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Abstract: We derive a factorization theorem for the Higgs-boson production amplitude
in gluon-gluon fusion induced by a light-quark loop, working at next-to-leading power in
soft-collinear effective theory. The factorization is structurally similar to that obtained for
the h → γγ decay amplitude induced by a light-quark loop, but additional complications
arise because of external color charges. We show how the refactorization-based subtraction
scheme developed in previous work leads to a factorization theorem free of endpoint diver-
gences. We use renormalization-group techniques to predict the logarithmically enhanced
terms in the three-loop gg → h form factor of order α3
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1 Introduction

Factorization theorems are important for understanding observables sensitive to multiple
energy scales. They provide a method for disentangling short-distance from long-range
phenomena and allow for a resummation of large logarithmic corrections to all orders
of perturbation theory. At leading order in scale ratios, a typical factorization theorem
consists of a product or a convolution of functions that are each associated with a single
scale. At subleading power, however, several complications arise. With the upcoming
analysis of the Run-3 dataset of the large hadron collider (LHC) at CERN, it will be possible
to measure the properties of the Higgs boson with unprecedented precision. It is, therefore,
necessary to have equally precise theoretical predictions at hand. The main production
channel for the Higgs boson is the gluon-gluon fusion process, gg → h, mediated via quark
loops. The top quark gives the largest contribution, and its effects have been studied
up to three-loop order [1]. While this contribution is purely short-distance dominated,
the subleading contributions from light quarks are sensitive to three very different mass
scales, Mh �

√
Mhmb � mb, where here and below we focus on the case of a b-quark

loop. Estimates for the impact of this contribution vary in the range between 9–13%,
depending on whether one takes the value for the b-quark pole mass mpole

b ≈ 4.8GeV [2] or
the running mass mb(Mh) ≈ 2.6GeV [3]. In order to reduce this ambiguity, it is crucial to
resum large logarithmic contributions in the scale ratioMh/mb to all orders of perturbation
theory. The leading such terms are of order αns ln2n(−M2

h/m
2
b). The goal of this work is to

derive a factorization theorem for this process, based on which this resummation can be
accomplished.

In [4–6], we have applied advanced methods of soft-collinear effective theory (SCET) [7–
11] to derive the corresponding factorization theorem for the Higgs-boson decay h → γγ

mediated by a b-quark loop. This was the first complete SCET factorization formula for
an observable that is of next-to-leading power (NLP) in small scale ratios. Compared with
the contribution of the top quark, the Higgs coupling to bottom quarks provides the power
suppression in the expansion parameter λ ∼ mb/Mh. It is by now well-known that scale
factorization at NLP is full of complexities. The factorization theorems contain a sum over
convolutions of Wilson coefficients with operator matrix elements, which are plagued by
endpoint singularities. They manifest themselves in divergent convolution integrals over
products of component functions [4–6, 12–21]. One may interpret such divergences as a
failure of dimensional regularization and the MS subtraction scheme, because some poles
in the dimensional regulator are not removed by renormalizing the individual component
functions, and hence naive scale separation is violated. Standard tools are then insufficient
to obtain well-defined, renormalized factorization theorems.

This work is dedicated to generalizing the methodology developed for the factorization
of the light-quark induced contribution to the h → γγ decay amplitude (to which we will
from now on refer to as the “photon case”) to the non-abelian counterpart, the fusion pro-
cess gg → h via light-quark loops (below often referred to as the “gluon case”). Following
closely the steps laid out in our previous works, we will derive the bare factorization theo-
rem in section 2, pointing out important differences with respect to the photon case, which
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result from the fact that the external gluons carry color. We show how implementing the
refactorization-based subtraction (RBS) scheme developed in [4, 5] makes it possible to
write down a factorization theorem that is free of endpoint divergences. In section 3, we
discuss the renormalization of the factorization theorem. While the renormalization of the
component functions and the regularization of endpoint divergences in the RBS scheme do
not commute, we show that it is possible to absorb all additional “mismatch contributions”
into a redefinition of one of the hard matching coefficients in the factorization formula. Sec-
tions 4 and 5 are dedicated to deriving the renormalization-group (RG) evolution equations
for all entities in the factorization theorem, and using them to predict the leading large
logarithmic terms in the three-loop gg → h amplitude, respectively. In section 6, we solve
the evolution equations in RG-improved perturbation theory and resum the infinite towers
of logarithms αns ln2n−k(−M2

h/m
2
b) with k = 0, 1, 2 to all orders of perturbation theory.

We conclude in section 7. Several technical details of our calculations are collected in four
appendices.

2 Derivation of the factorization theorem

In this section, we apply SCET to disentangle the relevant energy scales and obtain a
factorization formula for the light-quark induced gg → h production amplitude, following
closely our previous work on the corresponding contributions to the h→ γγ decay ampli-
tude [4, 5]. In the following, we first introduce some basic notions and SCET and illustrate
the main challenges faced when applying SCET at NLP in scale ratios. We then point
out the main differences in the treatment of the gg → h and h → γγ amplitudes, which
arise due to the fact that the external gluons carry color and hence are unphysical external
states.

2.1 General remarks about SCET at next-to-leading power

Much of the power of SCET derives from the fact that it allows one to factorize hard,
collinear, and soft interactions already at the Lagrangian level (at leading power). Extend-
ing the formalism to NLP, however, reintroduces interactions between the different sectors.
It is a highly non-trivial task to ensure that scale separation still works in higher orders
in power counting. We use λ = mb/Mh as the expansion parameter of SCET. As usual in
SCET, we decompose all momenta into light-cone components

`µ = (n1 · `)
nµ2
2 + (n2 · `)

nµ1
2 + `µ⊥ . (2.1)

Here, n1 and n2 are two light-like reference vectors aligned with the directions of the
external gluons, i.e. ni ‖ ki, which satisfy n2

i = 0 and n1 · n2 = 2. In the rest frame of the
Higgs boson, they can be chosen as nµ1 = (1, 0, 0, 1) and nµ2 = (1, 0, 0,−1). In the following,
we will often use the conjugate vectors n̄µ1 ≡ n

µ
2 and n̄µ2 ≡ n

µ
1 . Indicating the scalings of the

individual momentum components as (n1 · `, n2 · `, `⊥), we find that the following modes
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are relevant in the low-energy effective theory:

hard(h) : `µ ∼ (1, 1, 1)Mh ,

n1-collinear(c) : `µ ∼ (λ2, 1, λ)Mh ,

n2-collinear(c̄) : `µ ∼ (1, λ2, λ)Mh ,

soft(s) : `µ ∼ (λ, λ, λ)Mh .

(2.2)

Matching the Standard Model (SM) onto the effective theory is a two-step process, SM →
SCET1 → SCET2. In the intermediate effective theory SCET1 exchanges between the
soft and collinear sectors are still present, and one needs hard-collinear modes obeying the
scaling relations

n1-hard-collinear (hc) : `µ ∼ (λ, 1, λ
1
2 )Mh ,

n2-hard-collinear (hc) : `µ ∼ (1, λ, λ
1
2 )Mh .

(2.3)

Integrating out the hard-collinear modes results in the so-called radiative jet functions as
matching coefficients [14, 16, 22, 23]. In SCET, operators are built of so-called gauge-
invariant (hard-)collinear building blocks, which are composite objects invariant under
collinear gauge transformations. This provides the advantage that gauge invariance is
explicit despite the fact that SCET is intrinsically non-local through the appearance of
Wilson lines.

A common feature of NLP SCET problems is the occurrence of endpoint-divergent con-
volution integrals. Some of them can be regularized using dimensional regularization, while
others require additional analytic (or rapidity) regulators [24–27]. Even though the depen-
dence on the analytic regulator cancels in the sum of all terms in the factorization formula,
the presence of endpoint singularities upsets the usual renormalization in the MS scheme,
because renormalizing the composite operators and Wilson coefficients in the effective the-
ory does not remove all divergences. This is the bottleneck of all NLP problems. The
refactorization-based subtraction (RBS) scheme proposed in [4, 5] addresses this problem
in a systematic way. Based on exact d-dimensional refactorization conditions, it exploits
the fact that the integrands of the divergent integrals in different terms in the factoriza-
tion theorem become identical in the singular regions. This allows for a rearrangement,
which removes the endpoint divergences. The importance of refactorization conditions and
refactorization-based subtractions has also been emphasized in later work [19, 28], and it
is the only known systematic method to deal with factorization at NLP.

2.2 Factorization in h → γγ decay

Before studying the factorization properties of the gg → h production process, we find it
instructive to recapitulate the main steps in the derivation of the analogous factorization
theorem for the h→ γγ decay amplitude. We begin with the factorization formula in terms
of bare Wilson coefficients and operator matrix elements derived in [4]. It consists of the
matrix elements of three bare SCET operators O(0)

i,γ multiplied (or convoluted) with bare
Wilson coefficients H(0)

i,γ , which account for the hard matching corrections arising when the
full theory (i.e., the SM with the top quark integrated out) is matched onto SCET. The
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Figure 1. Relevant regions of loop momenta contributing to the amplitudes for h → γγ (left)
and gg → h (right). The convolution symbol ⊗ in the second term means an integral over the
momentum-fraction variable z. The green double lines in the third term represent finite Wilson-line
segments, whereas the red double lines indicate semi-finite Wilson lines in the adjoint representation
of SU(Nc), which are present only for the gluon case.

factorization theorem reads

Mb(h→ γγ) = H
(0)
1,γ〈O

(0)
1,γ〉+ 2

∫ 1

0
dz H(0)

2,γ(z)〈O(0)
2,γ(z)〉+H

(0)
3,γ〈O

(0)
3,γ〉 . (2.4)

The three terms correspond to different regions of loop momenta contributing to the decay
amplitude. The situation is portrayed in figure 1 for both the h → γγ (left) and gg → h

(right) process. A region analysis of the full-theory one-loop Feynman diagram reveals that
the momentum flowing through the propagator connecting the two gauge bosons can be
either hard, ni-collinear or soft. The same regions are also relevant for multi-loop graphs.
The first term in the factorization theorem is obtained when all loop momenta are hard. In
the effective theory, the loop is then shrunken to a point-like interaction connecting a Higgs
field to two gauge fields, describing photons moving along the light-like directions n1 and
n2. The second term arises when the loop momentum is collinear with one of the photon
directions. The operator O(0)

2,γ(z) contains a Higgs field, an n2-collinear photon field, and two
n1-collinear b-quark fields, which annihilate each other to produce the photon moving along
the direction n1. The variable z ∈ [0, 1] indicates the fraction of the photon momentum
carried by the n1-collinear quark. Interchanging the photon directions n1 and n2 yields the
same result, hence giving rise to the factor 2 in the factorization formula. The third term
arises when the loop momentum is soft, which forces the other two quark propagators to be
hard-collinear. Formally, the operator O(0)

3,γ contains the time-ordered product of the scalar
Higgs current with two insertions of the subleading-power SCET Lagrangian [10], in which
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z J

k1

k2

k1

k2

z → 0

(b)

S

z → 0

(a)

H3

k1

k2

J

k2H2(z)

(1− z)k1 zk1

z

Figure 2. Graphical illustration of the refactorization conditions connecting different objects in
the gg → h factorization formula to all orders of αs. The left panel portrays the first equation
in (2.6), while the right panel illustrates the second equation.

hard-collinear fields are coupled to a soft quark field. Integrating out the hard-collinear
fields, the matrix element of this third operator can be further factorized into the double
convolution of two radiative jet functions and a soft-quark soft function, i.e. [4]

〈O(0)
3,γ〉 = ε⊥1 (k1) · ε⊥2 (k2)

2

∫ ∞
0

d`+
`+

∫ ∞
0

d`−
`−

×
[
J (0)
γ (Mh`+)J (0)

γ (−Mh`−) + J (0)
γ (−Mh`+)J (0)

γ (Mh`−)
]
S(0)
γ (`+`−) ,

(2.5)

where ε⊥i (k0) denote the (transverse) photon polarization vectors, while Jγ and Sγ are the
radiative jet and soft functions, respectively. The properties of these functions have been
studied in great detail in [22, 29].

Complications arise because the integrals in the second and third term in (2.4) are
endpoint divergent in the regions where z → 0, z → 1, and `± →∞. From a physical point
of view, these regions are at the boundary where a collinear quark becomes soft or a soft
quark becomes collinear, hinting that both divergent terms should have a closely related
structure. This was shown rigorously in [4, 6], where two refactorization conditions were
proven to hold to all orders of perturbation theory. They are

[[H̄(0)
2,γ(z)]] = −H(0)

3,γJ
(0)
γ (zM2

h) ,

[[〈O(0)
2,γ(z)〉]] = −ε

⊥
1 (k1) · ε⊥2 (k2)

2

∫ ∞
0

d`+
`+

J (0)
γ (−Mh`+)S(0)

γ (zMh`+) .
(2.6)

The function H̄2(z) is defined via

H2(z) = H̄2(z)
z(1− z) , (2.7)

and the symbol [[ . . . ]] denotes that one should only keep the leading terms in the z → 0
limit. The arguments in the proof can also be applied to the corresponding functions in the
gluon case, for which analogous refactorization conditions hold. The situation is portrayed
for the gluon case in figure 2.
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∞ bin

Mh

σMh

n2-collinear

n1-collinear

`+`− = m2
b

`−

`+

soft

Figure 3. Graphical illustration of the impact of the cutoffs on the convolution integrals over `+
and `− in the last term of the bare factorization formula (2.8). The “infinite bin” is subtracted twice
and must be added back in the form of an extra contribution to the bare Wilson coefficient H(0)

1,γ .

Using these refactorization conditions allows one to rewrite the bare factorization the-
orem in a form that is free of endpoint divergences. The result is

Mb(h→ γγ) =
(
H

(0)
1,γ + ∆H(0)

1,γ

)
〈O(0)

1,γ〉

+ 2
∫ 1

0
dz
[
H

(0)
2,γ(z)〈O(0)

2,γ(z)〉 − [[H̄(0)
2 (z)]]
z

[[〈O(0)
2,γ(z)〉]]− [[H̄(0)

2 (1− z)]]
1− z [[〈O(0)

2,γ(z)〉]]
]

+ ε⊥1 ·ε⊥2 lim
σ→−1

H
(0)
3,γ

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J (0)
γ (Mh`−)J (0)

γ (−Mh`+)S(0)
γ (`−`+)

∣∣∣
leading power

.

(2.8)
Removing the divergences in the second term by a plus-type subtraction and applying the
refactorization conditions introduces cutoffs on the integrals in the third term. Since, as
shown in figure 3, the region |`±| ≥ Mh is subtracted twice, this purely hard “infinity-
bin” contribution must be added back, giving rise to the quantity ∆H(0)

1,γ in the first line
of (2.8). Via the hard cutoffs, the double convolution over the jet and soft functions depends
logarithmically on the hard scaleMh. The appearance of such rapidity logarithms is a well-
known feature familiar from other applications of SCET, such as the factorization theorem
for the transverse-momentum distribution in Drell-Yan production [24]. As discussed in
detail in [4], the cancellation of rapidity divergences in the NLP factorization theorem
for the h → γγ process gives rise to the hard cutoffs in (2.8). While in leading-power
factorization theorems the rapidity logarithms arise from soft gluon exchange described
by Wilson lines, the more complicated logarithmic structure seen at NLP results from the
exchange of a soft quark, which leads to the emergence of new, non-trivial radiative jet
functions.

Renormalizing the quark mass mb, the Yukawa coupling yb and the strong coupling
αs is not sufficient to remove all ultraviolet (UV) divergences from the bare operators and
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E

Mh

√
mbMh mb ΛQCD

H1 S1

H2 S2

H3 J · J S3

〈Ogg〉

Fgg

O3

Figure 4. Illustration of the four energy scales relevant to the gg → h fusion process mediated via
light quarks. The different objects in the factorization theorem are shown at their respective scales.
The hard, jet and soft functions can be collected into the h → gg form factor Fgg. This quantity
is the Wilson coefficient arising when the SM is matched onto a low-energy effective theory below
the scale mb.

hard matching coefficients. The remaining divergences must be eliminated by renormalizing
these objects themselves. This is in general a non-trivial task, since the renormalization
factors must be applied in the convolution sense, and moreover the operators O1,γ and
O2,γ mix under renormalization. Endpoint divergences in the renormalized factorization
theorem are eliminated similarly to the bare case. An additional complication arises from
the fact that, due to the presence of the cutoffs on the convolution integrals, the operations
of renormalization and the removal of endpoint divergences do not commute. This leads
to the appearance of so-called “mismatch term” [6] that emerge when rearranging the
expressions into the form of (2.8). Since these mismatch terms only receive contributions
from momentum regions above the Higgs mass scale, they can be collected into an additional
contribution to the renormalized Wilson coefficient H1,γ(µ). It is thus possible to derive a
renormalized version of the factorization formula (2.8).

2.3 Factorization theorem for gg → h

Our goal in this work is to apply the methodology introduced above to the gg → h process,
which is structurally very similar to the photon case, with the crucial difference that the
external gluons carry color and are not infrared-safe asymptotic states. In fact, deriving
the factorization theorem in the gluon case is a four-scale problem. The involved scales
are the mass of the Higgs boson Mh, the mass of the light quark mb, an intermediate
scale

√
Mhmb only present for the analog of the third term in (2.8), and the scale ΛQCD,

where non-perturbative effects come into play, accounting for the fact that the gluons are
confined inside the colliding protons. The different scales and the corresponding objects in
the factorization theorem are shown in figure 4. To deal with this situation, we consider
the three-step matching procedure SM→ SCET1 → SCET2 → LEFT, where LEFT is the
low-energy effective theory below the b-quark mass scale. In analogy with the photon case
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studied in [4, 5], the relevant SCET1 operators are

O1 = mb

g2
s

hG⊥µ,an1 G⊥an2 µ ,

O2(z) = h
[
X̄n1γ

µ
⊥T

a /̄n1
2 δ(z n̄1 · k1 + in̄1 · ∂)Xn1

]
G⊥,an2 µ ,

O3 = T
{
h X̄n1Xn2 , i

∫
dDxL(1/2)

q ξn1
(x), i

∫
dDyL(1/2)

ξn2q
(y)
}

+ h.c. ,

(2.9)

where h denotes the Higgs field. Here and below, fields without an argument are located at
the spacetime point x = 0. The symbols Gµ,ani and Xni denote ni-hard-collinear gluon and
b-quark fields defined in SCET1 (the so-called “gauge-invariant building blocks” [9, 31]),
which differ from the ordinary quantum fields Gµ,a and ψ in that they contain hard-
collinear Wilson lines in their definition and that they obey the constraints n̄i · Gani = 0
and /niXni = 0. Note that the Feynman rule for the vector field Gµ,ani contains a factor of
gs, which is the reason why we have divided by g2

s in the definition of O1. The operator
O3 contains the time-ordered product of the scalar Higgs current with two subleading-
power terms in the SCET Lagrangian [10], in which hard-collinear fields are coupled to a
soft quark field. When the above operators are matched into SCET2, the hard-collinear
fields in O1 and O2 are simply replaced by the corresponding collinear fields, whereas the
operator O3 is matched onto a double convolution of two jet functions with a soft function,
as shown in (2.5) for the photon case.

The only operator in the LEFT needed for our purposes is the two-gluon operator

Ogg = 1
g2
s

G⊥µ,an1 G⊥an2 µ , (2.10)

built out of two collinear gluon fields along the directions n1 and n2. The matching relations
for the relevant SCET operators onto the operator Ogg involve soft functions Si as matching
coefficients. For the case of Higgs-boson production at proton-proton colliders, we define

〈pp|Oi |h〉 = Si 〈pp|Ogg |0〉 ; i = 1, 2 ,
〈pp|O3 |h〉 = J ⊗ J ⊗ S3 〈pp|Ogg |0〉 .

(2.11)

Being Wilson coefficients, the soft functions Si can be calculated in perturbation theory
using on-shell gluon states. All non-perturbative physics is incorporated in the matrix
element 〈pp|Ogg |0〉. The operator Ogg requires renormalization and hence its matrix el-
ements are scale dependent. When the gg → h production amplitude is squared and
integrated over phase space, the squared matrix element of Ogg yields the product of two
gluon distribution functions of the proton.

The hard, jet and soft functions can be combined into a perturbatively calculable short-
distance quantity referred to as the gg → h form factor Fgg. The interpretation of the total
matrix element as a product of a form factor and a non-perturbative low-energy gluon ma-
trix element allows for the identification of the form factor as the non-abelian counterpart
of the h→ γγ amplitude. The calculation of the hard, jet and soft functions then proceeds
in an analogous way as in the photon case. Following the arguments presented above, we
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write the bare factorization theorem for the light-quark induced contribution to the gg → h

form factor in the form

F (0)
gg =

T
(0)
1︷ ︸︸ ︷(

H
(0)
1 + ∆H(0)

1

)
S1 +

T
(0)
2︷ ︸︸ ︷

4
∫ 1

0

dz
z

(
H̄

(0)
2 (z)S(0)

2 (z)− [[H̄(0)
2 (z)]][[S(0)

2 (z)]]
)

+ lim
σ→−1

H
(0)
3

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J (0)(−Mh`−)J (0)(Mh`+)S(0)
3 (`−`+)

∣∣∣
leading power︸ ︷︷ ︸

T
(0)
3

,

(2.12)
which is free of endpoint divergences and UV finite. Note that due to the cutoffs the third
term contains some power-suppressed contributions, which should be dropped for consis-
tency. The remaining infrared (IR) poles will eventually be absorbed by the renormalization
of the operator Ogg. The fact that the integrand of the second term is symmetric under
exchange z ↔ (1 − z) explains the additional factor 2 in front of the integral compared
with (2.8). The bare hard coefficients H(0)

i and soft functions S(0)
1 and S(0)

2 are defined and
calculated in analogy with the photon case. The corresponding expressions can be found
in appendix A. The jet function for the gluon case has been calculated at two-loop order
in [23]. An important difference with respect to the photon case concerns the soft function
S

(0)
3 , which is related to the structure

Wαβ
ab (x−, y+) = T̂Trc

[
Sn2(0)T bS†n2(y+) qβs (y+) q̄αs (x−)Sn1(x−)T aS†n1(0)

]
. (2.13)

Here Trc indicates a trace over color indices and T̂ stands for time ordering. Sni denotes a
soft Wilson line in the direction ni. The position variables are defined as xµ− = nµ1

2 (n2 · x)
and yµ+ = nµ2

2 (n1 · x). In contrast to the photon case, it is not possible to combine the
semi-finite soft Wilson lines Sn2(0) and S†n2(y+) into a finite-length Wilson line because of
the insertion of the color generator T b, and similarly for the soft Wilson lines in the n1
direction. We may however use the identity

Sni(x)T aS†ni(x) = (Yni(x))a,,b T b , (2.14)

with Yni(x) a semi-finite soft Wilson line in the adjoint representation, to obtain

Wαβ
ab (x−, y+) = T̂Trc

[
Yn2(0)bdT d Sn2(0, y+) qβs (y+) q̄αs (x−)Sn1(x−, 0)Yn1(0)acT c

]
, (2.15)

with
Sn2(0, y+) ≡ Sn2(0)S†n2(y+) = P̂ exp

[
igs

∫ 0

y+
dt n2 ·Gas(tn2)T a

]
. (2.16)

Here, Gas(x) is a soft gluon field without any Wilson line dressing. The Feynman diagrams
contributing to the correlator Wαβ

ab up to two-loop order are shown in figure 5. They
consist of “tipi-tent” graphs, in which we represent the finite-length Wilson lines in the
fundamental representation as green double lines, whereas the semi-finite Wilson lines in
the adjoint representation are drawn as red double lines. The last diagram, in which
the gluon connects to one of the semi-finite Wilson lines, is absent in the photon case
considered in [4, 29]. The soft function S(0)

3 is defined in terms of the discontinuity of Wαβ
ab

in momentum space.
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ℓ+ℓ− ℓ+ℓ− ℓ+ℓ− ℓ+ℓ− ℓ+ℓ−

Figure 5. Feynman diagrams contributing to the calculation of the soft function S3. We omit the
mirror graphs of the third and last diagram.

2.4 Bare expression for the gg → h form factor

To show that all UV divergences cancel in the sum of the three terms in (2.12), we first
express the bare parameters, i.e. the b-quark mass, the b-quark Yukawa coupling and the
strong coupling αs, in terms of renormalized parameters. The relevant renormalization
conditions are given in appendix B. We use the running parameters mb(µ) and yb(µ) in
the overall prefactor of the form factor. However, in the arguments of logarithms we use
the b-quark pole mass mb. Since the form factor is calculated using on-shell gluon states,
it is IR divergent. We remove the IR poles by multiplying with the renormalization factor
Z−1
gg , where Zgg is the UV renormalization factor of the two-gluon operator Ogg, defined

by Ogg(µ) = ZggO
(0)
gg . In the MS-scheme, it is given by [32]

Zgg = 1− αs(µ)
4π

[
2CA

( 1
ε2
− Lh

ε

)
+ β0

ε

]
+O(α2

s) , (2.17)

where Lh = ln[(−M2
h − i0)/µ2]. We write the result for the gg → h form factor as

Z−1
gg F

(0)
gg =M0 Z

−1
gg

(
T

(0)
1 + T

(0)
2 + T

(0)
3

)
, (2.18)

with the overall prefactor

M0 = TF δab
αs(µ)
π

yb(µ)√
2
mb(µ) . (2.19)

The three contributions read

Z−1
gg T

(0)
1 = −2 + αs(µ)

4π

{
CF

[
− π2

3ε2 + 1
ε

(
2π2Lh

3 − 10ζ3

)
− 2π2

3 L2
h + 4 (5ζ3 + 3)Lh

− 36− 7π4

30

]
+ CA

[
π2

3ε2 −
1
ε

(
2π2Lh

3 − 10ζ3

)
+
(

2 + 2π2

3

)
L2
h − 20ζ3Lh

− 12− π2

6 + 18ζ3 + π4

5

]}
+O(α2

s) ,

Z−1
gg T

(0)
2 = αs(µ)

4π

{
CF

[
π2

3ε2 + 1
ε

(
2ζ3 −

2π2Lh
3

)
+ π2

3
(
L2
h − L2

m

)
+ Lh

(
2π2Lm

3 − 4ζ3

)

+ 8ζ3 + 13π4

90

]
+ CA

[
− π2

3ε2 + 1
ε

(2π2Lh
3 − 6ζ3

)
− π2

3
(
L2
h − L2

m

)
+ Lh

(
4ζ3 −

2π2Lm
3

)
+ 8ζ3Lm −

π2

6 − 6ζ3 −
π4

45

]}
+O(α2

s) ,
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Z−1
gg T

(0)
3 = L2

2 + αs(µ)
4π

{
CF

[8ζ3
ε
− L4

12 − L
3 + L2

(
−3Lm −

π2

3 + 4
)

+
(

16− 12Lm + 2π2

3

)
L− 16ζ3Lm − 4ζ3 −

π4

9

]

+ CA

[
− 4ζ3

ε
− 5L4

12 − L
3Lm −

L2L2
m

2 +
(

1 + π2

12

)
L2 + 4ζ3(L+ 2Lm)

]}
+O(α2

s) . (2.20)

The different logarithms appearing in the expressions are

Lh = ln −M
2
h − i0
µ2 , Lm = ln m

2
b

µ2 , L = Lh − Lm = ln −M
2
h − i0
m2
b

, (2.21)

with mb being the pole mass. It can readily be checked that the remaining 1/ε poles cancel
in the sum of the three contributions. Consequently, we find for the full form factor

Z−1
gg F

(0)
gg =M0

{
− 2 + L2

2 + αs(µ)
4π

[
CA

(
− 5L4

12 − L
3Lm −

L2L2
m

2 +
(

3 + 5π2

12

)
L2

+ 4LLm + 2L2
m − 12ζ3L− 12− π2

3 + 12ζ3 + 8π4

45

)

+ CF

(
− L4

12 − L
3 − 3LmL2 +

(
4− 2π2

3

)
L2 +

(
16ζ3 + 2π2

3 + 12
)
L

+ 12Lm − 36 + 4ζ3 −
π4

5

)]
+O(α2

s)
}
. (2.22)

This result agrees with a corresponding expression obtained in [33] after taking into account
some differences in the IR subtraction schemes. In the limit CA → 0, and performing
some simple replacements in the prefactor M0, the above result reproduces the two-loop
amplitude for h→ γγ decay obtained in [4].

3 Renormalized factorization formula

In this section, we establish the factorization formula in terms of renormalized quantities,
which reads

Fgg(µ) =
T1(µ)︷ ︸︸ ︷

H1(µ)S1(µ) +

T2(µ)︷ ︸︸ ︷
4
∫ 1

0

dz
z

(
H̄2(z, µ)S2(z, µ)− [[H̄2(z, µ)]][[S2(z, µ)]]

)
+ lim
σ→−1

H3(µ)
∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

J(Mh`−, µ)J(−Mh`+, µ)S3(`−`+, µ)
∣∣∣
leading power︸ ︷︷ ︸

T3(µ)

.

(3.1)
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In general, we obtain the renormalized operators Oi(µ) from the bare operators O(0)
j using

the relation

Oi(µ) = ZijO
(0)
j , (3.2)

where in some cases the product must be replaced by a convolution. The hard matching
coefficients are renormalized with the inverse renormalization factors. As discussed in
great detail in [5], to derive such a renormalized factorization theorem from the bare one
is a non-trivial task. In addition to renormalizing the various ingredients, one needs to
assure that renormalization does not reintroduce endpoint divergences. It can be shown
that while renormalization and the subtraction of endpoint divergences do not commute,
moving from the bare to the renormalized factorization theorem only introduces additional
finite terms, which only depend on the hard scale Mh. These terms can hence be absorbed
into a redefinition of the renormalized hard matching coefficient H1(µ).

3.1 Renormalization of T3

The hard function H3 is the same as in the photon case H3,γγ , and so we can directly quote
the corresponding expression from [5], which reads

H3(µ) = Z−1
33 H

(0)
3 = yb(µ)√

2

[
−1 + CFαs

4π

(
L2
h + 2− π2

6

)]
+O(α2

s) . (3.3)

We collect all renormalization factors in appendix B unless stated otherwise. Note that
here and in the following we will suppress the scale dependence of the strong coupling
constant and denote αs ≡ αs(µ) in the MS-scheme with nf = 5 active quark flavors.

The radiative jet function is renormalized in the convolutional sense, i.e.

J(p2, µ) =
∫ ∞

0
dxZJ(p2, xp2)J (0)(xp2) . (3.4)

Both the bare function J (0) and the renormalized function J have been calculated at two-
loop order in [23]. One finds

J(p2, µ) = 1 + αs
4π (CF − CA)

[
L2
p − 1− π2

6

]
+O(α2

s) . (3.5)

Also the soft function is renormalized by means of a convolution, such that

S3(w, µ) =
∫ ∞

0
dw′ ZS(w,w′)S(0)

3 (w′) . (3.6)

In the photon case, the form of the renormalization factor ZS was deduced by applying
RG consistency arguments to T3|h→γγ [29]. Later, Bodwin et al. have verified this conjec-
ture by an explicit calculation [34]. Following the same approach as in [29], we find the
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renormalization factor of the soft function in the gluon case to be

ZS(w,w′) = w

w′
Z−1
gg Z33

∫ ∞
0

dx
x
Z−1
J

(
Mhw

′

x`+
,
Mhw

`+

)
Z−1
J (−xMh`+,−Mh`+)

= δ(w − w′) + αs
2π

{[
(CF − CA)

( 1
ε2
− Lw

ε

)
− 3CF − β0

2ε

]
δ(w − w′)

− 2CF − CA
ε

wΓ(w,w′)
}

+O(α2
s) , (3.7)

with Lw = ln(w/µ2). Here

Γ(y, x) =
[
θ(x− y)
x(x− y) + θ(y − x)

y(y − x)

]
+

(3.8)

is the Lange-Neubert kernel [35]. Note that the color factor in front of this distribution is
(2CF −CA), which differs from the color factor in front of the cusp logarithm Lm. We will
see that this significantly complicates the solution of the RG evolution equation for the
soft function compared with the photon case. The Lange-Neubert kernel plays a crucial
role already at order O(αs), because the leading-order soft function is not a constant.
Using (3.6) and (3.7), we find

S3(w, µ) = −TF δab αs
π

mb(µ)
[
Sa(w, µ)θ

(
w −m2

b

)
+ Sb(w, µ)θ

(
m2
b − w

)]
, (3.9)

with

Sa(w, µ) = 1 + αs
4π

{
CF

[
− L2

w − 6Lw + 12− π2

2 + 2 Li2
(
ŵ−1

)
− 4 ln

(
1− ŵ−1

)(3
2 ln ŵ + ln

(
1− ŵ−1

)
+ Lm + 1

)]
+ CA

[
L2
w −

π2

6 + 2 Li2
(
ŵ−1

)
+ 2 ln

(
1− ŵ−1

)(
ln ŵ + ln

(
1− ŵ−1

)
+ Lm

)]}
+O(α2

s) ,

Sb(w, µ) = αs
4π

(
CF −

CA
2

)
4 ln(1− ŵ)

(
ln(1− ŵ) + Lm

)
+O(α2

s) ,

(3.10)

with ŵ = w/m2
b .

3.2 Renormalization of T2

The hard function H2 is renormalized multiplicatively in the convolution sense. We find

H̄2(z, µ) =
∫ 1

0
dz′ Z−1

22 (z, z′)H̄(0)
2 (z′)

= 1 + αs
4π

{
CF

[
2Lh

(
Lz + Lz̄

)
+ L2

z + L2
z̄ − 3

]
+ CA

[
− L2

h − 2Lh
(
Lz + Lz̄

)
− L2

z − L2
z̄ + 1 + π2

6

]}
+O(α2

s) ,

(3.11)
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and

[[H̄2(z, µ)]] =
∫ ∞

0
dz′ [[Z−1

22 (z, z′)]][[H̄(0)
2 (z′)]]

= 1 + αs
4π

[
CF

(
2LhLz + L2

z − 3
)

+ CA

(
−L2

h − 2LhLz − L2
z + 1 + π2

6

)]
+O(α2

s) , (3.12)

where once again the renormalization factors can be found in appendix B. Writing the
evolution equation for the function H̄2(z, µ) instead ofH2(z, µ) changes the renormalization
factor from Z−1

22 (z′, z) to
z

z′
Z−1

22 (z′, z) = Z−1
22 (z, z′) , (3.13)

which leads to the form shown above. To keep the expressions compact we have abbreviated
Lz = ln z and Lz̄ = ln(1− z). Note that the result for [[H̄2(z, µ)]] can also be obtained by
keeping only the leading terms in the z → 0 limit in H̄2(z, µ).

The full form factor must be multiplied with an additional renormalization factor Z−1
gg .

Therefore in the renormalization condition for the soft function S2 this factor also appears.
Additionally, Z−1

22 depends on the hard scaleMh via the logarithm Lh, but the soft function
should only depend on the soft scale mb. This is indeed the case when we combine the two
renormalization factors. Furthermore, in analogy with the photon case we find that S1 and
S2 mix under renormalization. Hence, the renormalization condition takes the form

S2(z, µ) = Z−1
gg

[∫ 1

0
dz′Z22(z, z′)S(0)

2 (z′) + Z21(z)S(0)
1

]
. (3.14)

For the renormalized soft function, we then obtain (with z̄ ≡ 1− z)

S2(z, µ) = TF δabαs
2π mb(µ)

{
− Lm + αs

4π

[
CF

(
L2
m

(
Lz + Lz̄ + 3

)
− Lm

(
L2
z + L2

z̄ − 4LzLz̄ + 11− 2π2

3

)
+ F (z) + F (z̄)

)

+ CA

(
− L2

m

(
Lz + Lz̄

)
+ Lm

(
L2
z + L2

z̄ − 1
)

+G(z) +G(z̄)
)]

+O(α2
s)
}
,

(3.15)

with

F (z) = L3
z

6 + L2
z

(
z − Lz̄

)
− Lz

(
−Lz̄ + 1 + 3z

2

)
− (4Lz + 2z) Li2(z)

+ 6 Li3(z) + 11
2 − 4ζ3 ,

G(z) = −L
3
z

6 −
z

2L
2
z + 1

2 (1 + 2z − Lz̄)Lz + (2Lz − (1− z)) Li2(z)

− 4 Li3(z) + 1
2 + 4ζ3 .

(3.16)
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3.3 Renormalization of T1

The renormalization condition for the hard function H1(µ) is given by

H1(µ) = Z−1
11

(
H

(0)
1 + ∆H(0)

1 − δ′H1 − δH1
)

+ 4
∫ 1

0

dz
z

(
H̄

(0)
2 (z)Z−1

21 (z)− [[H̄(0)
2 (z)]][[Z−1

21 (z)]]
)
,

(3.17)

where ∆H(0)
1 denotes the contribution from infinity-bin subtraction. Note that in this case

the renormalization factor Z−1
gg must be associated with the hard matching contribution and

not with the soft function S1. The counterterms δ′H1 and δH1 account for the “mismatch
contributions” in T2 and T3, respectively [5]. Both subtraction terms are well defined and
can be systematically calculated in perturbation theory. They are a special feature of the
process under consideration (and the related h → γγ process), for which the term T3 in
the factorization formula (2.12) involves a double convolution over jet and soft functions.
In other applications of the RBS scheme (see e.g. [21]) such subtractions are not required.

Using the relation between the renormalization factors in (3.7), ∆H(0)
1 can be written as

Z−1
gg ∆H(0)

1 S
(0)
1 = −H(0)

3 Z−1
33

∫ ∞
Mh

d`−
∫ ∞

0

d`′−
`′−

∫ ∞
σMh

d`+
∫ ∞

0

d`′+
`′+

×
∫ ∞

0
dwS(0)(w)J (0)(−Mh`+)J (0)(Mh`−)

× ZJ(Mh`
′
−,Mh`−)ZJ(−Mh`

′
+,−Mh`+)ZS(`′+`′−, w) .

(3.18)

Owing to the refactorization conditions for [[H̄(0)
2 (z)]] and [[S(0)

2 (z)]] shown in (2.6), δ′H1 and
δH1 can be expressed in terms of four-fold integrals with the same integrand as in (3.18),
but with different integration limits. It would seem at first sight that the appearance of the
soft and jet functions in the expressions for the subtraction terms introduces a dependence
on the soft and hard-collinear scales in the hard function H1, which would upset scale
factorization. However, it can be shown to all orders in perturbation theory that this is
not the case. The yellow and orange regions in figure 6 correspond to the integral domains
relevant for δ′H1 and δH1, respectively. Adding them up, the resulting integration in the
purple region can be further flipped into the blue region, because the four-fold integration
in the entire region is scaleless. In addition, the integration in the second blue region
eliminates the contribution from ∆H1 exactly. As a result, the renormalized coefficient
H1(µ) can be expressed as

H1(µ) = Z−1
11 H

(0)
1 + 4

∫ 1

0

dz
z

(
H̄

(ε)
2 (z, µ)Z21(z)− [[H̄(ε)

2 (z, µ)]][[Z21(z)]]
)
Z−1

11

−H3(µ) lim
σ→−1

∫ ∞
Mh

d`−
`−

∫ ∞
σMh

d`+
`+

J (ε)(Mh`−, µ)J (ε)(−Mh`+, µ) S
(ε)
3 (`+`−, µ)
S1(µ) ,

(3.19)
where the superscripts “(ε)” in J , S and H̄2 indicate that the full dependence on the
dimensional regulator must be kept in place after renormalization, as explained in [5].
This form makes it explicit that H1(µ) only depends on the hard scale Mh to all orders

– 15 –



J
H
E
P
0
6
(
2
0
2
3
)
1
8
3

Mh

σMh

ℓ−

ℓ+

ℓ′−

ℓ′+

ℓ−

ℓ+

ℓ−

ℓ+

ℓ′−

ℓ′+

ℓ−

ℓ+

ℓ′−

ℓ′+

ℓ′−

ℓ′−

ℓ′+

ℓ−

ℓ+

ℓ′−ℓ−

ℓ+

ℓ′+

ℓ′+

(a) The phase space of mismatch in T2 (yellow) and T3 (orange).

Mh

σMh

ℓ−

ℓ+

ℓ−

ℓ+

ℓ′−

ℓ′+

ℓ′−

ℓ′+

ℓ−

ℓ+

ℓ′−

ℓ′+

ℓ′−

ℓ′+

ℓ−

ℓ+

Mh

σMh

(b) The combination of mismatch in T2 and T3 is given by phase-space inte-
gration in the purple region. It can be further flipped into the blue region,
which is purely hard.

Figure 6. The phase space of mismatch in T2 and T3.

in αs. The explicit result for this function at next-to-leading order (NLO) in perturbation
theory is

H1(µ) = yb(µ)√
2
TF δabαs

π

{
− 2 + αs

4π

[
CF

(
− π2

3 L
2
h + (12 + 8ζ3)Lh − 36− 2π2

3 − 11π4

45

)

+ CA

((
2 + π2

3

)
L2
h − 12ζ3Lh − 12 + π2

6 + 18ζ3 + 19π4

90

)]
+O(α2

s)
}
. (3.20)

The soft function S1 is renormalized multiplicatively. After renormalization, it is
simply given by the running b-quark mass, such that

S1(µ) = Z−1
gg Z11S

(0)
1 = Z−1

m S
(0)
1 = mb(µ) . (3.21)
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3.4 Form factor in terms of renormalized quantities

Having all expressions for the renormalized quantities at hand, we can perform the convo-
lution integrals in (3.1) and obtain explicit expressions for the renormalized terms Ti(µ)
(with i = 1, 2, 3) up to order O(α2

s). We find

T1(µ) =M0

{
− 2 + αs

4π

[
CF

(
− π2

3 L
2
h + (12 + 8ζ3)Lh − 36− 2π2

3 − 11π4

45

)

+ CA

((
2 + π2

3

)
L2
h − 12ζ3Lh − 12 + π2

6 + 18ζ3 + 19π4

90

)]
+O(α2

s)
}
,

T2(µ) =M0
αs
4π

[
CF

(2π2

3 LhLm −
π2

3 L
2
m + 2π2

3 + 8ζ3 + 7π4

45

)
+ CA

(
− 2π2

3 LhLm + π2

3 L
2
m + 8ζ3Lm −

π2

2 − 6ζ3 −
π4

30

)
+O(α2

s)
]

(3.22)

T3(µ) =M0

{
L2

2 + αs
4π

[
CF

(
− L4

12 − L
3 − 3LmL2 +

(
4− π2

3

)
L2

+
(

2π2

3 + 8ζ3

)
L− 8ζ3Lm − 4ζ3 −

π4

9

)

+ CA

(
− 5L4

12 − LmL
3 − L2

mL
2

2 +
(

1 + π2

12

)
L2 + 4ζ3Lm

)]
+O(α2

s)
}
.

(3.23)

Adding up the three terms, we reproduce the result for the renormalized form factor given
in (2.22).

4 RG evolution equations

In general, the anomalous dimensions can be extracted from the renormalization factors
Zij defined in (3.2) using the relation

γij = 2αs
∂

∂αs
Z

(1)
ij , (4.1)

where Z(1)
ij denotes the coefficient of the single 1/ε pole in Zij .

4.1 Evolution equations for the hard matching coefficients

The renormalized hard functions obey the RG equations

d
d lnµH3(µ) = γ33H3(µ) ,

d
d lnµH2(z, µ) =

∫ 1

0
dz′H2(z′, µ)γ22(z′, z) ,

d
d lnµ [[H̄2(z, µ)]] =

∫ ∞
0

dz′ [[H̄2(z′, µ)]] z
z′

[[γ22(z′, z)]] .

(4.2)
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As in the photon case, the evolution equation for H1 is more involved. This is due to
various contributions the renormalized hard function H1(µ) receives from operator mixing
and the “mismatch contributions” discussed in section 3.3. Following the steps laid out
in [5], we obtain

dH1(µ)
d lnµ = Dcut(µ) + γ11H1(µ) + 4

∫ 1

0

dz
z

[
H̄2(z, µ)γ21(z)− [[H̄2(z, µ)]][[γ21(z)]]

]
, (4.3)

with
Dcut(µ) = −TF αs

π

yb(µ)√
2

[
αs
4π

(
CF −

CA
2

)
16ζ3 +O(α2

s)
]
. (4.4)

At first sight, this function appears as a simple inhomogeneous term in the evolution
equation, which would not provide a major obstacle to finding its solution. However,
we have shown in [5] that the quantity Dcut exhibits single-logarithmic terms in higher
orders, Dcut 3 αs(αsLh)n for n ≥ 2. With this complication, relation (4.3) establishes a
new type of RG equation, which is more complicated than the equations encountered in
conventional Sudakov problems. In order to solve this equation, it would be necessary to
resum the logarithms contained in Dcut to all orders.

4.2 Evolution equations for the jet and soft functions

The renormalized jet and soft functions satisfy the RG equations
d

d lnµS1(µ) = −(γ11 − γgg)S1(µ) ,

d
d lnµS2(z, µ) = −

∫ 1

0
dz′
[
γ22(z, z′)− γgg δ(z − z′)

]
S2(z′, µ)− γ21(z)S1(µ) ,

d
d lnµ [[S2(z, µ)]] = −

∫ 1

0
dz′
[
[[γ22(z, z′)]]− γgg δ(z − z′)

]
[[S2(z′, µ)]]− [[γ21(z)]]S1(µ) ,

d
d lnµJ(p2, µ) = −

∫ ∞
0

dx γJ(p2, xp2)J(xp2, µ) ,

d
d lnµS3(w, µ) = −

∫ ∞
0

dw′ γS(w,w′)S3(w′, µ) .

(4.5)

We collect the relevant expressions for the anomalous dimensions in appendix C. Compar-
ing these expressions with the corresponding ones in the photon case, we find two main
differences. First, the cusp terms and the convolution kernels of the anomalous dimensions
(except for γ11) do not share the same color factors anymore, leading to highly non-trivial
solutions of the corresponding RG equations. Secondly, since the renormalization factors
for the soft functions S2 and S3 involve a factor Z−1

gg to render them independent of the
hard scale Mh, the anomalous dimensions for these soft functions receive a contribution
from γgg as well.

From the renormalized form factor (3.1) and the renormalization condition for the soft
function S3 we may deduce the non-trivial relation(
γ33 − γgg

)
δ(1− x) = γJ

(
Mhw

`+
, x
Mhw

`+

)
+ γJ (−Mh`+,−xMh`+) + γS(w,w/x) , (4.6)

which holds to all orders in αs. Despite appearance, the right-hand side of this formula is
independent of `+ and w.
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4.3 Evolution equations for the form factor and its three components

The renormalized gg → h form factor fulfills the evolution equation

dFgg(µ)
d lnµ = γggFgg(µ) , (4.7)

where
γgg = αs

4π (4CALh − 2β0) +O(α2
s) (4.8)

is the anomalous dimension associated with Zgg. We may also compute the scale depen-
dence of each of the three terms T1(µ), T2(µ) and T3(µ) individually, finding

dT1(µ)
d lnµ =M0

{
αs
4π

[
−
(
CA − CF

)4π2

3 Lh + 8ζ3
(
3CA − 2CF

)]
+O(α2

s)
}
,

dT2(µ)
d lnµ =M0

{
αs
4π

[(
CA − CF

)4π2

3 Lh − 16ζ3CA

]
+O(α2

s)
}
,

dT3(µ)
d lnµ =M0

{
αs
4π

[
2L2

(
CALh −

β0
2

)
+ 16ζ3

(
CF −

CA
2

)]
+O(α2

s)
}
.

(4.9)

5 Large logarithms in the three-loop gg → h amplitude

Given the RG equations and anomalous dimensions for the ingredients in the factorization
formula, we are able to predict the four leading logarithms in the three-loop expression for
the gg → h form factor in analytic form. To this end, we solve the evolution equations
iteratively and determine the leading large logarithms in the hard matching coefficients
and the soft functions at NNLO in perturbation theory. This is discussed in detail in
appendix D. As in the photon case studied in [22], we convert our results to the on-shell
scheme. Therefore, we first express the running parameters mb(µ) and yb(µ) in terms of
the pole mass mb. We then eliminate the remaining scale dependence by taking µ2 = µ̂2

h ≡
−M2

h − i0. This greatly simplifies the three-loop expressions. At NNLO, we find (here v
denotes the vacuum expectation value of the Higgs field)

Fgg(µ̂h) = TF δab
αs(µ̂h)
π

m2
b

v

{
− 2 + L2

2 + αs(µ̂h)
4π

[
CA − CF

12 L4 − CFL3

+
((

1 + 5π2

12

)
CA −

2π2

3 CF

)
L2 +

((
12 + 2π2

3 + 16ζ3

)
CF − 12ζ3CA

)
L

+
(

4ζ3 −
π4

5 − 20
)
CF +

(
12ζ3 + 8π4

45 −
π2

3 − 12
)
CA

]

+
(
αs(µ̂h)

4π

)2 [(CA − CF )2

90 L6 + (CA − CF )
(
β0
30 −

CF
10

)
L5

+ dOS
4 L4 + dOS

3 L3 + · · ·
]}

, (5.1)
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where L = ln[(−M2
h − i0)/m2

b ], and

dOS
4 =

(
3
2 + π2

18

)
C2
F −

(
191
54 + π2

24

)
CFCA +

(
85
108 −

π2

72

)
C2
A + 32CF − 5CA

27 TFnf ,

dOS
3 =

(
20ζ3

3 + 7π2

9 − 1
2

)
C2
F −

(
10ζ3 + 235

18 + 43π2

27

)
CFCA

+
(10ζ3

3 + 11π2

18 + 4
3

)
C2
A +

(
22
9 + 8π2

27

)
CFTFnf −

(
2
3 + 2π2

9

)
CATFnf .

(5.2)
The coefficients of the color structures C2

F and CFTF agree with the corresponding coeffi-
cients in the photon case.

6 Resummation

In this section, we want to resum the large logarithms to all orders in perturbation theory.
We need therefore solve the RG equations for the different hard, jet, and soft functions.
Choosing to set the scale where we evaluate our predictions as µ = µh, all large logarithms
in the evolution of the hard functions vanish, leaving them in the evolution of the jet and
soft functions. In this context, the general logarithmic structure reads:

T1(µh) = TF δab
yb(µh)√

2
αs(µh)
π

mb(µh)

−2 +
∑
n≥1

αs(µh)n an

 ,
T2(µh) = TF δab

yb(µh)√
2

αs(µh)
π

mb(µh)
∑
n≥1

αs(µh)n
n+1∑
i=0

bn,i L
i ,

T3(µh) = TF δab
yb(µh)√

2
αs(µh)
π

mb(µh)
∑
n≥0

αs(µh)n
2n+2∑
i=0

cn,i L
i,

(6.1)

where an , cn,i and cn,i are numbers. It is obvious that T3 dominates the logarithmic
corrections since it is of Sudakov type. Hence in the following, we will only focus on the
third term. The photon case has been resummed to next-to-leading double-logarithmic
accuracy (NLL) in [5, 6]. In this paper, we include one more tower of logarithms, i.e. we
resum factors of αnsL2n, αnsL2n−1 and αnsL2n−2 to all orders of perturbation theory. This
is conventionally named NLL′ accuracy.

In the literature, one distinguishes two different schemes for the resummation of large
logarithms in Sudakov problems. The so-called “RG-improved perturbation theory” rests
on the assumption that αsL = O(1), where L is the large logarithm in a given problem. The
parametrically leading terms in the logarithm of a quantity are then of order L(αsL)n ∼
α−1
s (αsL)n and are formally larger than O(1). The leading-order approximation (LO)

is therefore defined by the simultaneous resummation of all terms of order L(αsL)n and
(αsL)n in the logarithm of the quantity; i.e., all such logarithms get exponentiated in the
expression for the quantity itself. The NLO approximation resums in addition the terms
of order αs(αsL)n in the exponent, and so on. In the double-logarithmic counting scheme,
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RG-impr. PT Log. approx. Γcusp , β γ H3 , S3 , J αns L
k

− LL LO − LO k = 2n

LO NLL NLO LO LO 2n− 1 ≤ k ≤ 2n

− NLL′ NLO LO NLO 2n− 2 ≤ k ≤ 2n

NLO NNLL NNLO NLO NLO 2n− 3 ≤ k ≤ 2n

Table 1. Naming schemes for logarithmic accuracy in T3(µ). We list perturbative orders of the cusp
anomalous dimension, non-cusp anomalous dimensions γ, QCD β function, and matching functions
to obtain resummation at a given logarithmic order.

instead, one assumes that αsL2 = O(1). In this case the resummation is performed for the
observable itself. In the leading double-logarithmic approximation (LL), all terms of order
αns L

2n are resummed. At the next order (NLL), one resums the logarithms of the form
αns L

2n−k with k = 0, 1, and so on. In table 1 we summarize the ingredients needed at a
given order in the two schemes. Nk+1LL resummations (with k ≥ 0) are contained in RG-
improved perturbation theory at NkLO, while Nk+1LL′ resummation includes matching
corrections at one order higher, however, the same-order anomalous dimensions are used.
Hence it is enough to use RG-improved LO jet and soft functions to account for NLL′

corrections from the anomalous dimensions. On top of that, it turns out that only constant
terms at NLO in the hard, jet, and soft functions at their respective matching scales
contribute to the large logarithms at NLL′, which simplifies the calculation a lot.

The solution to the RG equation for the jet function has been presented in [23] to
RG-improved LO. In the following, we will first derive the RG-improved soft function at
LO. Subsequently, we resum the first three towers of large logarithms in the third term of
the amplitude. Note that at NLL′ accuracy, there are no contributions from the first and
second term apart from the fixed n = 1 contribution in the second term, which therefore
does not need to be resummed at the given logarithmic order. We leave the resummation
of further subleading logarithms in the first and second term for future work.

6.1 RG-improved LO soft function S3

The RG-improved LO soft function S3 can be derived in a similar manner as has been the
soft function of h→ γγ in [29]. There a general ansatz has been presented via transforma-
tion to Laplace space. For our factorization theorem, we may apply the same techniques,
which is why we do not recapitulate the whole derivation here again. A major differ-
ence is, however, that in our non-abelian scenario for the anomalous dimension of the soft
function γS the cusp term and the non-local convolution kernel do not share the same
color factor. This has also been observed for the jet function in [23] and prevented the
calculation of the RG-improved jet function beyond the leading order. Defining the ratio
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rΓ = (CF − CA/2)/(CF − CA), we find for the soft function at leading order

SLO
3 (w, µ) = US(w;µs, µ)

∫ ∞
0

dw′

w′
SLO(w′, µs)

× I1,1
2,2

(−a∆Γ , 1, 2rΓ) , (1− a∆Γ, 1, 2rΓ)

(1, 1, 2rΓ) , (0, 1, 2rΓ)

∣∣∣∣w′w
 , (6.2)

with

US(w;µs, µ) =
(
we−4rΓγE

µ2
s

)−a(0)
∆Γ(µs,µ)

exp
[
2S(0)

∆Γ(µs, µ) + a(0)
γs (µs, µ)

]
,

SLO(w, µs) = −TF δab
αs(µs)
π

mb(µs)θ(w −m2
b).

(6.3)

Here, S3(w, µs) denotes the soft function at the matching scale µs; S(0)
∆Γ, a

(0)
∆Γ and a

(0)
γs

are leading terms of the corresponding RG functions. Their definition and behavior are
studied in more detail in appendix C.4. For the sake of intelligibility, we have suppressed
the arguments of these functions. The function I1,1

2,2 (· · · |x) is a so-called Rathie-I function,
defined as

Im,np,q

(a1, α1, A1), . . . , (ap, αp, Ap)

(b1, β1, B1), . . . , (bq, βq, Bq)

∣∣∣∣z
 = 1

2πi

∫
L
φ(s)zsds ,

with φ(s) =

m∏
j=1

ΓBj (bj − βjs)
n∏
j=1

ΓAj (1− aj + αjs)

q∏
j=m+1

ΓBj (1− bj + βjs)
p∏

j=n+1
ΓAj (aj − αjs)

.

(6.4)
Its definition and properties were first presented in [36]. It is a generalization of the Meijer-
G function Gm,np,q and related via

Gm,np,q

a1, . . . , ap

b1, . . . , bq

∣∣∣∣z
 = Im,np,q

(a1, 1, 1), . . . , (ap, 1, 1)

(b1, 1, 1), . . . , (bq, 1, 1)

∣∣∣∣z
 . (6.5)

Though the analytic solution takes a rather complicated form, the asymptotic behavior
is fairly simple:

SLO
3 (w, µ) = SLO(w, µs)US(w;µs, µ)

Γ(1 + a
(0)
∆Γ(µs, µ))

Γ(1− a(0)
∆Γ(µs, µ))

2rΓ

+O(m2
b/w). (6.6)

We have found that only the region above the hyperbola `−`+ > m2
b contributes to the NLL′

accuracy. In this context, further corrections from the Rathie-I function are not relevant
for NLL′ resummation, but will come into play in RG-improved perturbation theory. This
is however beyond the scope of this paper.
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6.2 Large logarithms at NLL′ in the form factor

The scale dependence of the gg → h form factor is governed by the evolution equation (4.7).
It is not scale-invariant due to the external gluon states. At LO in RG-improved pertur-
bation theory, we find [6]

FRgg(µ) = e2SΓA (µh,µ) αs(µ)
αs(µh)F

R
gg(µh) , (6.7)

and ΓA stands for the cusp anomalous dimension in the adjoint representation. The scale
µ2
h = −M2

h − i0 is chosen such that there are no large logarithms left in the hard matching
coefficients. The derivation of FRgg(µh) is highly non-trivial and will be carried out in
multiple steps. There are two kinds of contributions. One stems from the RG evolution of
the component functions, which is controlled by the respective anomalous dimension. The
second one is NLO corrections in these functions at their matching scales.

The contribution from RG evolution is given by taking the RG-improved LO compo-
nent function for T3,

TLO
3 (µh) = lim

σ→−1
H3(µh)LO

∫ Mh

0

d`−
`−

∫ σMh

0

d`+
`+

× JLO(−Mh`−, µh)JLO(Mh`+, µh)SLO
3 (`−`+, µh)

∣∣∣∣
leading power

.

(6.8)

In principle, the matching scales of the two jet functions could be different, since they
depend on different dynamical scales `±. They are chosen such that all logarithms are
located only in the evolution factors. The LO soft function has been derived in the previous
section, the jet function is given by

JLO(p2, µ) =
(
−p2

µ2
j

)a(0)
∆Γ(µj ,µ)

exp
[
− 2S(0)

∆Γ(µj , µ)− 2rΓ γE a
(0)
∆Γ(µj , µ)

]
×

Γ(1− a(0)
∆Γ(µj , µ))

Γ(1 + a
(0)
∆Γ(µj , µ))

rΓ ,
(6.9)

and was first presented in [23]. Here ∆Γ stands for the difference between the cusp anoma-
lous dimension in the fundamental and adjoint representation.

To extract the first three towers of large logarithms, we only need to enter the regime
`+`− � m2

b . We may therefore use the asymptotic expression for the soft function S3 given
by (6.6). In the first step, we define the following abbreviations

as = a
(0)
∆Γ(µs, µh), a− = a

(0)
∆Γ(µ−, µh), a+ = a

(0)
∆Γ(µ+, µh) , (6.10)

where µ− is the matching scale entering the jet function J(−Mh`−, µh) while µ+ is that
entering the jet function J(Mh`+, µh). The factors of gamma functions in the RG-improved
jet (6.9) and soft (6.2) functions can be further expanded to[

e4γEas Γ2(1 + as)
Γ2(1− as)

e2γEa− Γ(1 + a−)
Γ(1− a−)e

2γEa+ Γ(1 + a+)
Γ(1− a+)

]rΓ
= 1 +O(a3

s, a
3
−, a

3
+) . (6.11)

– 23 –



J
H
E
P
0
6
(
2
0
2
3
)
1
8
3

The jet and soft functions must be free of large logarithms at the matching scales µ± and
µs. Since these functions are integrated over soft (`+`− ∼ m2

b) and hard (`+`− ∼ M2
h)

regions, we must set these matching scales dynamically under the integral. Hence we fix
µ2
s = `−`+, µ2

− = σMh`− and µ2
+ = Mh`+. Additionally, the prefactor αs(µs) entering the

soft function (see (6.3)) should be converted into a scheme that only depends on the hard
scale

αs(ν) = αs (µ)
X

[
1− αs (µ)

4π
β1
β0

lnX
X

+O(α2
s)
]
, with X = 1− αs(µ)

4π β0 ln µ
2

ν2 , (6.12)

and we abbreviate the logarithms as follows when necessary

L− = ln µ2
h

µ2
−
, L+ = ln µ2

h

µ2
+
, Ls = ln µ

2
h

µ2
s

= L− + L+ , and L = ln µ2
h

m2
b

. (6.13)

The relevant parameter ρ in NLL′ resummation is defined as

ρ = αs(µh)
4π

∆Γ0
2 L2 = αs(µh)

2π (CF − CA)L2 ∼ −1.192 + 0.955 i , (6.14)

Substituting L+ = xL, L− = yL, we find up to order NLL′

αs(µs) = αs(µh)
(

1 + ρ

L

2β0
∆Γ0

(x+ y) + ρ2

L2
4β2

0
(∆Γ0)2 (x+ y)2 +O(L−3)

)
. (6.15)

Here, β0 = β0 and the coloring is related to a comparison with the resummation of the
photon case and will be explained further later on.

As mentioned before, there are also contributions from the NLO corrections at the
matching scales. Due to the dynamic scale setting, logarithms at the matching scales
vanish. Hence the corrections from the hard and jet functions are given by the constant
terms of these functions. For the soft function though, in principle there are some extra
functional terms, see (3.10). However, all these terms go to zero when ŵ is large, such that
their contributions are not relevant here. We find for the combined contribution at the
matching scales

∆matching = ρ

L2
2

∆Γ0

[
CF

(
8− 2π2

3

)
+ CA

(
2 + π2

6

)]
. (6.16)

Adding all contributions together, T3(µh) reads

T3(µh)|NLL′ =M0(µh)L2
∫ 1

0
dx
∫ 1−x

0
dy
[
1 + ρ

L

2β0
∆Γ0

(x+ y) + ρ2

L2
4β2

0
(∆Γ0)2 (x+ y)2

]

×
{

1 + ρ

L2
2

∆Γ0

[
CF

(
8− 2π2

3

)
+ CA

(
2 + π2

6

)]}
× exp

[
2S(0)

∆Γ(µs, µh)− 2S(0)
∆Γ(µ−, µh)− 2S(0)

∆Γ(µ+, µh) (6.17)

+ a(0)
γs (µs, µh) + a(0)

γm(µs, µh)
]

NLL′
,
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where the term in square brackets accounts for the contribution from converting the strong
coupling constant in the prefactor, the term in curly braces is generated by corrections
to the component functions at the matching scale, and the exponential factor is due to
scale evolution. We insert the expressions for the RG functions from C and perform all
remaining integrals. Neglecting terms of order O(L−3) we arrive at

T3(µh)|NLL′ =M0(µh)L
2

2

∞∑
n=0

(−ρ)n 2Γ(n+ 1)
Γ(2n+ 3)

{
1 + 1

L

[
ρ
−(γ0

s + γ0
m) + 2β0

∆Γ0

2n+ 2
2n+ 3

− ρ2 β0
∆Γ0

(n+ 1)2

(2n+ 3)(2n+ 5)

]
+ 1
L2

[
ρ
CF

(
4− π2

3

)
+ CA

(
1 + π2

12

)
CF − CA

+ ρ2
(
− β0(γ0

s + γ0
m)

(∆Γ0)2
n+ 1
n+ 2 −

∆Γ1
(∆Γ0)2

(n+ 1)2

(n+ 2)(2n+ 3)

+ (γ0
s + γ0

m)2

(∆Γ0)2
n+ 1

2(n+ 2) −
β0(γ0

s + γ0
m)

(∆Γ0)2
2(n+ 1)
n+ 2 + β2

0
(∆Γ0)2

4(n+ 1)
n+ 2

)
+ ρ3

(
β0(γ0

s + γ0
m)

(∆Γ0)2
(n+ 1)2

2(n+ 3)(2n+ 3) −
β2

0
(∆Γ0)2

(n+ 1)2(7n+ 18)
6(n+ 3)(2n+ 3)(2n+ 5)

− β2
0

(∆Γ0)2
(n+ 1)2

(n+ 3)(2n+ 3)

)
+ ρ4 β2

0
(∆Γ0)2

(n+ 1)2(n+ 2)
8(n+ 4)(2n+ 3)(2n+ 5)

]}
.

(6.18)
Note that γ0

s = −6CF + 2β0. The first two towers of logarithms (up to order O(L−1))
have already been derived in [6, 37]. It is remarkable that the LL and NLL term can be
retrieved from the corresponding ones in the photon case by a simple replacement of color
factors CF → CF − CA, as was first noted for the LL term in [38]. Furthermore, the NLL
corrections have been derived in [39] using non-SCET methods and checked against semi-
numerical calculations of [1, 40]. As a non-trivial cross-check expression (6.18) reproduces
correctly the leading logarithms in the three-loop amplitude (5.1). In [41], the resummed
amplitude for the h→ γγ process was presented at NLL′ accuracy. To compare this with
our result (6.18), it is not sufficient to set CA → 0. The reason for that is that the prefactor
of our gg → h process features a strong coupling constant evaluated at the soft scale which
is subject to being converted to an evaluation at the high scale (6.12) and therefore gives
rise to additional terms suppressed by one and two factors of 1/L, see (6.15). In contrast,
in the h → γγ case the prefactor is αb(µs) = (Qbe)/(4π), which is related to the QED
coupling constant at the high scale via αb(µs) = αb(µh)(1 + O (αb(µh)). To account for
this effect, we must consequently set CA → 0 and β0 → 0 while keeping β0 6= 0. Hence,
we colored the corresponding β0-terms to easily allow comparison between abelian and
non-abelian processes. Note that up to NLL, the gg → h amplitude can be retrieved from
the h→ γγ amplitude by a simple exchange of color factors CF → CF − CA.
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The series in (6.18) can be cast into more elegant form by executing the infinite sums.
We introduce the special functions

F1(z) = 2F2

(
1, 1; 3

2 , 2;−z4

)
,

F2(z) = 2F2

(
1, 1; 1

2 , 2;−z4

)
,

D(z) = e−z
2
∫ z

0
dx ex2

,

(6.19)

where D(z) is a so-called Dawson function. We obtain

T3(µh)
∣∣
NLL′ =M0(µh)L

2

2

{
F1(ρ) + 1

L

2
∆Γ0

[
4β0 − 3β0 − 2

(
γ0
s + γ0

m

)

+
(
− 2(4β0 − 3β0) + ρβ0 + 4

(
γ0
s + γ0

m

) ) D (√ρ2 )√
ρ

]
+ 1
L2

1
(∆Γ0)2

[(
− ρ2

4 β
2
0 + ρ

6
(
24β2

0 − 7β2
0

)
− 2ρβ0

(
γ0
s + γ0

m

)
+ 18β2

0 + 4∆Γ1

)√
ρD

(√
ρ

2

)
+
(

(4 + ρ)β2
0 − 8

(
γ0
s + γ0

m

)
(2β0 − β0) + 4

(
γ0
s + γ0

m

)2
)
ρ

4

−
(

6β2
0 − 2

(
γ0
s + γ0

m

)
(2β0 − β0) +

(
γ0
s + γ0

m

)2
)
ρF2(ρ)

−
[
4β2

0 + 2∆Γ1 +
CA

(
π2

12 + 1
)
− CF

(
π2

3 − 4
)

CA − CF
(∆Γ0)2

]
ρF1(ρ)

]}
.

(6.20)

For a better intelligibility of the resummed result (6.20), we find it instructive to give
the asymptotic behavior of the special functions. In the limits ρ → 0,∞, the hypergeo-
metric functions can be expanded as

F1(ρ) =

1− ρ
12 + ρ2

180 −
ρ3

3360 +O
(
ρ4) , ρ→ 0 ,

2 ln(ρeγE )
ρ − 4

ρ2 +O(ρ−3) , ρ→∞ ,
(6.21)

F2(ρ) =

1− ρ
4 + ρ2

36 −
ρ3

480 +O
(
ρ4) , ρ→ 0 ,

4−2 ln(ρeγE )
ρ + 12

ρ2 +O(ρ−3) , ρ→∞ .
(6.22)

The Dawson function appearing first at NLL obeys the following behavior

D

(√
ρ

2

)
=



√
ρ

2

[
1− ρ

6 + ρ2

60 −
ρ3

840 +O
(
ρ4
)]

, ρ→ 0 ,

1
√
ρ

[
1 + 2

ρ
+ 12
ρ2 +O(ρ−3)

]
, ρ→∞ .

(6.23)

In figure 7 we show the resummed T3 at LL (black), NLL (blue) and NLL′ (red)
accuracy. Here, we fix the strong coupling constant at αs(Mh) and vary the hard scale
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Figure 7. Resummed T3 at LL (black), NLL (blue) and NLL′ (red) accuracy. We fix the strong
coupling constant at αs(Mh) and vary the hard scale µ2

h = q2 entering the large logarithms L and
expansion parameter ρ. The upper panel shows T3 for q2 > 0, the lower two panels give the real and
imaginary part for q2 < 0. NLL(′) corrections become increasingly more important for q2-values
further away from its physical value q2 = −M2

h .

µ2
h ≡ q2 entering the large logarithms L and expansion parameter ρ. We give the plots for

both q2 > 0 (upper panel) and real and imaginary part for q2 < 0 (lower panels). NLL(′)
corrections become increasingly more significant the further one takes q2 from its physical
value q2 = −M2

h chosen in the resummation.

7 Conclusions

In this work, we have successfully used SCET to derive the factorization theorem for the
Higgs-boson production process gg → h via light quark loops. We followed the steps
of [4, 5], where the methodology was applied to the Higgs decay h→ γγ via a light quark
loop. This has been achieved at the bare level by adopting the RBS scheme. In this way, we
are able to write the bare factorization theorem such that no endpoint divergences occur,
without the need to introduce an additional regulator apart from dimensional regulariza-
tion. This is possible by the use of two refactorization conditions that relate component
functions of the second term of the factorization theorem that are in the endpoint region
to those of the third term. This procedure subtracts the divergent parts in between the
two terms. However, since the “infinity-bin” contribution is subtracted twice, it must be
added back as a further contribution to the first hard matching coefficient. We highlight
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that in contrast to the abelian photon case, an additional scale is involved, namely the
QCD confinement scale ΛQCD where non-perturbative effects come into play. We must
therefore match the amplitude at hand to the gluon operator 〈Ogg〉 for energies below the
soft scale mb. When squaring the amplitude, this gluon operator will eventually become
the well-known gluonic parton distribution function of the proton. As a matching coeffi-
cient, the form factor for gg → h may now be computed with on-shell gluons, replacing the
gluon operator with gluon polarization vectors. Hence the form factor will feature further
divergences, which will later be canceled by the PDFs. For our calculations, we account
for this fact by adopting an additional renormalization factor Z−1

gg .
We then derived the factorization theorem in terms of renormalized quantities. Since

renormalization of the individual component functions and regularization of endpoint di-
vergences within the subtraction scheme does in general not commute due to the occurrence
of cutoffs in the integrals of the last term of the factorization formula, we highlight that this
is a highly non-trivial achievement. We were able to demonstrate that the additional terms
that are introduced by regularizing the renormalized factorization theorem can be absorbed
consistently by a redefinition of one of the renormalized hard matching coefficients. The
RG evolution equations for the renormalized component functions were presented, as well
as the corresponding anomalous dimensions. Furthermore, we solved the RG equations
iteratively to predict the leading logarithmic corrections in the b-quark induced three-loop
amplitude of gg → h at the order O(α3

sL
k), where k = 6, 5, 4, 3. Eventually, we solved the

RG equations for the radiative jet and soft functions to RG-improved leading order. This
enabled us to resum the first three leading logarithmic towers (i.e. up to NLL′ accuracy)
for the gg → h form factor at all orders of perturbation theory.

We have thus achieved one of the main goals stated in [5], namely the generalization
of the SCET analysis of h→ γγ to gg → h as well as a resummation for the three leading
logarithmic terms. The resummation of further subleading logarithms that arise in the
second and first terms of the factorization formula is left for future work.
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A Bare matching coefficients and matrix elements

In this section, we collect the expressions for the bare quantities of the factorization theo-
rem (2.12). The hard matching coefficient H(0)

1 is given by

H
(0)
1 = δabTF

yb,0√
2
αs,0
π

[
H

(0)
1,0 + αs,0

4π H
(0)
1,1 + · · ·

]
, (A.1)

with

H
(0)
1,0 = (−M2

h − i0)−εeεγE (1− 3ε)2Γ(1 + ε)Γ2(−ε)
Γ(3− 2ε) ,

H
(0)
1,1 = (−M2

h − i0)−2ε
{
CF

[
− 1

2ε4 + 3
2ε3 −

5π2

12ε2 −
1
ε

(
29ζ3

3 + 3π2

4 + 12
)

− 72− π2 − 19ζ3 −
3π4

16

]
+ CA

[
− 3

2ε4 + 1
ε2

(
5 + 7π2

12

)
+ 18ζ3 + 14

ε

+20− 2π2

3 + 18ζ3 + 73π4

240

]}
.

(A.2)

The infinity-bin contribution ∆H(0)
1 in (2.12) and figure 3 reads

∆H(0)
1 = − lim

σ→−1
H3

∫ ∞
Mh

d`−
`−

∫ ∞
σMh

d`+
`+

J (Mh`−) J (−Mh`+) S∞ (`+`−)
mb,0

= αs,0TF δab
4π

yb,0√
2

{
(−M2

h − i0)−εeεγE
ε2Γ(1− ε) + αs,0

4π (−M2
h − i0)−2εe2εγE

×
[
CF

(3Γ(ε)Γ(−ε)
Γ(2− 2ε) + (1 + ε)Γ2(−ε) + 2Γ(−ε)Γ(ε)Γ(2− 2ε)

2ε2Γ(1− 2ε)Γ(2− 2ε)

)

+ CA
Γ(−ε)Γ(ε)(3− 6ε− 2ε2)

2ε2Γ(2− 2ε)

]}
.

(A.3)

Similarly, we find
H

(0)
2 (z) = yb,0√

2

[
H

(0)
2,0 (z) + αs,0

4π H
(0)
2,1 (z) + · · ·

]
, (A.4)

with

H
(0)
2,0 (z) = 1

z
+ 1

1− z ,

H
(0)
2,1 (z) = (−M2

h − i0)−ε eεγE Γ(1 + ε)Γ2(−ε)
Γ(2− 2ε)

×
{
CF

[
2− 4ε− ε2

z1+ε − 2(1− ε)2

z
− 2(1− 2ε− ε2)1− z−ε

1− z

]

− CA
[2− 4ε− ε2

z1+ε −
(

2(1− 2ε− ε2) + ε2

1− ε

)
1− z−ε

1− z

]
+ (z → 1− z)

}
,

(A.5)

– 29 –



J
H
E
P
0
6
(
2
0
2
3
)
1
8
3

and

H
(0)
3 = −yb,0√

2

[
1− CFαs,0

4π
(
−M2

h − i0
)−ε

eεγE (1− ε)2 2Γ(1 + ε)Γ2(−ε)
Γ(2− 2ε)

]
. (A.6)

for the hard coefficients of the second and third term of the factorization theorem. Note
that H3 is the same as in the h → γγ process. The bare soft function of the first term
is S(0)

1 = mb,0 and is exact to all orders of perturbation theory. The soft function of the
second term reads

S
(0)
2 (z) = mb,0TF δab

αs,0
4π

{
2eεγE (m2

b,0)−εΓ(ε)

+ αs,0
4π (m2

b,0)−2ε
[
CFKF (z) + CAKA(z) + (z → 1− z)

]}
,

(A.7)
with

KF (z) = 1
ε2

(2Lz + 3) + 1
ε

(
L2
z − 2LzLz̄ −

1
2 −

π2

3

)

+ 12 Li3(z) + 2(1− 2z − 2Lz) Li2(z) + L3
z

3 + 2
[
z + Lz̄

]
L2
z

+
(

4 Li2(z̄)− Lz̄ − 1− 3z − π2

3

)
Lz + 3 + π2

3 − 8ζ3 +O(ε) ,

KA(z) = −2Lz
ε2

+ 1
ε

(
−L2

z + 1
2

)
− 8 Li3(z) + 2 Li2(z)

(
z − 2Lz̄

)
− L3

z

3

− 4L2
zLz̄ − zL2

z +
(

1 + 2z + π2

3

)
Lz + 1− π2

6 + 8ζ3 +O(ε) .

(A.8)

The jet function in the third term of the form factor has been derived in [23] and reads up
to NLO

J (0)(p2) = 1 + αs,0 (CF − CA)
4π

(
−p2 − i0

)−ε
eεγE

Γ(1 + ε)Γ2(−ε)
Γ(2− 2ε)

(
2− 4ε− ε2

)
. (A.9)

The soft function of the third term, S(0)
3 , is more involved than its abelian counterpart

due to the additional insertions of two color generators. As shown in section 2.3, these lead
to the appearance of two semi-finite Wilson lines in the adjoint representation. Therefore,
one-loop corrections include exchanges of gluons between Wilson lines in the fundamental
and adjoint representation. Feynman diagrams contributing to the soft function are given
in figure 5. Eventually, the soft function reads

S
(0)
3 (w) = −TF δab αs,0

π
mb,0

[
S(0)
a (w) θ

(
w −m2

b,0

)
+ S

(0)
b (w) θ

(
m2
b,0 − w

)]
, (A.10)

with

S(0)
a (w) = eεγE

Γ(1− ε)
(
w −m2

b,0

)−ε 1 + CFαs,0
4π 2eεγE 3− 2ε

1− 2εΓ(1 + ε)

(
m2
b,0

)1−ε

w −m2
b,0


+ αs,0CF

4π

{(
w −m2

b,0

)−2ε
[
− 2
ε2

+ 6
ε

+ 2
ε

ln (1− r) + 12− π2

3
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+
(

24− 3π2 + 4ζ3
3

)
ε

]
+
(
m2
b,0

)−2ε [
− 2Li2 (r) + 2 (ln r + 1) ln (1− r)

− 3 ln2 (1− r)
]}

+ αs,0CA
4π

{(
w −m2

b,0

)−2ε
[

2
ε2
− π2

3 −
16
3 ζ3ε

]

+
(
m2
b,0

)−2ε [
4Li2 (r) + 2 ln2 (1− r)

]}
,

S
(0)
b (w) =

(
CF −

CA
2

)
αs,0
4π

(
m2
b,0

)−2ε
[
−4
ε

ln
(

1− 1
r

)
+ 6 ln2

(
1− 1

r

)]
, (A.11)

where r = m2
b,0/w.

B Renormalization factors

Here we collect the renormalization factors of the different component functions.
The three parameters involved in this process, a) the b quark mass entering the opera-

tors, b) the b quark Yukawa coupling entering the hard functions, and c) the QCD coupling
constant, are renormalized in the MS subtraction scheme as

mb,0 = Zmmb(µ), yb,0 = µεZyyb(µ), αs,0 = µ2εZαsαs(µ), (B.1)

with the renormalization factors

Zy = Zm = 1− 3CF
αs(µ)
4πε +O

(
α2
s

)
, Zαs = 1− β0

αs(µ)
4πε +O

(
α2
s

)
. (B.2)

Here β0 = 11
3 CA−

4
3TFnf is the first coefficient of the QCD β-function, with nf = nb+nl = 5

being the number of active quark flavors. In order to compare our results in different
schemes, we need the following relation between the b-quark pole mass and its running
mass [42, 43]:

mb(µ)
mb

= 1 + αs
4πCF (−4 + 3Lm)

+
(
αs
4π

)2 [
C2
F

(9L2
m

2 − 21Lm
2 + 7

8 + (8 ln 2− 5)π2 − 12ζ3

)
+ CFCA

(
− 11L2

m

2 + 185Lm
6 − 1111

24 + 4(1− 3 ln 2)π2

3 + 6ζ3

)
+ CFTF

(
2nfL2

m −
26nf

3 Lm +
(
143− 16π2)nb

6 +
(
71 + 8π2)nl

6

)]
,

(B.3)

with Lm = ln(m2
b/µ

2).
The hard function H3(µ) (3.3) is renormalized by

Z−1
33 = 1 + CF αs

4π

[ 2
ε2
− 2
ε

(
Lh −

3
2

)]
. (B.4)
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The hard coefficients H̄2(µ) and its endpoint counterpart are renormalized in equation (3.11)
and (3.12). The corresponding renormalization factors are

Z−1
22 (z, z′) = δ(z − z′)

+ αs
4π

{
δ(z − z′)

[
(CF − CA)2(Lz + Lz̄) + 3

ε
+ CA

( 2
ε2
− 2Lh − 3

ε

)]

+ 2(CF − CA/2)
ε

z(1− z)
[ 1
z′(1− z)

θ (z′ − z)
(z′ − z) + 1

z(1− z′)
θ (z − z′)
(z − z′)

]
+

}
,

(B.5)

[[Z−1
22 (z, z′)]] = δ(z − z′) + αs

4π

{
δ(z − z′)

[
(CF − CA)2Lz + 3

ε
+ CA

( 2
ε2
− 2Lh − 3

ε

)]

+ (2CF − CA)
ε

z

[
θ (z′ − z)
z′ (z′ − z) + θ (z − z′)

z (z − z′)

]
+

}
. (B.6)

At NLO, the renormalization factor for the soft function S2(z, µ) (3.15) is given by

Z−1
gg Z22(z, z′) = δ(z − z′) + αs

4π

{
−

3CF − β0 + 2(CF − CA)
(
Lz + Lz̄

)
ε

δ(z − z′)

− (2CF − CA)
ε

z(1− z)
[ 1
z′(1− z)

θ (z′ − z)
(z′ − z) + 1

z(1− z′)
θ (z − z′)
(z − z′)

]
+

}

Z−1
gg Z21(z) = TF δabαs

2π

{
− 1
ε

+ αs
4π

[
(CF − CA)

(
Lz + Lz̄

ε2
− L2

z + L2
z̄ − 1

2ε

)

+ CF
2LzLz̄ − 6 + π2/3

ε

]}
.

(B.7)
The Jet function and its renormalization have been studied in [23] in detail. It is renor-
malized in the convolution sense (3.4), with the renormalization factor

ZJ
(
yp2, xp2

)
=
[
1 + (CF − CA)αs

2π

(
− 1
ε2

+ Lp
ε

)]
δ(y − x) + (2CF − CA)αs

4πε Γ(y, x) .
(B.8)

Here Lp = ln(−p2/µ2), and Γ(y, x) is the Lange-Neubert kernel introduced in (3.8). The
plus-distribution is defined such that when Γ(x, y) is to be integrated with a function f(x),
one has to replace f(x) → f(x) − f(y) under the integral. Note that the local and the
non-local term do not share the same color factor.

Since the bare soft function S
(0)
1 ≡ mb,0, it is renormalized multiplicatively by the

renormalization factor of the quark mass. This requires that

S1(µ) = Z−1
gg Z11S

(0)
1 , with Z11 = ZggZ

−1
m . (B.9)
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C Anomalous dimensions and RG functions

C.1 Cusp anomalous dimension

The cusp anomalous dimension in the fundamental and adjoint representation up to two-
loop order is expanded in perturbation theory as

ΓRcusp(αs) = ΓR0
αs
4π + ΓR1

(
αs
4π

)2
+ . . . , (C.1)

where the superscript R refers to the SU(N) representation. In the case of QCD, the
relevant representations are fundamental (R = F ) and adjoint (R = A). In the MS
renormalization scheme the expansion coefficients in the respective representation are given
by [44]

ΓRcusp (αs) = 4CR

{
αs
4π +

(
αs
4π

)2
[
CA

(
67
9 −

π2

3

)
− 20

9 nfTF

]
+ · · ·

}
, (C.2)

where CR = CF for the fundamental representation while CR = CA for the adjoint rep-
resentation. We introduce the short-hand notations ∆Γ0 and ∆Γ1 which represent the
difference of the cusp anomalous dimensions at leading and next-to-leading order

∆Γ =∆Γ0
αs
4π + ∆Γ1

(
αs
4π

)2

=4 (CF − CA)
{
αs
4π +

(
αs
4π

)2
[
CA

(
67
9 −

π2

3

)
− 20

9 nfTF

]
+ · · ·

}
.

(C.3)

C.2 Anomalous dimension γgg
The anomalous dimension γgg is associated with the renormalization factor Zgg of the
two-gluon operator Ogg.1 To all orders of perturbation theory, it is given by [45]

γgg = ΓAcusp(αs)Lh + 2γg = αs
4π
(
4CALh − 2β0

)
+O(α2

s) . (C.4)

Here, γg is the anomalous dimension associated with the gluon wave function renormaliza-
tion. At two-loop order, it reads [45]

γg = αs
4π (−β0) +

(
αs
4π

)2
[(
−692

27 + 11π2

18 + 2ζ3

)
C2
A

+
((

256
27 −

2π2

9

)
CA + 4CF

)
TFnf

]
.

(C.5)

C.3 Anomalous dimensions of component functions

The renormalization factor of the soft function S1(µ) is the same as for the quark mass,
and so is its anomalous dimension

γ11 − γgg = −γm = 3CFαs
2π +O(α2

s) . (C.6)

1The two-gluon operator is renormalized by 〈Ogg(µ)〉 = Zgg〈O(0)
gg 〉, hence the renormalized form factor

reads Fgg(µ) = Z−1
gg F

(0)
gg .
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The diagonal and off-diagonal elements involved in the RG equation of S2(z, µ) and its
endpoint region counterpart are

γ22(z, z′)− γgg δ(z − z′) = −αs4π

{[
4(CF − CA)

(
Lz + Lz̄

)
+ 6CF − 2β0

]
δ(z − z′)

+ 4
(
CF −

CA
2

)
zz̄

[ 1
z′z̄

θ (z′ − z)
(z′ − z) + 1

zz̄′
θ (z − z′)
(z − z′)

]
+

}
,

[[γ22(z, z′)]]− γgg δ(z − z′) = −αs4π

{[
4(CF − CA)Lz + 6CF − 2β0

]
δ(z − z′),

+ 4
(
CF −

CA
2

)
z

[
θ (z′ − z)
z′ (z′ − z) + θ (z − z′)

z (z − z′)

]
+

}
,

(C.7)
and

γ21(z) = TF δabαs
π

{
− 1 + αs

4π

[
(CF − CA)

(
1− L2

z − L2
z̄

)

+ CF

(
4LzLz̄ − 12 + 2π2

3

)]}
,

[[γ21(z)]] = TF δabαs
π

{
− 1 + αs

4π

[
(CF − CA)

(
1− L2

z

)
+ CF

(
2π2

3 − 12
)]}

.

(C.8)

The anomalous dimension for H3(µ) is given by

γ33 = ΓFcusp(αs)Lh + γH(αs) = CFαs
π

(
Lh −

3
2

)
+O(α2

s) , (C.9)

where γH = 2γq, and its expression is known up to three loops [45–47]. The anomalous
dimensions for the jet and soft function S3 in the third term read

γJ
(
p2, xp2

)
= αs

π

[
(CF − CA)Lpδ(1− x) +

(
CF −

CA
2

)
Γ(1, x)

]
+O(α2

s) ,

γS(w,w′) = −αs
π

{[
(CF − CA)Lw + 3CF − β0

2

]
δ(w − w′)

+ 2
(
CF −

CA
2

)
wΓ(w,w′)

}
+O(α2

s) .

(C.10)

These results satisfy the non-trivial relation (4.6).

C.4 RG functions

The RG functions used in section 6 are defined as

SV (ν, µ) = −
∫ αs(µ)

αs(ν)
dα γV (α)

β(α)

∫ α

αs(ν)

dα′

β(α′) ,

aV (ν, µ) = −
∫ αs(µ)

αs(ν)
dαγV (α)

β(α) ,

(C.11)
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with γV the respective anomalous dimension. In order to derive the RG-improved solution
of the soft function at the leading order, we need to solve the integrals up to the leading
order. We find

a
(0)
V (ν, µ) = γV,0

2β0
ln r ,

S
(0)
V (ν, µ) = γV,0

4β2
0

[
4π

αs (ν)

(
1− 1

r
− ln r

)
+
(
γV,1
γV,0
− β1
β0

)
(1− r + ln r) + β1

2β0
ln2 r

]
,

(C.12)
where r = αs(µ)/αs(ν).

D Higher-order logarithmic terms in the component functions

In this section we collect our predictions for the leading logarithmic corrections in higher
loop order of the component functions. This is achieved by iteratively solving the RG equa-
tions in section 4. Eventually, inserting these expressions into the factorization formula, we
are able to predict the leading logarithmic terms in the three-loop expression of the form
factor in section 5.

D.1 Higher-order logarithms in the jet and soft functions

The jet function has been calculated exactly at the two-loop level in [23] and reads

J(p2, µ) = 1 + αs
4π
[
· · ·
]

+
(
αs
4π

)2 [
C2
F K̄FF + CFCAK̄FA + C2

AK̄AA

+ CFTFnfK̄Fnf + CATFnfK̄Anf

]
,

(D.1)

with

K̄FF =
L4
p

2 −
(

1 + π2

6

)
L2
p +

(
4ζ3 + π2

)
Lp + 3

2 −
π2

3 − 39ζ3 + 119π4

360 ,

K̄FA = −L4
p −

11L3
p

9 +
85L2

p

9 −
(

305
27 + π2

2 + 4ζ3

)
Lp −

317
162 −

65π2

54 + 793ζ3
18 − 143π4

360 ,

K̄AA =
L4
p

2 +
11L3

p

9 −
(

76
9 −

π2

6

)
L2
p +

(
296
27 −

11π2

18

)
Lp + 154

81 + 85π2

54 − 49ζ3
18 + π4

15 ,

K̄Fnf =
4L3

p

9 −
20L2

p

9 + 76Lp
27 + 14

81 + 5π2

27 + 8ζ3
9 ,

K̄Anf = −
4L3

p

9 +
20L2

p

9 +
(

2π2

9 − 58
27

)
Lp −

275
81 −

10π2

27 − 50ζ3
9 .

(D.2)
The computation of the leading logarithmic behavior of the soft function S2(z, µ)

and the endpoint-region counterpart [[S2(z, µ)]] requires knowledge of the leading order
anomalous dimension. To calculate also sub-leading logarithmic terms would necessitate
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the anomalous dimension at higher loop order, which is currently unknown. We obtain

S2(z, µ) = TF δabαs
2π mb(µ)gµν⊥

{
− Lm + αs

4π
[
· · ·
]

+
(
αs
4π

)2 [
c3(z)L3

m +O(L2
m)
]}

,

[[S2(z, µ)]] = TF δabαs
2π mb(µ)gµν⊥

{
− Lm + αs

4π
[
· · ·
]

+
(
αs
4π

)2 [
d3(z)L3

m +O(L2
m)
]}

,

(D.3)
with

c3(z) = −C2
F

[
2L2

z

3 + 4Lz + 3
]

+ CFCA

[
4L2

z

3 + LzLz̄
3 + 4Lz

]

− C2
A

[
2L2

z

3 + LzLz̄
3

]
− β0

[CF − CA
3 Lz + CF

2
]

+ (z ↔ 1− z) ,

d3(z) = −C2
F

2
(
Lz + 3

)2
3 + CFCA

[
4L2

z

3 + 4Lz

]
− C2

A

2L2
z

3 − β0
[CF − CA

3 Lz + CF
]
.

(D.4)
The soft function S3 is parametrized as

Sa(w, µ) = 1 + αs
4π
[
· · ·
]

+
(
αs
4π

)2 [
r4L

4
w + r3L

3
w + r2L

2
w + r1Lw +O(L0

w)

+ s3a(ŵ)L3
m + s2a(ŵ)L2

m + s1a(ŵ)Lm +O
(
L0
m

) ]
,

Sb(w, µ) = αs
4π
[
· · ·
]

+
(
αs
4π

)2 [
s3b(ŵ)L3

m + s2b(ŵ)L2
m + s1b(ŵ)Lm +O

(
L0
m

) ]
.

(D.5)

and the coefficient functions read

r4 = (CF − CA)2

2 ,

r3 = (CF − CA)
(

6CF + β0
3

)
,

r2 = C2
F

(
6 + π2

2

)
+ CFCA

140
9 + C2

A

(
67
9 −

π2

2

)
− 16CF + 20CA

9 TFnf ,

r1 = −C2
F (75− 3π2)− CFCA

(
1297
27 − 29π2

9 + 14ζ3

)
− C2

A

(404
27 − 14ζ3

)

+ CFTFnf

(
428
27 −

4π2

9

)
+ CATFnf

112
27 ,

(D.6)

s3a = 4 (CF − CA)
(
CF −

CA
2

)
ln
(
1− ω̂−1

)
,

s2a = 2C2
F

[
ln
(
1− ω̂−1

) (
14 + 10 ln

(
1− ω̂−1

)
+ 9 ln ŵ

)
+ 5 Li2

(
ω̂−1

)]
− 2CFCA

[
ln
(
1− ω̂−1

) (
8 + 11 ln

(
1− ω̂−1

)
+ 11 ln ŵ

)
+ 7 Li2

(
ω̂−1

)]
+ 6C2

A

[
ln
(
1− ω̂−1

) (
ln
(
1− ω̂−1

)
+ ln ŵ

)
+ Li2

(
ω̂−1

)]
+ 2β0

(
CF −

CA
2

)
ln
(
1− ω̂−1

)
,

(D.7)
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s3b = −4(CF − CA)
(
CF −

CA
2

)
ln(1− ŵ) ,

s2b = −
(
CF −

CA
2

) [
CF
(

ln(1− ŵ)
(
24− 4 ln ω̂ + 20 ln(1− ŵ)

)
+ 4 Li2(ω̂)

)
− 12CA ln2(1− ŵ) + 2β0 ln(1− ŵ)

]
.

(D.8)

Note that since s3b(ŵ), s2b(ŵ), s1b(ŵ) → 0 when ŵ → 0, at order O(α3
s) the leading

logarithms in the full form factor will not feature contributions from Sb(w, µ).
In order to predict the full logarithmic behavior of S3 at three loops, the two-loop

anomalous dimension γS would be needed. Using equation (4.6) it can be inferred from
the jet function anomalous dimension. Thus we write

γS(w,w′) = −
[(

ΓFcusp(αs)− ΓAcusp(αs)
)
Lw − γs(αs)

]
δ(w − w′)

− 2
(

ΓFcusp(αs)−
ΓAcusp(αs)

2

)
wΓ(w,w′)− 2

(
αs
4π

)2
g

(
ŵ

w

)
+O(α3

s) ,
(D.9)

where ΓF/Acusp is the cusp anomalous dimension up to two-loop order in the fundamen-
tal/adjoint representation. Here, g(x) is an unknown non-local kernel function. In the
RG equation for the soft function, it will generate a contribution at order O(α3

s) when
convoluted with the leading order soft function

2
∫ ∞

0
dx g(x)θ(ω/x−m2

b) = 2
∫ ω̂

0
dx g(x) ≡ G(ω̂). (D.10)

Although the explicit functional form of g(x) is unknown, its integration over the full space,
i.e., G(∞), has been calculated in [23] by demanding the cancellation of all single ε poles
in two loop jet function. It reads

G(∞) =C2
F

(
4π2 − 16ζ3

)
− CFCA

(
62π2

9 + 24ζ3

)
− C2

A

(
4
3 −

22π2

9 − 40ζ3

)

+ CFTFnf
16π2

9 + CATFnf

(
8
3 −

8π2

9

)
.

(D.11)

Knowing G(ŵ) only at the limits does not spoil the accuracy of the prediction of the
three-loop logarithms in the form factor, since its contributions will only show up at lower
logarithmic order.

D.2 Higher-order logarithms in the matching coefficients

The hard function H3(µ) is the same as in the photon case, hence its higher-order loga-
rithmic behavior can be found in [5]. The hard coefficients H̄2(z, µ) and [[H̄2(z, µ)]] can be
parameterized as

H̄2(z, µ) = yb√
2

{
1 + αs

4π
[
· · ·
]

+
(
αs
4π

)2 [
a4L

4
h + a3L

3
h + a2L

2
h +O(Lh)

]}
,

[[H̄2(z, µ)]] = yb√
2

{
1 + αs

4π
[
· · ·
]

+
(
αs
4π

)2 [
b4L

4
h + b3L

3
h + b2L

2
h +O(Lh)

]}
,

(D.12)
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where we find after solving the evolution equations

a4 = b4 = C2
A

2 ,

a3 = −2CA(CF − CA)
(
Lz + Lz̄

)
+ β0CA

3 ,

b3 = −2CA(CF − CA)Lz + β0CA
3 ,

a2 = (CF − CA)
[
2(CF − CA)

(
L2
z + L2

z̄

)
− CA

(
Lz + Lz̄

)2
− β0

(
Lz + Lz̄

)]
+ CA

[(
π2

6 −
76
9

)
CA + 3CF + 20

9 TFnf

]
,

b2 = (CF − CA)
[
(2CF − 3CA) ln2 z − β0 ln z

]
+ CA

[(
π2

6 −
76
9

)
CA + 3CF + 20

9 TFnf

]
.

(D.13)
As a consequence of the complex RG equation for H1(µ), we can only predict the first two
leading logarithms for this hard function. We eventually find

H1(µ) = yb√
2
TF δabαs

π

[
−2 + αs

4π
[
· · ·
]

+
(
αs
4π

)2 [
c4L

4
h + c3L

3
h +O(L2

h)
]]
, (D.14)

with

c4 = −C2
A

(
1 + π2

3

)
+ CFCA

π2

3 ,

c3 = C2
F

(
2π2

3 − 16ζ3
3

)
− CFCA

(
12− 4π2

27 + 8ζ3
3

)
− C2

A

(22
9 + 22π2

27

− 12ζ3

)
+ CATFnf

(
8
9 + 8π2

27

)
− CFTFnf

8π2

27 .

(D.15)
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