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source complex at CERN.

1. nt cti

The Antiproton source, its upgrade and the performance of the CERN
Collider has been amply described elsewhere ([1,2]. Considerable progress
has been made in 1989 towards achieving a performance close to the design
specifications for the upgrade [3]. While the complexity of operations has
increased substantially, with the addition of the AC operating in conjunc-
tion with the AA, the same operating crew and interaction means have been
used to carry out the routine operations. Relying mainly on experience
gained from the operation of the single ring AA over the previous 7 vyears,
several aspects have been streamlined and highly-automated methods and
procedures have been introduced. Figure 1 shows the schematic layout of the
two rings and the production target area. The controls system [4] had to be

extended for the new source complex and this is described elsewhere [5].
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This class of applications software groups virtually all the basic el-
ements necessary to control a particle accelerator remotely. While these
are necessary and vital pre-requisites for the functioning of a complex of
accelerators like the antiproton source, they only provide a base-level on
which sophisticated applications may be built. They include the control of
the most essential measurement devices (beam transformers, Schottky pick-
ups, scintillation screens, and position pickups), magnet power supplies,
vacuum system, radio-frequency equipment, timing and kicker magnet sys-
tems, stochastic cooling systems which include hundreds of relay switches
and power amplifiers, and services such as the logging of data, statistics,
alarms and so forth. The AA already had most of these applications func-
tioning prior to the AC and the main task was to streamline and extend
these and to use automation wherever possible, by means of higher-level

applications software. It is only the latter which is considered below.

3. Operational Modes

The AA & AC (AAC) complex of 2 rings can exchange beam with the Proton
Synchrotron (PS) from two different directions depending on the functional-
ity required; the PS can supply test beams or beam for antiproton produc-
tion; this leads to the AAC running under four almost mutually exclusive
modes. Different combinations of these lead to as many as ten operational
Modes as shown in the selection touch-panel in Fig. 2. Six of these are for
proton test beams at 3.5 GeV/c which can feed the AAC directly through the
target area or through the transfer line (via 'loop') from which the anti-
protons are normally extracted. The AAC, unlike PS, does not operate in a
pulse-to-pulse modulation mode and only one type of beam is exchanged per
PS machine cycle. Only the necessary minimum timing information is exchan-
ged with the PS and local operations which do not rely on beam exchange
with the PS are performed asynchronously, leading to a fairly decoupled
timing operation [6].

The automatic Mode selection chooses a series of timing files which
are sent to hardware preset timers which, together with hardwired request
handshakes, fore-warnings, fast timings and PS program line sequences, lead
to the exchange of beam. As well as timings, the Mode selection also
carries out the necessary checks and operations on power supplies, kicker

magnets, magnet movements, rf and stochastic cooling systems.



4.  operations for Antiproton Production and Trapsfers

The production mode has its high level stacking statistics and per-
formance verification programs which monitor antiproton progress from pro-
duction target through the AC, the transfer line and into the AA, upto the
stack core. However, the rf operations in both the rings are automatic and
are triggered independently through the function generators loaded [7] with
appropriate files by the Mode selection. This provides a fair degree of
autonomous operation with essentially one beam-request timing controlling
the whole production chain.

The antiproton transfer operations are more complex, with several re-
quirements, constraints and client-machine needs [8]. The transfer process
is entirely automated with the options shown in Fig. 3; the necessary
measurement of Schottky scans and detailed manipulations are described in
Ref. [9]. Prior to the transfers, the betatron tunes of the core of the
stack and transverse emittances may be observed routinely as shown 1in
Fig. 4.

5. Machine Experiment and Setting-up Modes with test beams

After machine shutdowns, or for experimental purposes, the AAC has to
be adjusted and set-up using test proton beams. It is only in these modes
that diagnostic equipment, such as position pickups work and closed orbits
can be verified. A large degree of automation has helped enormously for all
routine measurements and setting-up for studies or for production. The pro-
duction mode is switched to only after all the correct setting-up work is
terminated. The automated programs use combinations of beam instrumentation
such as position and Schottky pickups, transverse beam scrapers, high and
low sample-rate digitizers and beam blow-up by random noise together with
several of the base-level application programs for on/off control of rf
equipment, kicker magnets, timings and magnet current settings.

Figure 5 illustrates the displayed result from the automatic adjust-
ment program which completely sets up the AA ring using test proton beams
in a few minutes, this time being mainly governed by PS test beam cycles.
The program requests the beam, measures orbits at the nominal central
orbit and tunes at the stack orbit (after rf capture and displacement) and
adjusts the trim supplies, central field and quadrupole strengths until
standard vertical and horizontal tunes are obtained and the standard trim

value arrived at, as defined in the closed-orbit program with correct
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central field. Using the fast and slow digitizers [10], the coherent injec-
tion oscillations are measured and then reduced both transversely and lon-
gitudinally. The energy matching between the PS and AA as given by the fre-
quency at injection is also measured and stored for later use in transfer

programs.

Figure 6 illustrates the choices available for some of the measurement
programs for the AA ring. The AC ring has a similar set of programs for the
relevant measurements and Modes. Fiqgures 7 & 8 illustrate some typical
results from the closed-orbit measurements and complete tune measurements
across the aperture for the AA; the detailed techniques for measurements
using Schottky signals are given in Ref. [11]. Figure 9 shows the result of
another automated procedure to measure the transverse acceptance versus
momentum for the AC ring. For each point of the plot, and for each plane, a
complicated set of operations taking up to 3 minutes is carried out involv-
ing (a) injection of fresh test beam of sufficient quantity (b) transverse
blow-up in that plane to ensure that the beam envelope touches the aper-
ture, meticulous scraper displacement until the beam edge is found and (c)

subsequent computations to obtain the transverse acceptance [12].

Finally, automatic obstruction search programs have been implemented
using controlled radial bumps in the AA and motorised displacement jacks
for quadrupoles.

6. Conclusions

0f all the CERN accelerators, the AAC complex is one of the most
highly automated machines, especially for all the beam measurement, machine
experiment and setting-up procedures necessary for this complex. One of the
main reasons for being able to achieve and maintain this high degree of
automation 1is the restricted number of intermediate levels (hardware or
software) between the application programs and the equipment. The AAC
touch-terminals [13] operate directly from the front-end computer connected
to the CAMAC serial highway, which avoids any communications overheads or
problems. Similarly, CAMAC modules access the hardware directly without any
front-end microprocessors sitting in the same crate, which would otherwise
introduce another intermediate level. Even the sophisticated GPIB devices
like the spectrum analysers are connected directly, via a simple GPIB-CAMAC
interface, thus avoiding the arbitration problems or complications of an
intelligent module but, at the expense of an elaborate software equipment

module.
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