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1. Introduction

In this work, we analyse the behaviour of the Laplacian-Heaviside (LapH) [1] smearing proce-
dure in the presence of open boundary conditions. By evaluating the pseudoscalar meson two–point
functions we determine the portion of the lattice unaffected by the boundary and the optimal LapH
setup.

Our aim is the study of semileptonic decays in this framework, a largely unexplored setup
[2]. The evaluation of three–point functions with local current insertions gives access to various
quantities relevant to flavour physics. The combination of theory predictions of semileptonic form
factors with experimental data gives access to components of the Cabibbo-Kobayashi-Maskawa
(CKM) matrix [3, 4], where an increase in precision could lead to hints of new physics. Also,
the present tension in lepton flavour universality [5] makes the study of semileptonic processes
particularly interesting.

One source of uncertainty which limits the attainable precision of current theory predictions
arises from the trade-off between the contamination due to excited states in the two– and three–point
functions and the increased statistical uncertainty when their separation increases. Short separations
between source and sink make the evaluation of plateau in the relevant quantities a delicate task
and typically require sophisticated fitting procedures. The LapH smearing procedure ameliorates
the effects of excited states on the relevant correlation functions.

Ensembles with open boundary conditions pave the path towards finer lattice spacings, which
are particularly relevant for heavy–light flavour phenomenology. However, this requires to control
any effects that might arise from the open boundaries, which we aim to explore in this work.

2. Computation of meson two–point functions

Our computations are based on the recently developed LapH [1] smearing procedure imple-
mented on each time–slice by the smearing matrix

S(𝑥, �̄�) = Θ

(
𝜎2
𝑠 + Δ

)
≃ 𝑉𝑠𝑉†

𝑠 , (1)

where 𝑉𝑠 is the matrix containing columns of the eigenvectors associated with the 𝑁𝑒𝑣 lowest-lying
eigenvalues of the 3D Laplacian Δ. The smeared quark fields thus take the form

�̃� = 𝜒S = �̄�𝛾4S, �̃� = S𝜓. (2)

Then, by introducing some 𝑍 (𝑁) noise vectors 𝜌 in the LapH eigenspace and by defining the related
dilution projector P in the time, spin and 𝑒𝑣 space [6] one can identify two new objects: quark
sinks 𝜑 = SΩ−1𝑉𝑠P𝜌 and quark sources 𝜚 = 𝑉𝑠P𝜌, where only the former requires a Dirac matrix
inversion to be computed. With these building blocks, the meson correlation functions take the
form

𝐶 (𝑡 − 𝑡0) = ⟨�̃�𝑎 (𝑡)Γ𝐴�̃�𝑎 (𝑡) �̃�𝑏 (𝑡0)Γ𝐵�̃�𝑏 (𝑡0)⟩ = ⟨Γ𝐵 𝑄𝑏𝑎 (𝑡0, 𝑡) Γ𝐴 𝑄𝑎𝑏 (𝑡, 𝑡0)⟩ (3)

= ⟨Γ𝐵𝜑𝑏 (𝑡0)𝜚𝑎 (𝑡)∗Γ𝐴𝜑𝑎 (𝑡)𝜚𝑏 (𝑡0)∗⟩ = ⟨Γ𝐵 �̄�𝑏 (𝑡0)�̄�𝑎 (𝑡)∗Γ𝐴𝜑𝑎 (𝑡)𝜚𝑏 (𝑡0)∗⟩ (4)

= ⟨MΓ𝐴 (�̄�, 𝜑, 𝑡) MΓ𝐵 ( �̄�, 𝜚, 𝑡0)∗⟩. (5)
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id 𝑎[fm] 𝑁𝑠 𝑁𝑡 𝜅𝑙 𝜅𝑠 𝜅𝑐 [9] 𝑚𝜋 [MeV] 𝑚𝐾 [MeV]
𝐵105 0.086 32 64 0.136970 0.13634079 0.123244(19) 280 480

Table 1: Relevant parameters for the lattice ensemble studied in this work.

Where M are the (LapH subspace-sized) diluted meson fields. In this work we are interested only
in evaluating pseudoscalar mesons, therefore we will study only the 𝐴(+)

1𝑢 channel of the octahedral
symmetry group. Moreover, we are going to employ a trivial 𝑍 (1) noise vector, and no dilution
scheme, therefore restricting ourselves to exact distillation.

Due to the open boundary conditions, and up to leading order in chiral perturbation theory, we
expect the two–point functions to fall off as [7]

𝐶 (𝑡) ∝ sinh
(
𝑚(𝑇 − 𝑡)

)
, (6)

where 𝑇 is a free parameter. In particular, it defines a “virtual” lattice border inside the lattice itself
and can be easily obtained via a fit.

3. Results

Measurements are performed on configurations generated by the CLS initiative [8] with 𝑁 𝑓 =
2+1 non-perturbatively improved Wilson fermions with open boundary conditions, details of which
are given in Table 1. Gauge averages are extracted from a subsample of 100 configurations and
error estimates are obtained from the bootstrap procedure. On each configuration, we generate
the LapH subspace with 96 eigenvectors from which we compute the pseudoscalar meson fields at
three source positions 𝑡0 = 9, 15, 31. Since we are using exact distillation, the meson correlation
functions with fewer numbers of eigenvectors can be obtained without any additional computations
by considering the 4𝑁𝑒𝑣 × 4𝑁𝑒𝑣 square sub-matrix for each of the meson field matrices.

3.1 Boundary effect on the LapH eigenspace

As a first step to estimate the effect of the open boundary conditions on the LapH subspace
we consider the gauge average the LapH eigenvalues as a function of the lattice time coordinate.
Periodic boundary conditions guarantee translational invariance of the LapH subspace, while with
open boundary conditions this might not be the case. As can be seen from the left–hand panel
of figure 1, we observe that the eigenvalues are time–independent provided they are sufficiently
far from the boundary. For the ensemble under consideration this amounts to approximately 12
time–slices (∼ 1 fm). Taking the bulk value to be the average of the central 24 time–slices, the
right–hand panel of the same figure shows the relative deviation from this for each eigenvalue. We
find that the deviation from the bulk value is to a good approximation exponential.

3.2 Considerations on the realness of the meson correlation function

Another important aspect of the computation of the two–point functions with open boundary
conditions concerns the effects that boundary vacuum states have on the correlation function.
Following [10] where the analogous discussion for the Schrödinger functional case is presented, we
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Figure 1: Left: eigenvalues of the Laplacian as a function of the lattice time coordinate. Right: deviation
from the bulk value for each eigenvalue.

write a two–point function with open boundary conditions in the quantum mechanical representation
as

𝐶2(𝑡1, 𝑡2) =
1
𝑍
⟨𝑖0 |𝑃(𝑡1)𝑃†(𝑡2) |𝑖0⟩ , 𝑡1 > 𝑡2 , (7)

where |𝑖0⟩ is the state at the boundaries, with vacuum quantum numbers. In general

|𝑖0⟩ = 𝑤0 |0⟩ + 𝑤1 |0′⟩ + · · · (8)

where |0⟩ is the lowest eigenstate of the Hamiltonian 𝐻 and |0′⟩ is the first excited vacuum state.
Note that in this formulation the overlap factors 𝑤𝑖 are in general complex and the partition function
reads ⟨𝑖0 |𝑒−𝑇𝐻 |𝑖0⟩, where𝑇 is the temporal extent of the lattice. Now, up to a constant, the two–point
function in the Heisenberg picture is

𝐶2(𝑡1, 𝑡2) ∝ ⟨𝑖0 |𝑒−(𝑇−𝑡1 )𝐻𝑃𝑒−(𝑡1−𝑡2 )𝐻𝑃†𝑒−𝑡2𝐻 |𝑖0⟩ . (9)

We consider the different contributions starting with the vacuum-vacuum contribution to 𝐶2(𝑡1, 𝑡2)

𝑤∗
0𝑤0⟨0|𝑃𝑒−(𝑡1−𝑡2 )𝐻𝑃† |0⟩ , (10)

which, under the assumptions above, is real. In order to simplify the discussion we assume that 𝑃
excites just one state out of |0⟩ and a different one out of |0′⟩. The two ground state vacuum to first
excited state vacuum contributions read

𝑤0𝑤
∗
1⟨0

′ |𝑒−(𝑇−𝑡1 )𝐸0′𝑃𝑒−(𝑡1−𝑡2 )𝐻𝑃† |0⟩ , and 𝑤∗
0𝑤1⟨0|𝑃𝑒−(𝑡1−𝑡2 )𝐻𝑃†𝑒−𝐸0′ 𝑡2 |0′⟩ . (11)

Even within the strong assumptions above their sum is not real.
However, as long as only pure QCD is taken into account, a single meson state can be

represented equivalently with the two charge conjugated flavour combinations, and the resulting
correlation functions are complex conjugates of each other. If the boundary contaminations are
small, the real part of the correlation functions still correctly represents the meson state.
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Figure 2: Comparison of meson correlation functions for the pion (left), kaon (middle) and the 𝐷𝑠 (right)
computed at source times 𝑡0 = 9, 15, 31 and with 𝑁𝑒𝑣 = 96. The top panels show the correlation functions,
the bottom panels the effective mass.

3.3 Boundary effects on the meson correlation functions

Now we consider the results for the two–point functions computed with the machinery described
above. In the following we restrict ourselves to the evaluation of the correlation functions for 𝜋, 𝐾
and 𝐷𝑠 pseudoscalar mesons, and the corresponding effective masses computed as 𝑚(𝑡 + 1/2 ) =
log(𝐶 (𝑡)/𝐶 (𝑡 + 1) ). To ensure that we have full control over all contributions to the correlation
function, we want to understand and disentangle the effects arising from the LapH parameters and
those coming from the boundaries.

In figure 2 we plot the two–point functions as a function of the distance from the nearest
boundary. The boundary effects are clearly visible at the right hand edges of the various panels.
The fact that the different branches all coincide close to the boundary shows that these effects
are independent of the source position. They correspond to a tower of excitations arising from the
boundary. In the cases where sufficiently many time slices are available and at this level of statistical
uncertainty, we observe the onset of a plateau at ∼ 2.0, 1.8, 1.0 fm from the boundary for 𝜋, 𝐾 and
𝐷𝑠, respectively.

In figure 3 we restrict ourselves to a single source position 𝑡0 = 15 and investigate how quickly
the effective mass approaches the plateau as a function of the number of eigenvectors used in the
construction of the LapH subspace. As expected, a smaller number of lowest-lying eigenvectors
results in a broader smearing and less contamination by excited states near the source. We observe
a moderate increase in the statistical uncertainty as the number of eigenvectors is reduced. In our
setup we estimate the optimal number of eigenvalues to be around 24.

Lastly, in figure 4 we show the forward–time correlation functions for 𝑁𝑒𝑣 = 24 and compare
the short time–separation behaviour for three source positions. The asymptotic value to which the
effective mass approaches is compatible with the literature [8] (for the case of 𝜋 and 𝐾) or in good
agreement with the physical value (for the 𝐷𝑠). However, for the case of the pion and kaon at small
time separations from the source, we observe that the 𝑡0 = 9 data set deviates from the other two
source positions. Crucially, this contamination does not arise from the farther boundary, but rather
from the one close to the source. We conclude that this amounts to a mixing between the excited
states generated at the source and those generated at the boundary.
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Figure 3: Comparison of the meson effective masses (top) and the relative uncertainties (bottom) for varying
number of eigenvectors 𝑁𝑒𝑣 = 6, 24, 96. The correlation functions are computed for one fixed source at
𝑡0 = 15 and we restrict ourselves to the forward branch.
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Figure 4: Comparison of the forward branch of the meson correlation functions (top) and effective masses
(bottom) computed at different source times 𝑡0 = 9, 15, 31 and with 𝑁𝑒𝑣 = 24.

However, as shown in figure 2, the boundary effects are a global characteristic of the lattice to
which we have access by considering the large time separation behaviour of the meson correlation
functions. In particular, the correlation functions are well described by eq. 6 and the parameters
𝑚 and 𝑇 can be determined from a fit. Subsequently, we can define a continuous estimate of the
effective mass of the meson state as

𝑚sinh(𝑡) ≡
d
d𝑡

log
(
sinh

(
𝑚(𝑇 − 𝑡)

) )
= 𝑚 coth

(
𝑚(𝑇 − 𝑡)

)
. (12)

We define the correction term 𝑚corr by subtracting the fitted meson mass 𝑚 from the quantity
𝑚sinh(𝑡), i.e.

𝑚corr(𝑡) = 𝑚sinh(𝑡) − 𝑚. (13)

This quantifies the amount of contamination stemming from the presence of the open boundary
conditions. Since we are interested into the corrections coming from both open boundaries we
correct our numerical estimate for the effective mass (𝑚log(𝑡)) with 𝑚corr and its time reverse

𝑚eff(𝑡) = 𝑚log(𝑡) − 𝑚corr(𝑡) − 𝑚corr(𝑇 − 𝑡). (14)
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Figure 5: Comparison of the corrected effective masses (top) for 𝜋, 𝐾 and 𝐷𝑠 respectively, and the
corresponding cumulative correction 𝑚corr (𝑡) + 𝑚corr (𝑇 − 𝑡) (bottom).

As shown in figure 5, this procedure is able to substantially reduce the boundary effects on the
effective masses. For each meson, we extracted the two parameters 𝑇 and 𝑚 by simultaneously
fitting the two longer branches of the meson correlation functions generated from the sources at
𝑡0 = 9 and 15. In all cases we obtain values of the reduced 𝜒2 lower that unity. While some
deviations are still visible close to 𝑇 , the corrected effective masses show clear plateaux for a wide
range of time separations. This fitting procedure can be easily adapted to the evaluation of the ratios
of two– and three–point correlation functions required for the study of semileptonic decays.

4. Conclusions and future developments

We have performed an extensive analysis of the effects of open boundary conditions on the
two–point correlation function computed with the LapH formalism. On the ensemble we analysed
and for our given statistical uncertainties, we found that the region affected by the boundary extends
into the lattice for 1 fm (12 time–slices), leaving us with more than half of the lattice where the
time translational invariance is restored. Our two–point functions analysis lead to the identification
of an optimal setup fixing the source position at 𝑡0 ∼ 15 and number of eigenvectors to 𝑁𝑒𝑣 ∼ 24.

We further devised a fitting procedure that allows for the estimate of the boundary contribution
to the effective masses and a possible correction scheme that has proven to greatly reduce the
boundary effects on the meson effective masses and that is largely independent of the source/sink
positions.

Moreover, we have started generating data for three–point functions with local current inser-
tions. Using to the distillation workflow this will allow for the evaluation of the processes needed to
study CKM matrix elements and semileptonic form factors with minimal computational overhead.
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