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Abstract

Since this accumulator has relatively short bending magnets, the fringe-field 
effects are large, and special attention had to be paid to the tracking of particles 
through the magnet as well as to its representation in the machine lattice. Here we 
describe the procedures, making use of measured field tables in computer 
programs to determine the properties of the machine, and compare predicted 
machine parameters with measured ones.

1. Motivation for Particle Tracking and Modelling

In an electron ring an accurate knowledge of the lattice functions and of the 
characteristics of the main elements is essential, as the major properties of the 
ring, such as beam damping and equilibrium beam parameters, depend on them.

In order to enhance fast damping and accumulation, the Electron-Positron 
Accumulator (EPA) lattice is based on a highly saturated combined-function 
bending magnet. A very low bending radius (ρ ■ 1.4 m) means large synchrotron 
radiation-emission in the magnet, and a small gradient (dBy∕dx ≡ -1 T/m) 
favours both injection efficiency and beam stability by an exchange of damping 
between horizontal and longitudinal planes.

Unfortunately, the combined effect of low bending radius and vertical 
focusing strength makes the contribution of the fringe-field extension particularly 
large in so short a bending magnet (f ≡ 0.56 m). Therefore, the magnetic field and 
its multipolar coefficients, such as gradient and sextupole components, vary both 
across and along the magnet, and thus along the particle trajectory, and for this 
an analytical solution is not possible.

For this reason, an ensemble of particle tracking programs (ORBIT and its 
auxiliary program PREP), based on the exact equation of motion in the measured 
magnetic field in the median plane, were made with the following aims:
i) to calculate the accurate position and length of the central trajectory through 

the whole magnet, including fringe-field extension;
ii) to adjust the total length and profile of the magnet pole in order to fit the 

desired deflection angle and integrated gradient along the real particle 
trajectory.

In order to maximize the dynamic aperture, we wanted the sextupole 
component in the magnet to be as small as possible (1]. The magnets were all 
shimmed [2] to make the integral of the sextupole along the straight length of the 
magnet close to zero. As the path through the magnet is curved, however, some of 
the sextupole remains along the orbit. An estimate of this was also made in the 
preliminary program. The final aim was to have a model of the machine which 
could be used for quick tracking in programs with an analytical representation of 
magnetic elements.

2. Steps Leading to the Lattice Parameters and the Final Model

To achieve the above-mentioned requirements, an interleaved use of tracking 
through field tables (ORBIT and the auxiliary program) and classical lattice 
programs became necessary. Five steps led from the magnet data to the final 
model.

I) By tracking orbits around the closed orbit, PREP provided matrix 
transformations for small betatron oscillations in both the horizontal and vertical 
planes, for the complete magnet. A pure dipole, with path length LCM was 
defined [3], which gave the same path length as that found by PREP, and with 
similar drifts on either side.

2) Considering the magnet with its adjacent drift spaces as a transfer 
channel, a ‘model’ channel composed of magnetic elements represented 
analytically was set up and tuned'to the same transfer characteristics. This gave 
the linear model of the bending magnet.

3) Using this representation of the magnet in the lattice of the full machine in 
MAD [4], this machine was matched by varying the strengths of the six 
quadrupole families to satisfy the desired constraints [5] (for example, a desired 
phase difference over a certain region, working points, etc.).

4) With the resulting quadrupole forces and the machine geometry now 
defined, the complete machine, with the magnets represented just as in the PREP 
run, was entered into the full ORBIT program [6], where a special subroutine was 
added to accept the treated, measured field tables.

Tracking through this lattice gave values for the chromaticities, and for 
synchrotron integrals for given momenta leading to machine parameters such as 
energy loss per turn Uo, damping times τ, emittance EXo.

5) Now the linear model was tuned with respect to the chromaticity obtained 
in step (4), including variations of the magnet end-face rotation φ and the 
sextupole component S. This led to a model satisfying both linear optics and the 
lowest order of non-linearities.

3. Particle Tracking with ORBIT

3.1 EquationsofMotion

If rectangular coordinates are used (a prime denotes differentiation with 
respect to z), then the exact horizontal and vertical equations of motion are

x' = q[-By(l + x'2) + y'(Ba + x'B,)j (1)

y' = q[B.(l + y'2) - x'(Bz + y'By)J (2)

withq = e/p[(ɪ + x'2 + y'2)iz*).

The coordinate z is chosen to be roughly the direction of motion (Fig. 1). For 
motion purely in the median plane, Eq. (I) reduces to

x' - -e/p[(i + x',)viBy]. (3)

3.2 Magnetic Data and their Preparation for Tracking

We had at our disposal measured values of By in the median plane [2J. Three 
sets of measurements were made with excitations corresponding to 500, 600, and 
650 MeV. In the region of the magnet where the fringe field varies rapidly, we had 
values on a mesh of ∆x ≡ ∆z ■ 0.01 m. In the centre, where the field has a slow 
variation, and at the edges of the fringe field, there were fewer points. We were 
supplied with 14 rows of 87 values. Assuming symmetry about the middle of the 
magnet, by taking averages of points on either side of the centre, we then had 
14 rows of 44 values representing half the magnet. Using a CERN Library spline 
routine we first of all filled in all missing points to give values over a complete 
mesh every centimetre in x and z over a range of z from 0 to 0.75 m and from 
- 1.15 to 0.5 m in x. By using a combination of the Library routines in LSQ (least 
squares fit) and SPLIN3, we smoothed the values in order to have as input for 
ORBIT a set of values of By, ∂By∕∂x, 32By∕∂x2, ∂By∕∂z, <32By∕∂z2 at every mesh 
point. The combination of LSQ and SPL1N3 became necessary in order to find 
smooth second derivatives.

3.3 Tracking through the Magnet

We were then ready to study the basic trajectory (to become the closed orbit 
in the full machine representation). The central (x * 0) position (see top half of 
Fig. 1) had been fixed from earlier studies with a simplified hard-edged model. 
Starting at this central position, with dx/dz = 0, we tracked through the second 
half of the magnet, using Eq. (3). Whenever By was required, we used 6 × 6 
points to find the interpolated value. A normalization factor ( ∙ 1) was applied to 
all the magnetic-field values so that the bending angle was exactly 11.250. As 
mentioned before, the horizontal and vertical matrix transformations were 
calculated, the one for the vertical plane by putting B1 = y(dBy∕dx) and Bz ≡ 
y(dBy∕dz) in Eq. (2), again always evaluating the field at the point in question 
along the orbit. Other quantities of interest—such as the trajectory length LT, the 
integrals of the gradient JdB∕3ηds and of the sextupole f∂2B∕∂172ds were 
calculated; η is at right angles to the trajectory, s is along it. The results are given 
in Table la.

To get an idea of the confidence level on the estimation of certain magnet 
parameters, field tables with errors were simulated and orbit runs carried out. 
Table Ib represents mean values with one r.m.s. error.

Tracking was done for all three sets of magnetic measurements. Some field 
integrals as a function of particle energy are given in Table lc; the results show 
quite well the effect of magnet saturation on the field integrals.

Tracking through the full lattice as mentioned in Section 2, step (4), led to the 
results given in Table Id, as well as those in Table 3.

More details can be found in Ref. [7].

4. The Model: Its Fit to Data from ORBIT Runs

The main requirement of the model is to lead to the results of ORBIT for the 
linear optics and chromaticity when introduced into a lattice program.

Ten parameters, βa, αa, μ«, da, da∕ds, 0y, αy, μy, ∆fa, and ∆ξy, the constant 
total length L, and the C-S invariant are the constraints.

The model has been assembled from two different quadrupoles Ql and Q2, 
and one central bending magnet B with thin-lens sextupoles S near the end-faces of 
this dipole (Fig. 1), from which the main effect of the sextupole stems. Variables 
to satisfy the above constraints are: the gradients K, Kl, K2 of the bending magnet 
and qqadrupoles; the lengths of the elements LC, LI, L2 and of drift space Dl, 
D2, D3; end-face rotation Φ of the bending magnet; and KS, the force of the 
sextupole S.



The fitting started with the characteristics of the bending magnet as given by 
PREP (tracking through the magnet first). The results can be found in Table 2. 
Despite the high number of constraints, the fit led to sufficiently good agreement 
between data from ORBIT and the model, so for the sake of simplicity this model 
was adopted in our machine studies.

It has to be kept in mind, however, that models with higher degrees of 
element segmentation [8] lead to better fits or allow the inclusion of further 
constraints.

S. Comparison of Parameters from ORBIT, the Model, and the Real Machine

In the second half of 1986, the EPA commissioning for e^ beams took place 
[9]. A number of machine parameters directly related to the lattice could be 
measured at SOO MeV. A comparison between prediction and realization is made 
in Table 3. The linear optics (Twiu parameters) agrees to better than ± 10%; for 
only one family of quadrupoles the measured β ds is 18% less than calculated. 
Figures 2 and 3 illustrate the agreement between prediction and reality. The 
measured vertical chromaticity {y differs by more than 20% from prediction. 
Summing up the ∆fy from the different elements in the lattice reveals that the 
major part of {y stems from the bending magnet whose sextupole component 
could be estimated with a large tolerance only (see Table 1). In addition, its 

calculation was done with respect to an ideal closed orbit (orbit distonions of 
- 7 mm have been observed). These facts may, to a good extent, explain the 
discrepancy.

6. Applications of the Model

The model has been used in a wide range of lattice programs to study
- trajectories,
- closed-orbit deformations (e.g. ejection),
- dynamic apertures at the different energies and sextupole forces in the bending 

magnet.
Its main application is, however, to be found in the lattice program used for 
on-line modelling (10). Here, thanks to the good agreement between machine 
parameters of the model and the real machine, it has eased machine studies at 
commissioning and finds its application in day-to-day operation.
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Table 2
Parameters of the model as used in the lattice (E - 500 MeV)

Tablet
Some magnet and lattice data gathered from ORBIT and PREP runs

Tracking range « D/2:0 ≤ z ≤ 0.750 m (see Fig. 1).
AveragingoverfulIrangeB(Z) ≡ [B(z) + B(-z))/2.
For (a), (b), (d) the particle energy of the EPA is E » 500 MeV.

a) Results deduced from the field table as 
provided by measurements of the magnet

Central field B(xyz = 0):
Central gradient G(xyz = 0):
Central sextupole S(xyz = 0):
Integrals of field JB ds:
Gradient J3B∕∂ηds:
Sextupole ∫∂2B∕⅜2ds:
Length of magnet for which the 

matrix has been calculated (LCM):
Length of trajectory with D * 1.5 m:

1.16171 T 
-0.990992 T/m 
1.69414 T∕m2 
0.654956 T∙m 
-0.867060 T 
0.28688 T/m

0.590448 m

Bending magnet B:

LC = 0.6202850 m 
K ɪ -0.72801 m^2 
a = 0.39270 rad 
φ = 0.0 rad

QuadrupoleQl: Ll = 0.0137440 m; Kl - -2.28743 m

Quadrupole Q2: L2 = 0.0088220 m; K2 = -0.34837 m

Sextupole S:

Drift spaces:

DO:
Dl:
D2:
D3:

LS = 0.0000090 m;

L(m) 
0.0000010 
0.1068970 
0.0135132 
0.2888713

KS = 25880.5 m^,

Distance of basis D to centre of magnet: Xl
LT -

Max. swing of trajectory around x = 0: XO = 
Elements of transfer matrix:

Hn - l.O81OOO5 V11 - 0.8500136
Hu - 0.5944441 V,2 « 0.5707717
H2i - 0.2834486
H11 - 0.1163174
H21 - 0.4072015

V21 - -0.4861429

1.521680 m
-0.106548 m

O.O135O3 m

b) Three field characteristics taking into account tolerances of positions 
and Hall probe (simulation of field tables with errors)

Integral of gradient ∫3B∕⅜ds:
Integral of sextupole J∂2B∕⅜2ds:
Distance of basis D to centre of magnet Xl :

-0.86755 ± 0.00373 T 
0.14 ± 0.49 T/m
-0.10654 ± 0.00006 m

d)

c) Some field integrals as function of particle energy

Energy JBds J∂B∕⅜ds J∂2B∕⅜2ds
(MeV) CΓ∙m) σ) (T/m)

500 0.654956 -0.86755 ± 0.00373 0.14 ±0.49
600 0.785946 -1.03320 ± 0.00440 -0.16 ± 0.58
650 0.851440 -1.10480 ± 0.00470 -0.60 ± 0.64

Results from ORBIT runs of full machine structure

- Synchrotron integrals, sextupole in bending magnet * 0.28688 T/m,
correcting Sextupoles off:

∆p∕pc -0.009 0.0 0.010
I1 3.968 4.224 4.552
I2 4.072 3.960 3.843
h 2.755 2.643 2.524
L -4.706 -4.16l -3.611
h 2.034 1.976 1.956

- Chromaticity: ξx - -1.31.f, - -1.81.

Table 3
Machine parameters as obtained from ORBIT, the model, and measurements

Parameter ORBIT Model Machine Remarks

Q« 4.458 4.460 4.430
Qx 4.379 4.380 4.390
d. (m) 2.301 (max.) 2.299 (max.) d, model: ±8% 1
dy (m) 0 0 0 ± 0.011

J0,ds (m2) 7.53-38.18 J0,ds model: * ɪθ % 2

J∕3yds (∏>2) 4.64-55.58 J0yds model: * θg %

∆x(mm) ± 10 (max.) ∆x model: ±0.7 3
∆y (mm) ± 6 (max.) ∆y model: ±0.7
÷. -1.32 ± 0.12 -l.31 -1.16 ± 0.07 4
iy -1.77 ± 0.40 -1.81 -2.23 ± 0.14
U0 (keV) 3.50 3.50 3.50 Ref. [11]
e»o (μrad∙m) 0.089 0.082 0.092 5
n (ms) 58.7 56.5 62 ± 5
ry (ms) 120.3 119.8 119 ± 5
r, (ms) 126.7 136.2 130 ± 10

Remarks:
I) Comparison is made for measurements at magnetic pick-ups, Ref. [12].
2) Deduced from ΔQ = F(ΔK); Δ(K) from six families of quadrupoles.
3) Orbit distonions generated by horizontal and venical dipoles with maxima as 

indicated.
4) Model adapted to a sextupole component of 0.287 T/m per bending magnet 

(Table 1).
5) Deduced from tu ≡ 0.083 μrad∙m, eyc = 0.0089 μrad∙m. All values are for 

low beam current.
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