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Abstract
Understanding and mitigating particle losses in the Large

Hadron Collider (LHC) is essential for both machine safety
and efficient operation. Abnormal loss distributions are tell-
tale signs of abnormal beam behaviour or incorrect machine
configuration. By leveraging the advancements made in
the field of Machine Learning, a novel data-driven method
of detecting anomalous loss distributions during machine
operation has been developed. A neural network anomaly
detection model was trained to detect Unidentified Falling
Object events using stable beam, Beam Loss Monitor (BLM)
data acquired during the operation of the LHC. Data-driven
models, such as the one presented, could lead to significant
improvements in the autonomous labelling of abnormal loss
distributions, ultimately bolstering the ever ongoing effort
toward improving the understanding and mitigation of these
events.

INTRODUCTION
To monitor particle losses, the LHC is equipped with over

3000 BLMs placed along the circumference of the machine,
see Fig. 1. This vast BLM array provides a very detailed
account of the amount, the location and time evolution of
particle losses occurring in the LHC at any given moment.
The LHC BLM system provides data on many different time
scales called Running Sum (RS), ranging from 40 𝜇s to 1.9 s.

Figure 1: BLMs on the LHC

The spatial distribution of particle losses across the LHC
is referred to as a loss map. These loss maps provide key
information to identify loss mechanisms, but also to ensure
a proper alignment of the LHC collimators. They are moni-
tored throughout machine operation and are heavily relied
upon throughout the commissioning phase for the setup of
the machine protection related accelerator components.
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This paper will focus on a specific type of particle loss
event referred to as an Unidentified Falling Object (UFO) [1,
2].

Unidentified Falling Objects
UFOs are a very fast and localized loss events caused

by micrometer sized dust particles which interact with the
particle beams. UFOs have been the cause of many beam
dumps in the past and as such, a detection algorithm named
UFO-Buster was developed to monitor these events, includ-
ing those that remain below the dump threshold of the BLM
system [1, 3]. A loss map with a UFO event is presented in
Fig. 2.

0.5 1.0 1.5 2.0 2.5
Position along the ring [cm] 1e6

10−3

10−2

10−1

100

No
rm
al
ize
d 
lo
ss
es
 [a
.u
.]

UFO
cold
 arm
coll
xrp

Figure 2: An example loss map with a UFO event indicated,
fill 6648 on 2018-05-06 at 20:01:23

UFO BUSTER
Algorithm Description

The UFO-Buster continually monitors the BLM signals
and when a series of criteria are met, the event is labeled as
UFO candidate and is added to a UFO event database. The
main criteria is that 2 BLMs within a distance of 40 m must
exceed a dose rate threshold, usually set to 1×10−4𝐺𝑦/𝑠, and
that the event duration must be on the millisecond timescale,
see [1] for details.

UFO Dataset
The UFO-Buster’s UFO assignments are used to create a

dataset of known UFO events on which to train the model in
a supervised manner. For this study, only UFOs occurring
in the arc sections of the LHC, during the stable beam mode
of physics runs in 2018 were considered. In total 744 UFO
events were used with each of these UFO containing loss
maps consisting of 3595 individual BLMs, resulting in an
initial dataset of shape 744 × 3595.

MACHINE LEARNING MODELLING
The objective is to create a machine learning model capa-

ble of identifying UFOs within operational loss maps, using
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the UFO-Buster dataset. Two different models were trained,
a binary classification and a regression model. The distinc-
tion between these models lies in the format of their output
data, the regression model will be trained on values which
indicate how centered the input is on a UFO, whereas the
classification model will be provided a binary output, i.e.
whether the input contains a UFO or not.

Preprocessing
Before training the model, a significant amount of prepro-

cessing is performed.

Rolling Window Firstly, a rolling window transforma-
tion is applied with a window of the typical size of a UFO
induced particle shower. A window size of 33 BLMs was
chosen. After this transformation we obtain a dataset of
shape 2674680 × 33.

Augmentation In order to help generalize the model,
the samples which contain UFOs were augmented by adding
their mirrored representations to the dataset. This, in essence,
adds the other beam’s response to the dataset.

Balancing In order to help with the learning process,
it generally is advised to have a relatively balanced dataset.
In our case, there are naturally more windows which don’t
contain UFOs than windows which do. For the regression
model, balancing was performed by duplicating the under-
represented UFO windows. Whereas for the classification
model, sample weighting was used.

Normalization Each window feature of the dataset is
normalized so as to obtain a null mean and a standard devia-
tion of 1.

With 𝑥𝑖 the data contained in the 𝑖𝑡ℎ column of the dataset,
∀𝑖 ∈ [0 . . 𝑛𝑐𝑜𝑙𝑢𝑚𝑛𝑠 − 1]

𝑥𝑖,𝑛𝑜𝑟𝑚𝑒𝑑 =
𝑥𝑖 − 𝑥𝑖

𝑠𝑡𝑑 (𝑥𝑖)
(1)

Label Assignment For the regression model, the labels
are assigned following a triangle distribution centered on the
UFO with the same width as the rolling window. Resulting
in each loss map window being assigned a label based on
how centered it is on the UFO, the window perfectly centered
on the UFO is assigned the label 1 and decays to zero as the
window slides away from the known UFO location.

For the classification model, the labels are easier to com-
pute. Simply, any window which overlaps with the known
location of the UFO is labelled as 1 and any which don’t are
labelled as 0.

See Fig. 3 for the window labels of an example UFO for
both models.

Model Description
For both models a 2 layered Convolutional Neural Net-

work (CNN) [6] model was used. The networks were de-
voloped using the TensorFlow libraries [4, 5]. Each layer is
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Figure 3: The BLM signals close a UFO event along with
the computed window label

made up of a convolutional and a max pooling step. The con-
volutional layer learns a multitude of filters which convolve
over the spatial dimension of the input data. By stacking
multiple convolutional layers it is possible to learn more
complex patterns in the input data. The max pooling layer
is a down-sampling method which is typically paired with
convolutional layers. Max pooling layers keep only the maxi-
mal value of non-overlapping subregions of the layer’s input.
This transformation reduces the complexity of the model,
reduces overfitting and provides the model with some trans-
lation invariance properties. For both models, the hyperpa-
rameters of the convolutional layers were optimized using
random search. The regression model’s loss function used
is Mean Absolute Error and the classification model’s loss
function is Binary Crossentropy [8]. Both models use the
Adam optimizer [7].

Training
The dataset is split into training, validation and testing

with ratios 0.6, 0.2, 0.2 respectively. The learning rates of
the models are decreased during training and the training
is stopped once their loss metrics have converged. The loss
functions during training are shown in Fig. 4.
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(a) Regression model
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(b) Classification model

Figure 4: Training and validation loss functions during train-
ing along with the decreasing learning rate in red for both
models.
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Evaluation and Tuning
Once the models are trained, when provided an input, they

output a scalar value which we can interpret as the models’
confidence that the provided input contains a UFO event.

The models’ output across an entire loss map containing
a UFO event is shown in Fig. 5. The models’ output is
maximal and reaches 1 at the location of the UFO and is
lower for nominal BLM signals, i.e. BLM signals of regular
losses. For both models, we can also observe some lower
peaks throughout the loss map, however the classification
model is drastically more noisy.
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Figure 5: A loss map containing a UFO event (fill 6648 on
2018-05-06 at 20:01:23) along with both models’ output
across the full loss map.

We are left with the task of determining the optimal sen-
sitivity threshold above which an input sample is said to
contain a UFO and below which it does not.

Sensitivity Tuning The trained models’ predictions on
the test dataset were used to tune the sensitivity. The thresh-
old value was scanned and various performance metrics were
used to quantify the models’ performances.

Since the regression model has a better performance, i.e.
higher accuracy, lower false positive rate and comparable
false negative rates than the classification model, as it is
possible to verify in Fig. 6, we will focus the last part of this
study on the regression model.

A couple working points were considered. Taking the
working point with a threshold at 0.40 reduces the false
negative rate while maintaining a reasonable false positive
rate. However, using a higher threshold such as 0.85 reduces
further the false positive rate at the expense of the false
negative rate, see Table 1 for specific values.

Table 1: Performance of the Regression Model for 2 Working
Points

Sensitivity False neg. rate False pos. rate Accuracy

0.40 0.0134 0.0046 0.9953
0.85 0.0201 0.0001 0.9998

For our application, minimizing the false negative rate is
the best approach since a high identification probability is
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Figure 6: Various performance metrics computed while
scanning the sensitivity threshold for both models.

desired to capture as many UFOs as possible, as such the
lower sensitivity threshold of 0.40 was chosen.

Width threshold tuning In addition to the sensitivity
threshold a second tunable parameter was added to remove
some noise in the model’s prediction. As UFOs produce
highly localized losses, multiple BLMs in close proximity
produce high signals when a UFO occurs. To make use of
this property, a threshold on the width of consecutive posi-
tive assignments was introduced and tuned using a similar
approach as the sensitivity threshold. The effect of both
thresholds on the final UFO assignment is shown in Fig. 7.
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Figure 7: Effect of the thresholds on the final UFO assign-
ment (fill 6648 on 2018-05-06 at 20:01:23).

Using both thresholds the model is able to capture 100%
of the UFOs while discarding 98% of the non UFO data.

CONCLUSION
A procedure for utilizing the UFO-Buster’s UFO assign-

ments to train a machine learning UFO detection model was
developed. Two types of CNN models were trained, tuned,
evaluated and compared, of which, the regression based
model performed best. Work is ongoing towards further
improving the models by optimizing the data preprocessing
methodology and increasing the amount of data on which
the model is trained through synthetic data generation.
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