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1. INTRODUCTION

In circular accelerators or storage rings, with negative beans (antiprotons or 
electrons), positive ions arising fron ionisation of residual gas nolecules or positive 
charged microparticles can be trapped by the negative potential generated by the bean it­
self. If the efficiency of clearing devices is not very good, the ions of the residual gas 
will continue to accumulate until an equilibriun neutralisation of about 0.998 is reached. 
The efficiency of clearing electrodes is different for different places of the storage 
ring because of different geonetries (chanber enlargenents, special tanks, etc.); there­
fore pockets of ions are localised in few regions of the ring where clearing action is 
nore difficult. When the intensity of the stacked bean becones inportant, the interactions 
of the bean negative particles with the positive natter (ions or nicroparticles) can pro­
duce a systenatic increase in transverse enittances. With the CERN Antiproton Accunulator 
(AA) a stack intensity above 1011 antiprotons and transverse enittances between π  and 2w 
nn.nrad (at 3.5 GeV/c) are sufficient to exhibit abnornal growth of transverse enittances 
that can be related to the nechanisn described above1. The average gauge pressure of the 
AA during nomai operation is about 10-11 torr with 90% H2 and 10% of CO or N2 residual 
gas. With this pressure each antiproton can produce with roughly the sane probability an 
ion of the H2+, CO+ or N2+ kind in about 25 seconds (nean tine). The neutralisation 
process, through nultiple coulomb scattering, favours the escape of heavy ions (C0+, N2+) 
and the final ion pocket is therefore nainly populated by protons as a result of double 
ionisation of molecular hydrogen.

The interaction of antiprotons with the few ion pockets (nainly protons) should be 
therefore very sinilar to the bean-bean interaction in colliding bean machines2. The 
electromagnetic field generated by the ion distribution can be described by a transcendent 
function which in principle contains all the powers of transverse coordinates (x and y). 
The presence of all powers of transverse coordinates in the perturbing force makes the 
system highly non-linear and, with the non-definite parity of the distribution, explains 
the excitation of high-order non-linear resonances. In order to focus the attention on the 
CERN AA phenomenology Fig. 1 reproduces two pictures from Ref. 1.

The tune diagram of AA can be seen with a scan on horizontal betatron tune which 
shows the emittance growth due to the crossing of several 15th and 11th order non-linear 
resonances. To explain the behaviour shown in Fig. 1 some tune modulation (from ripple in 
the AA magnet current) must be also considered. The estimated tune modulation amplitude is 
about ∆v » 3 ˣ 10-5 and its frequency is 300 Hz. The effect described above with others 
connected to the possible presence of SiO2 microparticles are potential limitations to the 
CERN Antiproton Accumulator performance; these limitations can become serious with the 
higher intensities which will be possible after the completion of the ACOL project3 in 
1987. A good understanding of non-linear problems in the AA seems therefore quite 
profitable.

Furthermore, the AA phenomenology, as described above, seems also to be an interest­
ing application field for many of the general ideas on non-linear dynamics such as non­
linear maps, instability, phase space structure and chaos from deterministic motion. If we 
describe the particle motion in a storage ring using the azimuthal coordinate s as the 
independent variable, directly proportional to the time, and focus the attention on trans­
verse motion, the system has only two degrees of freedom (the Hamiltonian is supposed to



- 2 -

124$ IIM 2 267 IIM IJH i TK 1171 1172 I Vl O.

Fig, 1 - ai Tune diagram of the CERN Antiproton Accumulator and 
b) Growth of the emittances during a scan of horizontal 

betatron tune (from Ref. 1).

be independent of s) and the phase-space behaviour can be visualised without too much 
difficulty. Indeed, with two degrees of freedon, the phase space, where the notion can be 
represented, is a four-dimensional nanifold and a surface of constant energy is a three- 
dimensional space in which a dense set of bidinensional nested tori defines the surfaces 
of invariant linear notion*. Each torus is associated with a value of the constant of 
notion (the anplitude in this case) which spans the constant-energy "surface" (the three- 
dinensional volune). Finally, with the tine evolution, the representative point of the no­
tion in phase space noves always upon the invariant torus which is defined by the initial 
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amplitude. The phase-space plots of the motion, or the map development, can therefore be 
thought as the signature of the representative point as this crosses a plane in phase 
space (x-px, y-Py or x-y). As a small non-linear perturbation (such as the antiproton-ion 
interaction in the AA) is added to the linear system described above, the phase-space 
pattern becomes more complicated and the motion can become unstable. The aim of this note 
is just to study in a detailed way the behaviour of the phase space and the occurrence of 
non-linear resonances in a linear system (the linear betatron motion of charged particles 
in storage rings) upon which a weak non-linear perturbation (the antiproton-ion 
interaction) is added.

2. DIRECT MAP FORMALISM

A rudimentary description of charged particle transverse motion in circular machines 
can be the simple harmonic oscillator; in this description every local (fine) peculiarity 
of the ring lattice is neglected and only the overall sinusoidal pattern is taken into 
account. In this picture the harmonic oscillator equations can be the starting point for a 
subsequent analysis in which further aspects of charge particle motion such as tune modu­
lation (due to ripple in magnet currents or synchrotron oscillations) and periodic inter­
actions (beam-beam like) between antiprotons and positive particles can be studied in a 
direct way. If x and y are coordinates in space transverse to particle trajectory and 8 is 
the azimuthal coordinate, vx and vy the corresponding betatron tunes, the uncoupled 
harmonic oscillator description is:

x'(β) + vx x(8) = 0
(1)

y"(8) + v2 Y y(8) = 0 .

The same two equations of motion can be of course derived from a classical Hamiltonian 
approach5. Tune modulation and periodic kicks can then be introduced in equations (1):

x'(8) + V2ox(1 - λ cosvs8)x(8) = ξ xΦ(x,y) ∑n δ(B - n2π ) . (2)

Two types of interactions contribute to the slope variation x" in equation (2); the 
first one is the restoring force of the "rudimentary" lattice (slightly modulated) while 
the second one, active in a single point of the ring (and so at every multiple of 2π  in 8) 
is an instantaneous kick whose strength is determined by a coupling constant E and by the 
impact point (x,y) by means of the localised ion pocket distribution described by the Φ 
function which is non-linear in x and y coordinates. A more detailed description of the ξ
coupling constant and of the Φ function in terms of electrostatic forces is given below 
(par. 3). Equation (2) without the right member is a classical Mathieu equation which, in 
order to follow classical textbooks on mathematical functions, can be rewritten by means 
of the new variable z = vsθ∕2:

x"(z) + (a - 2q cos2z)x(z) = (2∕vs)ExΦ(x,y) En δ(z - nπ vs) (3)

with a = 4(vx∕vs)2 and q = 2(vx∕vs)2λ; if q « 1, classical solutions of Mathieu equation 



are the elliptical sine and cosine M(z) and N(z) (see Appendix A). The physical system is 
completely determined by equation (2) or (3). To obtain a useful numerical tool to follow 
the behaviour of a particle in this system, we can derive a direct map from equation (3) 
which can give the phase-space coordinates of the particle at the (n + 1)-th turn by means 
of the phase-space coordinates at tne n-th turn6-7.

In free zones (free from kicks) equation (3) becomes a homogeneous Mathieu equation 
and therefore the general solution is a linear superposition of elliptical sine and ellip­
tical cosine (or their Liouville's transform8; see Appendix A):

x(z) = A M(z) + B N(z)

where A and B are constants which are determined by the initial conditions after the last 
kick. Coefficients A and B are then peculiar to each "free zone"; so, solutions in each 
"free zone" are:

χn = An M(z) + Bn N(z)
(4)

xn = An M'(z) + Bn N'(Z)

To complete the description the kick which determines An and Bn must be added. This can be 
accomplished by integrating equation (3) and neglecting the restoring force of the 
lattice:

∫x" dz = (2∕vs)ξ ∫xΦ Eδ(z - nwvs) dz

xn+1 (nπ vs + ε) - xn(nιvs - ε) = (2∕vs)ξ xn(nwvs)Φ(n)
(5)

The direct map can be obtained from equation (5) plus the request of continuity of the 
solution at the kick point (xn+1(nιrvs) = xn(nvs)):

An+1 M(n) + Bn+1∣ N(n) = xn(nπ vs)
(6)

An+1 M'(n) + Bn+1 N'(n) = xn(nwvs) + (2∕vs)ξxn(nπ vs)Φ(n)

The system of equations (6) determines completely the values of An+1∣ and Bn+1∣ by means of 
the phase-space coordinate n-th turn values xn(n) and xn(n).

λn+1 = [xn(n)N'(n) - α(n)N(n)]∕Δ

Bn+1 = [α(n)M(n) - xn(n)M'(n)]∕Δ
(6a)

with the following definitions for Δ and α(n):

Δ = M(n)N'(n) - M,(n)N(n)
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α(n) = xn(h) + (2∕vs)ξ n(n)Φ(n)

The recursive relationship between xn+1 and xn (or xn+1 and xn), the Direct Map, can be 
obtained from the general solution xn+1 evaluated at z = (n + 1)π vs with the expressions 
given in (6a) for An+ 1 and Bn+1 :

xn+l(n + 1) = An+1 M(n + 1) + Bn+1 N(n + 1)
(7)

xn+l(n + 1) = An+1 M(n + 1) + Bn+1∣ n'(n + 1)

The final expression for the Map becomes:

xn+1(n + 1) = [D1xn(n) + D2(xn'(n) + (2∕vs))Exn(n)Φ(n)]/D
(8)

xn'+l(n + 1) = [D3xn(n) + D4(Xn'(n) + (2∕vs) )ξxn(n)Φ(n) ]/D

with

D=-Δ= M'(n)N(n) - M(n)N'(n),
D1 = M'(n)N(n + 1) - M(n + 1)N'(n),
D2 = M(n + 1)N(n) - M(n)N(n + 1),
D3 = M'(n)N'(n + 1) - M'(n + 1)N'(n), 
D⅛ = M'(n + 1)N(n) - M(n)N,(n + 1).

3. FORCES ACTING ON ANTIPROTONS

Space charge forces acting on antiprotons can be derived from Gauss' theorem, and
Ampere's law*; with a cylindrical charge distribution we obtain:

Fsc(r) = (n e2∕2εε0)d - P2) D(r)/r . (9)

n is the linear antiproton density in the beam and β = v/c; D(r) depends on the chosen 
beam distribution and is equal to:

D(r) = 1 - exp(-r2∕2o2) (10)

with 

p(r) = (ne∕2>σ2) exp(-r2∕2σ2) . (11)

With the antiproton γ value in the CERN Antiproton Accumulator (γ = 3.77), the space 
charge force drops to about 7% of the electrostatic force.

When the antiprotons travel through an ion cloud somewhere in the AA ring, the radial 
force acting on them can be described by (again with cylindrical symmetry):

Fions(r) =-n e2∕2π ε0)(1 + β2) D(r2∕2o2)∕r (12)

in which η is the neutralisation factor in the ion cloud, n¿ons = ηn (the mean value all 
around the ring is of the order of 20%); the x and y components of this radial force are:
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Fx = -(x/r)IFions(r)I = -η(ne2∕2π ε0)(1 + β2) x D(r2∕2σ2)∕r2 (13)

Fy ≡ -(y∕r)∣Fions(r)∣ = -∏(ne2∕2π ε0)(1 + β≡) y D(r2∕2σ2)∕r2 . (14)

For the slope deviation we can write:

χ'(8) = (R∕wp)Fx , y∙(e) = (R∕wp)Fy , (15)

u is the revolution frequency and p the reference momentum; for the x direction we have:

x'(8) = -(R/wp) n (n e2∕2π ε0)(1 + β2) ɪ D(r2∕σ2)∕r2 (16)

x"{8) = -(n rp∕f2σ2)(Rc/w)((1 + β2)∕β) ∏ x D(r2∕σ2)∕(r2∕2o2) . (17)

If we suppose that the change in slope is made abruptly at 8 = k2π , we can write:

∆(x,) = -(Nrp∕2γσ2)((1 + β2)∕β) Rη xΦ(r2∕2σ2)(L/R) E δ(8 - k2ι) . (18)

N = ʃn(s) ds = nL and ∆θ = L/R have been introduced because of dimensional considerations. 
We can define a coupling constant F and rewrite:

∆(x,) ≈ ξxΦ(r2∕2σ2) E δ(θ - k2w) (19)
k

ξ = -(N rp∕2γσ2)((1 + β2)∕β) ηL . (20)

The change in slope x,(θ) at each 8 = k2x is therefore:

∆(x') =ξx Φ(r2∕2σ2) . (21)

With σ ≡ 1 mml rp » 1.5 « 1OC1® ml N » 0.2 » 101θ p/m and L = 1 ιl realistic values of the 
coupling constant come out to be of the order of 10~2 ÷ 10-2; in this range the result is 
strongly dependent on the L and η values.

A more realistic distribution with still a gaussian shape but σx # oy (ox > oy) is: 

ρ(x,y) = (ne2∕2ιoxoy) exp(-x2∕2σj -y2∕σy2) . (22)

With this "elliptical" distribution the slope deviation can be written as’:

∆(x') = F*Im{W(z)} , ∆(y') = F*Re{W(z)} (23)

with

F* = F(∕i7^)σ2∕(σ2 - o2) . (24)

W(z) = (1∕κ){w((x + iy)κ) - exρ[-(x∕2σx)2 + (y∕2σy)2] w((xr + iy)∕r)κ} (25)

κ = 1∕√2(σJ - σj) (26)
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w(z) is the COmpIex error function defined as10:

2
w(z) = e~z2[1 + (2i∕∕ι) ʃ e^2dζ (27)

and can be evaluated by Beans of a fast computer program11 which can be very useful in 
particle tracking simulations and is available from the CERN program library.

4. NUMERICAL SIMULATIONS

4.1 Summary of Qualitative Feature? Qf W⅜>⅜lv Perturbed Svst⅜rη?

The uncoupled linear motion described by equations (1) can be represented in phase 
space by the product of two independent ellipses, i.e. a torus upon which the representa­
tive point moves with the time evolution. From a more formal point of view, a system with 
two degrees of freedom can be integrated if one can find two integrals of the motion which 
are independent (Liouville's theorem). For the uncoupled harmonic oscillators energy and 
amplitudes are constants of the motion; because of the constant energy, the motion in 
phase space (4-dimensional) is confined to a "surface" (a volume) of constant energy; the 
invariant amplitude confines furthermore the motion to a surface of constant amplitude: 
the torus.

The motion of the representative point upon the torus can be described by two coordi­
nates, 8ι and 82; the former coordinate is the polar coordinate on the torus cross section 
while the latter is just the azimuthal coordinate around the torus. If wι ≡ 81 and «2 = 82 
are in a rational relationship (mu∣1 = nu∣2; m and n integers), the representative point of 
the motion closes its orbit after m revolutions upon the torus; the signatures that it 
leaves through a plane in phase space during the first m turns are also the crossing 
points of the successive motion. The invariant torus is said to be rational. If wι and w2 
are not in a rational relationship the orbit remains open for ever, the trajectory of the 
representative point covers in a dense fashion all the torus surface, and the signature 
left through a plane during the motion is a continuous curve (ellipse). The invariant 
torus is said to be irrational.

The ratio w1∕w2 (winding number) depends on the amplitude of the motion and therefore 
in general it is different for distinct tori. Thus, if the system is linear and not 
perturbed the Hamiltonian generates, in phase space projections, invariant curves (dotted 
or continuous "circles") which belong to rational or irrational winding numbers.

As a small perturbation is added to the linear motion the whole picture becomes 
extremely complicated; but, if the perturbation is sufficiently weak, tori with irrational 
winding number survive although in a distorted form. On the other hand, tori with rational 
winding numbers are completely destroyed and the pattern of phase-space projections looks 
like small circles around stable fixed points separated by diffuse regions with an un­
stable fixed point at each of them. These unstable fixed points are at the origin of the 
deterministic chaotic motion in phase space, i.e. motion which is extremely sensitive to 
the initial condition. Typical behaviours as described above can be seen in the following 
sections (Figs. 7 and 11).
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4.2 Non-linear Resonances

A numerical code (DIRMAP) has been derived from the Direct Map relationship described 
in equation (8) (the M and N functions are the Mathieu functions or their Liouville's 
transforms according to the values of the parameters; see Appendix A). This simple numeri­
cal tool makes it possible to investigate some interesting aspects of charged particles 
behaviour in a storage ring in the presence of non-linear forces such as those which 
originate from the antiproton-positive ion interactions described above. Furthermore, the 
aspects related to tune modulation can also be investigated because of the peculiar 
Mathieu approach in DIRMAP (equation (2)).

With two coupled degrees of freedom, non-linear resonances in motion amplitude can be 
found with values of the transverse betatron tunes vx and vy which satisfy the well known 
resonant condition:

mvx + nvy = p (28)

with m, n, p integers*»12-13∙ q = |m| + |n| is called the order of the non-linear reson­
ance. If some tune modulation with frequency vs is active (in both planes) the resonant 
condition becomes1*-15:

mvx + nvy = p + kvs (29)

With tune modulation in one degree of freedom (two-dimensional phase space) each main 
resonance of order n has an infinite number of satellite resonances which are separated by 
vs∕n and reduced in strength by a factor Jjc(nv∕vs), the value of the first kind Bessel 
function with argument equal to the ratio of n times the modulation amplitude v to the 
modulation frequency vs2∙12; the resonant condition becomes:

vx = p/n + k vs∕n (k = 0, i1, ±2, ...) (30)

4.3 Third-Integer Re$on>nce$ Driven bv > Sgxtupolar Field

In order to test confidence in the code, many numerical simulations have been done 
around a third-integer resonance (vs = 7/3) driven by a Sextupolar term in the force of 
the type χ2 - y2 and xy. A typical result obtained with the DIRMAP code is shown in Fig. 
2. The horizontal betatron tune is incremented by fixed steps. For each horizontal beta­
tron tune value a sequence of 5000 map iterations is initiated. The iteration is truncated 
if the particle amplitude becomes greater than a fixed one (related to the physical aper­
ture of the storage ring) and the particle itself can be considered as lost. Two of the 
outputs of the DIRMAP code consist of tune values of the step and the number of iterations 
for which the particle survives (N < 5000). In Fig. 2 we have plotted the reciprocal of N 
as a measure of the growth rate; furthermore, the strength has been normalized to be the 
unity on the exact resonance value (vx » 7/3). The first satellite resonance described 
above is clearly seen at the expected value of horizontal betatron tune (vx = 2.333 + 
O.O78O∕3 ≡ 2.3593).
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Fig, 2 - Satellite resonance near a third-integer one

The phase space behaviour with the value of the horizontal betatron tune vx in the 
middle of the satellite resonance is shown in Fi?. 3 (tune Modulation switched off) and 
Fig. 4 (tune Modulation switched on); when the tune Modulation is switched off the motion 
is stable and remains finite as one can see in Fig. 3a; Fig. 3b shows the corresponding 
development of the Jx which in a linear case would be a constant equal to half the 
invariant emittance.

Without tune modulation (modulation amplitude set to zero; AM = 0.0) the Jx behaviour 
although not constant because of non-linear terms, remains finite over at least 5000 
turns. With tune modulation switched on, the satellite resonance is present, the phase 
space plot becomes diffuse and apparently disordered (Fig. 4a); finally, the development 
of Jx (Fig. 4b) shows sporadic growth with increasing peak value which can be taken as a 
signature of chaotic motion; the particle is definitely "lost* after about 3500 turns.

Figure 3 suggests that fixed points of the map are located at 0, 2ι∕3 and 4ι∕3 
radians in phase space. Further simulations have been done to investigate how satellite 
resonance width depends on the initial phase of motion; results are shown in Fig. 5. 
Without coupling between the two planes the behaviour of the map with initial phase of 
2v/3 rad should be quite similar to the one with an initial phase equal to zero; as the 
betatron tune moves away from the third integer resonance, the radial dimension of the 
Separatrix in phase space (a well known triangle) becomes greater and greater and a stable 
region centred at the origin begins to appear. Because of the shape and orientation of the 
separatrix, portions of phase space centred at fixed radius and with a 2r/3 phase differ­
ence should become stable together (at approximately the sane values of hte horizontal 
betatron tune, as this latter is increased). Figure 5 shows that the coupling between the
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Fid, 5 - Satellite resonance behaviour with different initial phases.

two planes distorts a little tħe picture described above and a major similarity can be 
seen in pictures which refer to initial phase of zero and 114 degrees; furthermore, the 
satellite resonance width seems always related in a direct fashion to the main resonance 
width without any correlation to the initial phase, as predicted by considerations re­
ported above on the satellite resonance strength.
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4.4 Liappunov Exponent a? a Signature of Chaotic Motion

Fig, S - Evolution of the distance in phase space for two representative 
points which are initially close together; signature for 
regular (a) and chaotic lb) motions.

A nore sure signature of chaotic notion is represented by the exponential growth in 
separation between two representative points which initially have been close together in 
phase space’5. The characteristic Liapounov exponent is defined as1≡:



13

1 ∣d(t)∣ 
λ = Lim------------ (31)

 t®∞ Id(O)I 
d(0)O

d(t) is the euclidean distance in phase space as a function of time (or turns, or map 
iterations) and d(0) is the initial euclidean distance of the two representative points. 
Non-zero Liapounov exponents are a quantitative aeasure of Stochasticity of the motion; if 
the BOtion is reqular the distance d(t) grows in a linear fashion with tine (or turns; 
d(Nt) « Nt and λ « Lim Ln[Nt∕Nt] = O). Therefore exponential growth of d(t) indicates cha­
otic behaviour while linear growth indicates a regular Botion. Figure 6 shows the growth 
of the distance in phase space for two representative points whose initial distance is 
10^5. Figure 6a refers to the case in which the tune Bodulation is switched off (as in 
Figs. 3a and 3b) and the notion is regular (linear growth with number of turns); Figure 6b 
refers to the tune Bodulation switched on (as in Figs. 4a and 4b) and confiras that the 
BOtion is chaotic, as deduced above fron the area filling feature of Fig. 4a. The satu­
ration value of the distance can be thought of as a Beasure of the layer of phase space 
which is available to the Botion.

4.5 High-Order Non-Linβ⅜r Resonances Driven bv Gaussian Charge Distributions

Non-linear resonances of high order are in general very difficult to put in evidence 
by Beans of Simulation codes because of their weakness and consequently the low growth 
rate of the resonant amplitude. The overall behaviour of the tune modulated complete anti­
proton-ion potential is better understood if the betatron tune values are chosen near a 
relatively strong resonance such as a third integer one. Furthermore with this choice, 
comparisons are possible with the case in which only quadratic terms are present in the 
force expression (sextupole) as in Fig. 3. Also, the minimum value of the coupling con­
stant, ξ , which is necessary to make active at least the first expansion polynomial terms 
of the complete gaussian distribution can be better determined near a third-integer 
resonance.

In order to realise the program described above, the even parity of the charge dis­
tribution must be destroyed at least in the x direction if we want to reproduce the odd 
resonances. This can be easily done by introducing a displacement xc along the x direc­
tion. In this way all the powers of x are present in the Φ(x,y) expansion and therefore 
quadratic terms (x2-y2, xy) appear in the kick expression as is necessary in order to 
excite third-integer resonances.

Results obtained with the cylindrical charge distribution and even parity in both x 
and y directions are presented in Fig. 7 where six different pictures in phase space with 
increasing ξ  values are shown. As ξ increases, more and more non-linear terms of the dis­
tribution become important for the dynamical evolution (or map iteration. The first five 
pictures of Fig. 7 refer to a fixed initial value of the amplitude in both planes (x-px, 
y-Py) while the last one, in order to give an idea of the complex structure of the phase 
space, describes the motion with different initial amplitudes in the x-px plane (the y-py 
initial amplitude and phase are kept constant). Furthermore, the last picture of Fig. 7 is 
a clear example of a classical break of phase space in rational and irrational tori.
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FiV ■ 7 - Phase-space behaviour of the map with a gaussian distribution 
and a cylindrical symmetry.
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Fig. 8 - Phase-space behaviour of the map with a gaussian charge distribution (oɪ > σy]
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Although phase space puts in evidence the effect of multipolar terns with the ε 
value, as long as the even parity is preserved the notion remains regular and finite at 
least for initial values of phase space coordinates which have a physical meaning.

The first striking difference between cylindrical and elliptical charge distributions 
is that this latter seems to be more effective to produce unstable motion than the first 
one. If one tries to use in elliptical distribution values of ξ of the order of the unity 
and the same initial conditions in both planes as in cylindrical distribution, the motion 
is completely unstable and no more than ten iterations are possible.

The second important difference is that even when apparent stability is present, the 
overall behaviour of motion with elliptical charge distribution is much more chaotic than 
with the cylindrical distribution. Furthermore, upon increasing ξ , the transition from 
stable to unstable motion seems to be quite abrupt, without steps with rational and 
irrational tori, as in Fig. 7. The phase-space structure seems also to be completely 
different. The behaviour described above can be seen in Fig. 8 where different phase-space 
pictures are reported with increasing the ξ value near the same third-integer resonance 
but without any decentralisation of the charge distribution; note that the ξ  value of the 
first picture is two orders of magnitude smaller than the ξ  value of the last case of 
Fig. 7.

The same completely different behaviour between cylindrical and elliptical charge 
distributions can be better seen in pictures of resonance relative strength (reciprocal of 
number of "turns" before the particle is lost) versus horizontal betatron tune.

When the cylindrical charge distribution is used, even with values of the coupling 
constant ξ  much greater than the physical ones, the behaviour of the map remains stable 
over the most part of the range where some important non-linear resonances of even parity 
should appear. This stresses once more the relative weakness of the cylindrical charge 
distribution to excite non-linear resonances. This behaviour is shown in Fig. 9 where the 
value of tne coupling constant ξ  is equal to 2.0 (# 100 ξphys>∙ Because of the even parity 
of charge distribution, only even-order resonances can be excited. The strongest even res­
onance in the chosen range is vx = 9/4. With ξ = 2.0 the cylindrical distribution repro­
duces this peak; the same peak can be also attributed to at least two other non-linear 
resonances :

2vx + 2vy =9, vx = 2.2435
(31) 

3vx + Vy = 9, vx = 2.24783

Three other peaks are reproduced by the cylindrical distribution and their most probable 
Idenditification is given in the picture.

As suggested above, the definite parity (even) of the cylindrical distribution can be 
destroyed by giving a displacement by a quantity xc to its centre. In this way also the 
odd resonances can be excited; the most important one in the chosen range is just the 
vx = 7/3 yet analysed before in phase space with the Sextupolar field only. Switching on 
the decentralisation of the charge distribution (Fig. 9b), the third-integer resonance 
appears and because it is stronger than the vx = 9/4 one, it becomes the higher peak in
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the picture (the previous peak at 2.33 is enlarged up to 2.3333); two other odd non-linear 
resonances seems also to appear. Further Simulations show that different odd resonances 
are excited with different displacements of the cylindrical charge distribution.

Fig, 9 - Soae non-linear resonances Siaulated by aeans of a gaussian charge
distribution ('cylindrical distribution"; σx = oy] with a definite 
even parity in (a) and a non-definite parity in (bi.
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Similar pictures obtained with the elliptical charge distribution are shown in Fig. 
10. Again the coupling constant ξ used here is two orders of magnitude smaller than with 
the cylindrical distribution (Fig. 9). Two main resonances are reproduced by the ellipti­
cal distribution without decentralisation. With the elliptical charge distribution the 
force acting on the particle is not in radial direction but the same considerations on 
parity (even) apply as well because the charge distribution has still a definite even 
parity. Two main even resonances (vx « 9/4, vx « 18/8) are reproduced in Fig. 10a in which 
no decentralisation has been introduced. Switching on the decentralisation of the ellipti­
cal charge distribution the 3 main odd resonances in the range also appear (vx = 11/5, 
vx = 5 * 7∕3∣- vx = 12/5). Further peaks are present and their most probable identification is 
given in Fig. 10b. Again, as with the cylindrical distribution, different odd resonances 
seem to be excited by different decentralisation of the charge distribution.

5. CONCLUSIONS

A direct map approach seems to be powerful in simulations of systems characterised by 
non-linear dynamics such as the one generated by the interaction of antiprotons with ions 
of residual gas (beam-beam-like interaction) in the CERN Antiproton Accumulator. The ap­
proach used here describes in a very simplified fashion the transverse betatron motion in 
storage rings (harmonic oscillations) and the attention is focused to the study of more 
interesting aspects of non-linear coupling perturbation between x and y degrees of 
freedom. Furthermore, the Mathieu approach on the map includes straightforward the tune 
modulation in a consistent way.

The high number of map iterations (in short computer times) which are possible 
because of the extremely simplified model of transverse betatron motion is perhaps the 
major advantage of a direct map method used here. In this way, we can study directly the 
phase-space structure and its evolution as some fundamental physical parameters such as 
betatron tunes and coupling constant of the interaction are modified. The high number of 
turns allows also a precise study of phase-space behaviour near very weak high-order 
resonances and their identification.

The phase-space behaviour of the map near the third-integer resonance vx = 7/3 with 
elliptical distribution of non-definite parity is shown in Fig. 11. Both pictures refer to 
four different initial amplitudes in x-px plane and a fixed one in the y-py plane. Motion 
with different initial amplitude in the x-px plane has therefore quite the same behaviour 
in the y-py plane; this can suggest that with the chosen ξ value the coupling between the 
two planes is still weak. Nevertheless, the chosen ξ value is great enough to show in the 
x-px plane the characteristic behaviour of the third-integer resonance with rational and 
irrational tori.

In spite of the area filling property of the representative point in Fig. 11, the mo­
tion is only near a chaotic behaviour but still regular. Indeed, Fig. 12 shows the evolu­
tion of the distance in phase space of two representative points which are initially close 
together in the first diffuse region of Fig. 11 (near an irrational torus). With the same 
ξ value, as in Fig. 11, the motion seems still regular (linear increase of the distance). 
Increasing the coupling constant ξ only from 0.02 to 0.03 causes the onset of chaotic 
motion (Fig. 12b) with the exponential growth of the distance and the particle lost.
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Fig, 10 - Some non-linear resonances simulated by means of a gaussian charge 
distribution (‘elliptical distribution" ; ox > Oy ) with a definite 
even parity in (a] and a non-definite parity in (bj.
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fig, 11 - Phase space behaviour of the map with elliptical distribution and
a non-definite parity near a third-integer resonance.
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Fig, 12 - Evolution of the distance in phase space for two representative 
points initially close together; signature for regular (a) and 
chaotic (b} motion; note the ξ  values.
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The behaviour of the maps (or the motion of the particle) have been studies with dif­
ferent ion distributions (determined by the beam); from this study comes out the confir­
mation that charge distributions with gaussian shape and different standard deviations in 
X and y directions ("elliptical distribution"; σx > σy) are more effective than the cylin­
drical one (σx = oy) for the excitation of high-order non-linear resonances. Nevertheless, 
the first expected non-linear resonances are not all reproduced by the elliptical distri­
bution; a more refined study can be useful with the choice of an elliptical distribution 
of ions truncated at xi = oi ; this distribution can have a more physical meaning because 
of the incomplete neutralisation of the beam. With this improvement it is possible that 
also the disagreement between the physical coupling and the numeric constants (ξphys » 
10-1ξ num) can be solved.
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Appendixa
MA THIEU FUNCTIONS

If q« 1 , the homogenous Mathieu equation

x"(z) + (a — 2q∞s2z)x(z) = 0

has the following solutions (elliptical ∞sinus and elliptical sinus ) [13]:

M(z,q) = cosyz - (1/4) q [(cos(v +2)z)/(v+1) — (cos(v - 2)z)/(v - 1)]

+ (l∕32)q2 [(cos(v+4)z)/(v+l)(v + 2) + (cos(v-4)z)/(v-l)(v-2)]-

- (1/128) q3 [(v2 + 4v + 7)(cos(v ÷ 2)z)/(v - l)(v + l)3(v + 2)-

- (v2 - 4v + 7)(cos(v - 4)z)/(v + l)(v - l)3(v - 2)

+ (cos(v + 6)z)/3(v + l)(v + 2)(v + 3) -

- (∞s(r-)z)∕3(v-l)0-2)(p-3)] + ...

N(z,q) = sinvz — (1/4) q [(sin(v + 2)z)/(v + 1) — (sin(v- 2)z)∕(v- 1)]

+ (l∕32)q2 [(sin(v + 4)z)/(v + l)(v + 2) + (sm(v — 4)z)/(v — l)(v — 2)] —

- ( 1/128) q3 [(v2 + 4v ÷ 7)(sin(v + 2)z)/(v - l)(v + l)3(v + 2) -

— (y2 — 4v÷ 7)(sin(v — 4)z)/(v + l)(v - l)3(v — 2)

+ (sin(v + 6)z)/3(v + l)(v ÷ 2)(v ÷ 3) —

- (sin(v - )z)/3(v - l)(v - 2)(v - 3)] + ...

with a = v2 ÷ q2∕2(v2-1) + q4(5v2 + 7)∕32(v2 — l)3(v2 — 4) + ...

(a∙l)

(a,2)

(a.3)

(a∙4)

therefore if q<< 1 we have a-v2 .

If , as with the CERN AA parameters, the value of q is not less than unity (q = 2λ(vχ∕vs)2 
2∙104 for the AA ) still an approximate analytical solution can be obtained by means of the 
Liouxille transform [8]:

ζ = o∫z√(a - 2qcos2z') dz' (a. 5)

X = η / (4√(a-2qcos2z) ) (a∙6)

neglecting terms of the order of (2q/a)2 we obtain a new Mathieu equation in terms of the η 
variable with solutions which are valid when

q»l :

Ml(z) = (a-2qcos2z*)M(z∙)

NL(z) = (a —2qcos2z*)N(z∙)

(a.7)

(a.8)
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where M(z) and N(z) are again the elliptical cosinus and elliptical sinus given in expressions (a.2) 
and (a.3) evaluated at

z*≈ z - (q/2a) sin2z — ... (a.9).


