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AbstractWe discuss intensity limitations due to ions trapped in the p-beam and assess antidotes which have recently been applied in the Antiproton Accumulator (AA) at CERN. We re-examine the theory and analyze: Landau damping of dipole and quadrupole modes, stabil­ization by appropriate choice of the working point and ion clearing by shaking of the p-beam.IntroductionTrapped ions continue to limit the stack inten­sity in the AA1-3. The present paper aims to provide some theoretical understanding of the effects observed and of the cures which have helped to push the stack intensity above 8.5∙1O11 p. Ion-p instabilities of any mode type can be analyzed using_the theory of Koshkarev d Zenkevich4, except that p-p and ion-ion forces are glected in their work. These are included in ref. 5 which, however, treats only dipolar stability. We ex­tend this calculation to quadrupolar modes, recently observed in the AA3, including p-p space-charge forces which can prevent Landau damping in cooled beams. We then discuss ways to circumvent the instability by proper choice of the p working point. Finally we ana­lyze the ion dynamics in the presence of driven p os­cillations and derive conditions for efficient clearing by p shaking. Equations of MotionFor the motion of an individual p (y) and ion (yj) we write:~ y + qogoy ^ QscGsc(y-ÿ) + Qcgc<*⅛ = Feiwt (1)Vi - 4c⅝c(yi⅛ + <ic9c(yi-y) = °-
V—e y _: transverse (h or v) deviation_ from nominal it, y : deviation of beam center, Q : p-revolution equency, Q2 : square of betatron wave number due to eternal focusing, Q∣c = 4NrpR∕2ιa(a+b)β2γ3: p-p space­charge, Qc ≈ 4NirpRZχ∕2ιrai(ai+bi)β2γ : ion space-charge on p-s, q∣c = 4NirpR(Z∣∕AjJ∕2ιrai(aj+bi)β2 : ion-ion space-charge and qc = 4NrpRZi∕2wa(a+b)β2Ai : the p space-charge on the ion; N¿, zɪ, A¿ are the total number, charge state and mass number of the ions, aɪ (in the direction of y) and bɪ the effective transverse radii of the ion cloud; N, a, b the corresponding quan­tities of the p beam; rp = 1.54≡1O~->β m; 2ιR the orbit circumference. In the p equation the dot denotes the total4"® d/dt = ð/ðt +RC(3/0s). Smooth approximation has been used replacing localised external and space­charge by ring averaged forces. Space-charge image forces have been neglected.The functions G and g express the nonlinearity, G=g=1 for linear forces; Go depends on the external, the others on the space-charge_fields. With a parabolic density distribution® of both p and ions: 
gsc = G(y-y). ɑe = G(y-Yi). qsc = G(yi~ÿi>» sc= c(yi-y)

1 2a2÷bz _ 1G(yι-y2) = 1------- ------------(y1-y2)2- -6 a2(a2+b2) 2 1 ------------- (Z1-Z2)2. b2(a2+b2)For more_general distributions higher powers in (y1-y2) and (z1-z2) - the deviation in the other transverse plane - appear. On the r.h.s. of Eq. 1, the integrated electric field Eo∆se^tut of the shaking kicker (assumed to be a δ function in azimuth) enters aseE0Δse^wt eE0Δs , ,n.,∙—_--------- δ(3) = ------ Ï------ £ eιn(s∕R)+iu∣tmpγQ2 ≡pγQ2 2ιrR n= -Only the resonant harmonic with (n+(w/Q)) ≈ Q0 is re­tained, such that eEoAsein(s/R)F = --------- —------ . (2)mp,γβ2 2wR
Pinole ModeOne solves Eq. 1 (without shaking i.e. F = O) assuming constant beam size and small oscillations of the beam center y = y exp(in(s/R)-ivQot) for both ions and p.4"≡ Nonlinearities are neglected except for the calculation of the frequency spreads. Results are4"®: instability can occur in a band where the ion bounce frequency q is close to one of the p sideband frequen­cies (n-Q): |q - (n-Q)| ≤ δQ; δQ » qcQc∕∕q⅛Uof Q2 = Q0 + Qc - Qsc≈ q = qc ~ cIsc ∙ The fastest growth rate oc- Occurring in the band center is 1∕τ * (Q∕2)δQ.For realistic frequency distributions Landau damping inside this band imposes three necessary condi­tions on the spreads ∆p and ∆j in the frequencies (n-Q) fi∕fi0 and q, respectively®:Δ- > ∣q1c∕Q∣ ; ʌi > |qlc/q| and Δ-∙Δi > ∣q⅛J∕qQ∣. (4)The first two are the well known7 single beam condi­tions requiring a frequency spread larger than the modulus of the frequency shift. The third is the two- beam condition of ref. 4. When the beam is cooled, the space-charge term Q∣c increases and the spread ∆p de­decreases simultaneously, thus preventing (full) Landau damping as the first condition is violated. For typical AA parameters (3-Q mode, Q ∙ 2.25, qc = 0.75, Δ- = 3 ∙ 10"’, ∆i = 0.2 requiring Qc ≤ 2∙1O"3 from the leist Eq. 4, the two-beam condition would suggest stability up to a ring average neutralization of a few IO"3 but damping is upset as in the cool beam Q∣c∕Q = 2∆QLasιett>3∙10^3. This may explain why feedback has to be used in the AA, even with good clearing, to cure dipolar modes.Quadrupolar ModesBoth transverse planes (y, z) have now to be treated jointly due to the coupling by spacecharge. To obtain beam envelope equations one inserts4 y = z = O, y = aeɪ6 with 8α(1∕a2). Linearizing for small devi­ations (ζ, η) from a stable solution (a0, b0) one finds, (5) ɪ- Ë + 4Q2E + κ1Q2cζ + κ2Q∣cη - K1Q2Ei " *2Qc∏i = θ ; where



a similar equation for (with Q -» q, etc.) and a similar system for the other transverse (∏) envelopes (with ao - bo in the calculations of Qsc, etc.).The factors μ = (2ao<-bo)/(ao+bo) and κ2 = ao/(ao+bo) are ɔ/j and 1∕2 for equal beam radii aŋɪbo, to be assumed hereafter for simplicity. Close to the diagonal Qy = Qz a symmetric and an antisymmetric mode with ξ = iη occur. In this case Eq. 5 may be written as:ɪɪ E + 4Q2ζ + 4pQlcζ - 4pQ2Ei = 0 (6)⅛ *1 + 4<J2*i + <P<Isc<i - <P<lc^ = 0
with p =_1/2 in the symmetric, p = 1/4 in the antisym­metric (Ë = -η) case. For largely different Qy ≠ Qz one obtains a more complicated set of equations which may be reduced to the form (6) in other limiting cases, e.g. that of a ribbon beam (bo » ao) for which one finds Eq. 6 with p = 1/4.The system (6) may be treated in full analogy to the dipole case (Eq. 1). One finds that the worst case growth rate is smaller by 2p and the Q width of the unstable band by p compared to the dipole case. Landau damping conditions (4) become

Δ- > p ∆i > P ʌp'ʌi > P2 ∣Qc¾c∣ I qQ I
where ∆p and Δ^ are the spreads of ((n/2)-Q)Q/Qo and q (in the case of Qy * Qz = Q both Q spreads contribute). Thus the required spreads are smaller by p and the threshold neutralization (N¿ α Qc) is higher by p^2. This is consistent with the observation in the AA that quadrupole modes occurred at 2 or 3 times higher intensities. IaflugQgg of working PointWhen the instability is caused by one short ion pocket, stable conditions can be restored by choice of the p-working point such that fast and slow wave fre­quencies coincide. To illustrate this in a simple way we neglect frequency spreads in Eq. 1 and/or Eq. 6 (i.e. we put y = y, etc.). For an ion pocket we modify the coupling term

Qc -» Qc ∆s δ(s) = Qc E ein(s∕R) n=—with Qc the local and Qc = Qc(Δs∕2wR) the ring averaged coupling. Assuming that the ions oscillate with y^ = y^e^lvβot the p response (from the first Eq. 1) is a sum of terms with the usual Q2-(v-n)2 denominator (n = 0, i1...). Retaining the two terms with (v-n2) » Q and (v-nι) * -Q closest to resonance we haveÿ * -γi(Qc∕2Q)[1∕(v-(m-Q)) - 1∕(v-(n2+Q))] .Thus if the frequencies (n∙∣-Q) and (n2+Q) co­incide (with a tolerance given by the width of the un­stable band, δQ » 10^3 in the AA) then the coupling is strongly reduced by "fast wave/slow wave cancellation".For dipolar modes this requires half-integer tunes Q which are excluded. For quadrupolar modes simi­lar consideration - applied to Eqs. 5,6- suggest fast wave/slow wave cancellation for quarter integer tunes such that (nι-2Q) •» (n2+2Q). Tuning the AA to Q •» 2.25 

- such that 5-2Q ■» -4+2Q, 6-2Q -» -3+2Q, etc. - quadru­polar instability was successfully suppressed. This indicates at the same time that an ion pocket pre­ponderated. In fact, for an extended cloud or several pockets the ions follow the pattern exp[i(ns/R-QQt)] around the ring and coupling of different modes is impossible or improbable.Theory of ShakingThe purpose of shaking is to decrease Qc , es­pecially in those places in the ring where the clearing system cannot influence ions properly. We shake the_p beam with the help of an rf electric field and the p beam shakes the ions in any place we are concerned with. This is most efficient_if the shaking frequency w = vQ is close to one of the p frequencies (Q-n)Q and close to the ion frequency qcQo∙A nonlinearity will be taken into account only for the ion movement. For the case we are interested in, y¿ » y and yj, » zɪ; so the frequency of the ion is:
⅛ = q2(1 - (2∆qc∕qc)),∆qc∕qc = ≡yi > o. (7)θqc∕θyi = 2∆qc∕yi.For the parabolic distribution α = (2a+b)∕16a2(a+b).Passing through ResonancesThe frequency qc depends on the location of the ions, qc = qc(s), so for a given ion, qc varies in time because ^of its longitudinal movement. If dqc∕dt = (0qc∕Ss)vi ≡ qcvjyλ is big enough, the ion crosses the resonance v = qc(s); λ = qc∕(3qc∕∂s). The influence of the nonlinearity depends on the sign of dqc∕dt: the nonlinearity helps to cross the resonance when dqc∕dt<O (qc decreases along the ion's trajectory) and resists it in the case of dqc∕dt > O. The average result of a single passing is2 _ w *2 __________________v2Q___________________Y1 = 4 y ∣qcvi∕λ∣ ♦ I O⅛∕0∏)Oyi∕at) I dqc z; — $ O (8) dt ?∣qcvi∕λ∣ > I(ðɑe/ð^i)<θyi∕θt) I' ayi∕θt ∙ qc°y∙

Quasi-Linear Transverse Oscillations of Ion?In the_conditions dqc∕dt = (3qc/ds)v¿ < O and ∣qcvi∕λ∣ « I(8qc∕8yi)(8yi/8t)I, i.e. slow ions moving in the direction of the qc decrease, we can consider the ions as motionless. From Eqs. 1 and 7, we have co­herent oscillations y_= y,cos(ωt+ns∕R), ÿi = H cos(wt+ns/R),
yi = Fqc∕D ; y = F(⅛ - v2)∕D ;D = (v2 - ⅛2)[(v + n)2 - Q2 - Qc] - qcQc ; (9)ÿi/y = q?/(qê - y2) = ⅛c∕i (**c - y2) ~ 2qc(∆qc∕qc) ].In the purely linear case, α = O, the best regime for the shaking is v = qc, y « O, y¿ = -F∕Qc. If α ≠ O and v = qc (a pure resonance, for small ion os­cillations), some stable amplitudes y∣,y^will be estab­lished after a time t * ι∕0∆qc - (2>/(Qdqc∕dt)]1/2



y = -2<xy¾ 1 ∕δ^c∖ γi = 7= ---- )∕α ∖qc / (10) ∆y = 1∕~ ei(wt+us/R)’ N- P(Tlιis is the result of a combination of (7) with (9)). To obtain a large y¿ in the case of a small F we need some small D in (9). Since v2 - gɑ > 0 when v2 - q2 = 0, the best regime is when(v + n)2 > (Qq + Qc) ∙ (IDIn the AA v must be higher than (Qo-n), n = 2.The natural condition |y| « |y¿| needed during the shaking coincides with the condition of the quasi­linearity, 2∆qc∕qc = 2αy∣ « J. For a » b and a para­bolic distribution it gives yj « 2a.Lock-on EffectIn the case of slow ions moving in the direction of the qc increase,∣qcvi∕λ∣ < I(3qc∕3yι)(θyi∕3t)I , (ðgɑ/ðs)vɪ > 0, x.e. (for a parabolic distribution),Vi∕qcλ < 2(αy∣)y∕yi , (ðgɑ/ðs)vɪ > 0 , (12)the ions are trapped into resonance:*2 ∙2 9c(≡) " vqc = v ; qc(1 - αyf) = v ; y| = . (13)
The solution for y¿ is independent of y (in the condi­tion of ( 12)).The g⅞n⅜r⅜l SolutitfnThus the fast ions will be heated by shaking when passing through resonance, according to (8). The slow ions will provide^ two different components of the dipolar response y¿ = yq¿ + y¿ ι0ckJ,Iis quasi-linear). Since yi lock does not depend on y, it simply changes the effective electric field in expressions (1) and (9)_ F -» Fef = F i qJ yi lock , (v + n)2 $ (Q2 + Q⅛). (14),q£ and y depend now on Fef and can be analyzed from (9).

(15)∆yi S -i ɪ - </∑i ei(wt+ns∕R) 2 Δ T NpIt is important that ion frequencies qc do not vary along s in the existence of the lock-on effect: qc ≈ v.The damping time of the ion cooling has a natural statistical limit τ = /K| τf,; τfj ` ι∕QΔ. Above this limit 2 ∕∆∖ QoN6 T®/TL ' τ∏> > τLτ = - (-)---- ɛ f. f =» ∖v∕ QcQ 1 r ɪm < τL where τm is the mixing time for betatron cooling.Rafexgpggg[1] E. Jones et al., IEEE Trans., NS-32 (1985) p. 2218.[2] F. Pedersen, A. Poncet, L S0by, The CERN Antiproton Accumulator Clearing System... This conference.[3] G. Carron et al., Observation of Transverse Quadrupole Mode Instabilities... This conference.[4] G. Koshkarev, P. Zenkevich, Part. Acc. 1 (1972) p.1.[5] L.J. Lasslett, A.Μ. Sessler, D. Mohl, Nucl. Instr. Meth., 121 (1974) p. 517.[6] D. Mohl, H. Schönauer, in: Proc. 9th Int. Conf, on High-Energy Accelerators, Stanford (1974), p. 380.[7] B. Zotter, F. Sacherer in: Proc. Internat. School on Particle Accelerators, Erice 1977, CERN Report 77-13, p. 175.[8] Yu. F. Orlov, E. K. Tarasov, Proc, of the Int. Conf, on High-Energy Accelerators and Instrumentation, CERN, Geneva (1959), p. 263.We have two types of asymmetry: a longitudinal right-left asymmetry because of (ðgɑ/ðs)ðvɪ £ O and an up-down asymmetry of v with respect to the betatron sideband (Q-n), (v+n)2 | (Qq+Qc)∙Ion cooling It can be deduced from Ref. 8 that for Iocked- on ions the shaking creates a greater spectral density at the frequency qc = v(1-δ); δ - (y∕yi>i/ɔ(∆qc∕qc)2∕3. The effective width of the spectral density (Δ) is much smaller than vδ. If (Qo - n) ≈ v(1 - δ) we obtain a resonance between free oscillations of antiprotons and ions. The dipolar resonant response of the ions will give Landau damping.The random dipolar fluctuation of antiprotons and the response of ions are of the order of


