi.org/10.1088/1748-0221/12/02/P02014
https://arxiv.org/abs/1607.03663
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.5281/zenodo.3828935
https://doi.org/10.5281/zenodo.3828935
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1606.08415

	deelema Missing information search with Deep Learning for Mass estimation
	Abstract
	Introduction 
	DeeLeMa Framework
	DeeLeMa for Pair Production Process 
	Test of DeeLeMa performance
	Toy model 
	Toy model test with no contamination (EC=0)
	Toy model test with contamination (EC>0)

	Realistic test with standard model t

	Conclusion
	Acknowledgments
	The detail of Model
	References


