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1. INTRODUCTIONElectrostatic beam potential calculations are an important application for accelerator machines since the beam charge induced potential can play an important role in the dynamical behaviour of the beam itself. In addition, for a negatively charged beam (such as p and e^ beams), the beam space charge governs various exotic phenomena linked to the trapping of residual gas ions and charged dust particles in the beam potential wells1. The comprehension of these phenomena requires a precision higher than usual in the knowledge of the azimuthal potential distribution in order to know the exact location and depth of these wells.Closed expressions for the beam potential are presented here in a generalised form, for any two dimensional geometry of boundaries (vacuum chambers at zero potential), any beam transverse charge distribution, and any beam centre location, provided that the potential created by the same beam in the free (empty) space is known. The method uses conformal mapping.It is assumed that the treatment on the plane transverse to the beam motion is a correct approximation, and variations along the beam motion axis do not affect the results.General results on circular and rectangular shaped vacuum chambers are given, and applications are made for bi-gaussian beams.
2. GENERAL SOLUTION USING CONFORMAL MAPPING.The potential at any azimuthal location in the machines is assumed to be a solution of the two dimensional Poisson's equation

VΦ = - — ρ(x,y) (1)ɛowhere Φ represents the potential, ρ(x,y) is the volume charge density in the plane and εo is the vacuum permittivity.The potential must satisfy the condition Φ(x,y) = 0 at the vacuum chamber walls (the boundary).Usually the geometry involved makes the solution to the equation difficult, specially if the charge distribution and boundary geometries 
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are different (such as in the case of elliptic beams inside circular or rectangular vacuum chambers). In these cases, the well known method of conformal mapping can be used to find one analytical expression for the potential. This can be even easier if the chosen conformal transformation map the domain inside the boundary into one half-plane, in which case we can use the symmetry principle to determine the induced image charge distribution in the remaining half-plane. We will choose, in complex notation, the half-plane mapped by the domain inside the boundary as being Im (W) > 0.Let us denote the original plane by the z-plane, where z = x + iy, and the new one by the w-plane, where w = u + iv. Let f : z * w = f(z) denote the mapping of the z-plane onto the w-plane, and let g : w -» z = g(w) = f^1(w) denote the inverse mapping.Two ways can now be used to solve the problem: either map the charge distribution into the w-plane, use the symmetry principle in order to get a solution on this plane, and map the solution back to the z-plane; or, find a solution for a space charge distribution in empty space, map it onto the w-plane, find the total solution in terms of the previous one, also using the symmetry principle, and re-map it back to the z-plane.We will use the second way, because it does not need to calculate the map of the charge distribution, and because analytical solutions for the problem of space charge distributions in empty space exist for a wide range of distributions (such as uniform or bi-gaussian). Poisson's equation becomes, in the w-plane?:

λi 1 , xIdg . .I 2M= - τa °<w>∣⅛ (w)| (2)
where ψ(w) = Φ(g(w)) and σ(w) = ρ(g(w)). This is still a Poisson's equation with a different charge distribution.Suppose now that this charge distribution is in the free space, without boundaries. Let ψf(w) (where f stands for "free") be the potential created in these conditions (the so-called free space potential). Then, using the method of images, suppose that besides the above charge
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distribution we have also its induced image, with respect to the boundary. Thus, Poisson's equation will become:

VwΨ = - 1ɛo ɑ(w)l^ (w) 2 ^ σ<w) (w)I2 Iɑw αw I (3)
where Vwψ denotes the Laplacian of ψ(w) calculated on the w-plane, and w the complex conjugate of w, its symmetrical point with respect to the boundary Im(w) = 0.This extra-distribution will create an additional potential, denoted by Ψi(w), where i stands for image. It is easy to see that this additional term is related to the first one by

Ψi(w) = -ψf(w) . (4)
The total potential is then given by

Ψ(w) = ψf(w) + ʧiɪ(w) = ψf(w) - ψf(w) , (5)
or, expressed in other terms,

Φ(z) = Φf(z) - Φf(zɪ) (6)where Φf(z) = ψf(f(z)) is the free space potential and zɪ = g(w) denotes the image of z.The result of equation (6) is well known, saying that the potential at the point z is equal to the free space potential at z minus the free space potential at the image of z, zɪ. This solution will satisfy Poisson's equation (1) inside the vacuum chamber, and the boundary condition Φ(z) = 0, since on the boundary z = zɪ (because w = w at Im(w) = 0, the map of the boundary).Thus, the problem can be easily solved if Φf is known, just by knowing the mapping functions f and g in order to calculate zɪ:
zi = g(w) = g(f(z)) (7)
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3. APPLICATIONS TO PARTICULAR GEOMETRIES3.1 Circular Chamberg

Fig. 1 - Mapping a circle.

The conformal transformation that maps a circle centered at origin (z = 0) and with radius r0∣ in the half-plane Im(w) > 0 (Fig. 1) is given3 by:
£ / ∖ az - ka (8)w ≡ f(z) = —---- — (8)z - awhere k and a are complex constants to be determined for each case. The inverse transformation is given by:

z = g(w) = k , (9)w - aand, from equation (7) the image point will be:
zɪ = g(w) = k *(z) ^ a = ∣k∣2∕z . f(z) - aSince at the boundary (|z| = r0)l wemust have z = zi, this implies |k| = ro∣ and finally: r2 r0zi = —Z r2 z1O 

Izl2
(10)

or, in terms of x and y
xi = Re(Zi) rox

(11)
= lm(zɪ)

which is also a well known result for the image point in a circular geometry.
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3.2 Rectangular Chambers

a/2 + i b-a/2 + i b>

√:

-1/k
-X-

-1
-x

1/k
-χ-

FiQ ∙ 2 - Mapping a rectangle

For rectangular chambers the problem is much more complex. The mapping of a rectangle of dimensions a > b in the upper half-plane (Fig. 2) is provided by the Jacobian elliptic function w = f(z) = sin(w/C, k) (also called elliptic sinus), where C and k are constants to be determined3. Its inverse is given by: wz = g(w) = CF(w,k) = C ʃ [(1 - w2)(1 - k2w2)] 1/2dwO (12)
where F(w,k) denotes the incomplete elliptic integral of the first kind.k can be given3-5 by:

e2<o,q) 12 
eɔ(0,q)

• T22ql/4 E q∏(n+1) n=0 (13)1+2 E qn2 n=1

1
X

V
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where θ2(u,q) and θɔ(u,g) are the second and third theta functions and q = exp(-2πb∕a).In order to find C, we note that we map the rectangle vertices -a/2 + ib, -a/2, a/2 and a/2 + ib, onto the points -1/k, -1, 1, 1/k. Then we have f(a/2) = 1, and:

a∕2 = g(1) = CF(1,k) = C K(k) (14)
where K(k) = F(1,k) is the so-called complete elliptic integral of the first kind.Since K is completely determined by k, which, at its turn, is determined by a/b from equation (13), we can use equation (14) to determine C:

C = a/2K . (15)
We could also show that b = C K'(k), where

K'(k) = K(√1 - k2) (16)
and determine C from

C = b/K'. (17)
From equation (12) we know that C is only a scaling factor, and we will do first the transformation z -» Cz in order to avoid to carry C in all expressions. From equations (15) and (17) we know that the rectangle, after this transformation, will have vertices at -K+iK,f -K, K and K+iKl, and will be mapped onto the upper half-plane Im(w) > 0 by w = sn(z,k).It is known that when we map a rectangle from the z-plane onto the w-plane, we will have for each point z only one corresponding point w, but the inverse is not true, that is, for each point w we will have an infinity of corresponding points in the z-plane, because of the dependence on the integration path of the integral appearing in equation (12).It can be shown6 that if z is a possible value for F(w,k) for one integration path, so are any points with the form:
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4nK + 2mK'i +z or (18)4nK + 2mK'i + 2K - z

where n and m are any integers (positive or negative).This result and that of their images (expression A.10, Appendix 1), has a great physical meaning, which can be seen using the symmetry principle (see, for example ref. 7, p. 399).Taking the rectangle (1) in Fig. 3 mapped onto Im(w) > 0, it follows from the symmetry principle that any reflection over its boundaries will map the reflection of Im(w) > 0 over the u-axis, which is Im(w) < 0. Thus, rectangles (2) and (4) are both maps of Im(w) < 0 because they are obtained from (1), by reflection respectively over I and II. Analytically, these new rectangles are generated by the transformations z -» z and z → 2K - z. The rectangle (3), obtained by a reflection of either (2) or (4), will then be a map of Im(w) > 0. Analytically it is generated from (1) by the transformation z → 2K - z.

Fiq. 3 - The periodicity of the Jacobian elliptic functions.

By extending this to the whole plane, we will obtain a set of rectangles covering it, and generated from (1) by the complex transformations (18) and (A.10). Those generated from (18) will be maps of Im(w) > 0, and those from (A.10) maps of Im(w) < 0. The rectangle (1) boundaries 
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will behave as two sets of parallel mirrors giving an infinity of images, and of reflections of the images.In our calculations, we must take into account all these images and reflections of the images. Thus, expression (6) becomes, for this particular case:

Φ(z) = E [Φf(4nK + 2mK'i + z) + Φf(4nK + 2mK'i + 2K - z) - n,m (19)- Φf(4nK + 2mK'i + z) - Φf(4nK + 2mK'i + 2K - z)]where the sums are extended to all possible integer values of n and m.Here, we note that it is necessary to return to our original coordinate system, multiplying the variables with the scaling factor C. Doing this, the above expression becomes, in terms of x and y:
Φ(n,y) = E [Φf(2na+x, 2mb+y) + Φf(2na+a-x, 2mb-y) - n, m (20)- Φf(2na+x, 2mb-y) - Φf(2na+a-x, 2mb+y)] .

4. elliptic Bi-Gaussian beamsAn elliptic bi-gaussian charge distribution, centered at point (xc, yc) and with r.m.s. sizes σx and σy (σy ≠ σx in order to be elliptic), has a charge density given by: 
Q(xfy) λ2ιr σχσy exp (x - χc)2 2σx (y - yc)2 2σ2y (21)

where λ is the linear charge density:
λ = ʃʃ e(χ,y) dS . (22)S

The corresponding free space potential is givenθ'θ by:
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φf(χfy) = —— 4π ε o f exp[-((x - xc)2∕(2σ⅛ ÷ q)) - ((y -yc)2∕(2σ^ + q))]

J √(2σ^ + q)(2θy + q)O (23)
Following Appendix 2, we will use instead the expression (B.4)

Φf(χfy) 1λ C exp[-(1 - t2)(A + B∕t2)]2πεo J 1 - t2r (24)
with

A(X) (x - χc)22(σ2χ - σ2y)
B(y) (y - yc)22(02χ - O2y) (25)

r σx
4.1 Circular ChambersApplication of equations (6) and (10) or (11) and (24) will give, for the potential created by an elliptic bi-gaussian beam inside a circular vacuum chamber:

1λ f exp[-(1 - t2)(A ÷ B∕t2)] - exp[-(1 - t2)(A* + B*∕t2)]2πε0 J 1 - t2r (26)
where A(x) and B(y) are given by equations (25) and A*(x,y) = A(xjJ, B*(x,y)= = B(yjJ are the same functions calculated at the image point.
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4.2 Rectangular ChambersAccording to expressions (20) and (24) , the potential for a rectangular chamber is:

1Φ(x,y) = 577^ ɪ- f {eχP[^(1 - t2)(An + βm∕t2)J + 0 n,m J r+ exp[-(1 - ⅛2)(A* + B*m/t2)] - exp[-(1 - t)(An + Bm∕t2)) -
- exp[-(1 - t2)(An + Bj∕t2)]}dt∕(1 - t≡)

or
φ(x'y) = 2‰ E I n,m J r

1| {exp[-(1 - t2)An] - exp[-(1 - t2)A∏]} ∙
(27)

where

and

• {exp[-(1 - t2)Bm∕t2] - exp[-(1 - t2)B*/t2]}dt∕(1 - t2)
(2na + x + xc)2 (2mb + y - yc )22 2 , 2 22(σ2χ - σ2y) 2(σ2χ - O2y) (28)

(2na + a - x - xc)2 2(σ2χ - σ2y) t (2mb - y - yc )2 Bm - 2 22(σ2x - σ2y) . (29)
The sums are extended to all the possible integer values of n and m.
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5. CIRCULAR BI-GAUSSIAN BEAMWhen σx = ay = σ, we will use expression (B. 8) for the free spacepotential created by a bi-gaussian beam centered at (xc,yc).

k*f(×.y) = ⅛ ʃ ʃdt 0 (30)
with

k = 1∕2σ2 (31)r2 = (x - χc)2 + (y - yc)2 ∙
Applications to particular geometries are easy to perform, with the expressions (6) and (10) (for circular geometries) or (20) (for rectangular geometries).

6. POTENTIAL AT THE BEAM CENTRESince the maximum of the potential is usually approximately at the beam centre (this is exactly true for a beam in empty space, and it is not so different if the beam dimensions are much smaller than the distances to the vacuum chamber walls), it is useful to calculate the potential at x = xc, y = yc (the beam centre).
6.1 Circular ChambersFor an elliptic bi-gaussian beam, we will obtain,

λ__  ]2πεo J r
1I 1 - exp[-(1 - t2)(A ÷ B/t2)] dt1 - t2 (32)

where
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A Cx2C
B 2 (33)C (r02/r2C - 1)2 2(σx - σ)
r2 = r2c 2 2Xc + yc

For a circular bi-gaussian beam, the expression is
k 1 - exp(-r2t)2πε o J0 t dt (34)

where 2∕r2 o'rc 2 . r2 rC (35)
6.2 Rectangular ChambersThe expression for the potential at the beam centre for an ellipticbi-gaussian charge distribution is the same as (28), but with:

ʌn 2n2a2
2 2σx - Oy Bm 2m?b2

2 2σx " σy (36)
A*An ( 2na a - 2xc)22(o2χ - o2y) B*m 2(mb - yc)2 

2 20χ - Oy
For a circular bi-gaussian charge distribution, we will have: (37)

—— E4 π  ε o n,m [exp(-Ant)-exp(-A*nt)] ∙ [exp(-Bmt)-exp(-Bmt)] dt/tK
O



13where An = 4n2a2 , Bm = 4m2b2 (38)A*n = (2na + a - 2xc)2 , B* = 4(mb - yc )2
7. PRACTICAL COMPUTATIONS OF THE BEAM POTENTIAL

A FORTRAN code, in a subroutine form, has been written to calculate the beam potential from equations (26) and (28). Its input parameters are:(x,y) the point where potential is to be calculated, 
(×cιγc) the beam centre, σx,σy the beam r.m.s. sizes,aH,aV the chamber total horizontal and vertical dimensions (afl=ay=2ro for circular chambers, and aH=a and aV=b for rectangular ones), C the circular chamber shape, orR the rectangular chamber shape,λ∕e the number of particles per metre, where λ is the linear charge density (22) and e is the electronic charge, the maximum value of |n| and |m| in formula (28).The coordinates (x, y, xc and yc) are referred to the vacuum chamber centre.Tests of the routine were made using data from the output of APERTURE10, BEPO DATA. At the time of the tests, the BEPO DATA file provided the parameters for the beam potential calculations for 298 points along the AA machine. The calculations were made at the beam centre position (xc,yc).In order to make sure of the results, another program based on bi- dimensional Fourier series for rectangular chambers was also provided. It used the expression:

Φ(x∣y) =D E Cnm sin(nιrx∕all) sin(mπy∕av) n,m=1 (39)
where
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(x,y) is the point where the potential is to be calculated,D = 2λ∕w3ε0oχoy'Cnm = AnBm/[ (n∕aH)2 + (m∕av)2]aHAn = (1∕aH) ʃ exp[-(x - xc)2∕2σ2χ] sin(mrx/aH) dx, (40)0aV ɔBm = (1∕av) ʃ exp[-(y - yc)2∕2σ2y] sin(mπy∕av) dy. (41)0In equations (39) to (41) the coordinates refer to the lower left corner of the rectangle.The maximum value of n and m was set to 8000, and the convergence criterium used was that the ratios ∣A2n∕a2∣, ∣a2n+1∕A1∣, ∣b2m∕b2∣ and |B2m+l/B1| shoŋld be lower than 10-6.For most of the 298 points (actually for 226) the required convergence criterium was not filled.In order to compare the output from the two programs, all the vacuum chambers were supposed rectangular. The comparison was made using

n =
φ1 - $2

Φl (42)
whereΦ1 is the potential calculated by the subroutine,Φ2 is the potential calculated from the Fourier series.The results were:For 74 of the 298 points, η was higher than 100% and lower than 12%for the other 224. This was clearly due to the non-convergence of the Fourier series (all of those 74 points were considered non- convergent).

For the 72 convergent points, η was lower than 0.3% for 67 of them and between 0.5% and 1.6⅞ for the remaining five (Table 1).
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Table 1Azimuthal position ∏-variation Azimuthal position n-variation (%) (m) (%)

0 . 000
0.906 -0.0354 73.714 0.0331
0.906 -0.0100 73.714 0.2695
1.007 -0.0144 75.477 0.1500
1.964 0.0015 75.528 0.0269
2.064 0 . 157 1 76.132 0.0191
2.266 -0.02 1 1 76. 132 0.1183
2.316 -0.0195 78.448 -0.0396
5.43θ 0.0032 78.498 -0.0063
5.539 0.0752 79.001 -0.0125
5.790 0.6731 79.053 -0.0200
5.891 0.7046 80.260 0.0455
6.470 -0.0015 80.260 -0.0041
6.571 1 . 15 8 8 83.483 0.0162
6.797 1.1376 83.483 0.0515
6.797 -0.0028 84.490 0.0687
6.896 0.1460 84.490 0.0103
7 . 296 0 . 1345 85.296 0.0017
7.680 0.0896 85 . 296 0.1129
8.056 0.0226 87.839 -0.0977
8.862 0.0168 89.675 0 . 108 2
9.667 . -0.0564 92.445 0.0472

10.272 - 0 . 0 9 5 ∙, 137.662 0 . 1277
10.674 -U.1’b' 138.669 0.0960
1 1 .581 - 0 . I .'00 142.344 0.2146
1 3.696 0 . 1 8 1 0 143.754 0.0910
15.383 0.2975 144.912 0.1144
6 1 .9 32 0 . 09 2 5 146.851 - 0 . 12 6 3
66.615 1 .6345 149.543 0.1201
68.629 0. 15 5 1 149.543 0.0454
7 1 .297 - 0 . 13 2 3 150.350 0.0652
7 1 .297 0.1176 150.350 0.0571
7 2. 103 O . 00 3 0 154.479 0 . 0 0 3 6
72 . 103
72.809
72.809

0 . 0∣ 0 9 9 
0.0641 
0 . 0565
G . 0357

154.479
155.637
155.737
156.492

0.2002
0.0093
0.0021
0 . 0 G 2 1

A complete test should also include circular chambers and comparison with other methods. For this purpose, another program using a linear finite element method was tested, but it provided η-values of the order of 10 to 20%, and the convergence was very slow.
7.1 The Computational MethodThe integrations in formulae (28) and (39) were made using a CERN Library program (CHEBQU, see note 1), which also provides an estimate of the relative error. It was always lower than 10-6 for the checked values.The maximum values of |n| and |m| in formula (27) were varied between 4 and 10, and the variations in the results were in the order of 1 to 2θ∕oo∙
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Also for formula (27) the sums were performed before the integration since for large enough values of |n| and |m|, the exponentials become equal inside each parenthesis and the integration function is approximately zero. The result of the integration of a zero function is a floating point divided exception. (The same is true even when using other CERN program library integration routines). Sometimes, even for |n| or |m| equal to 2 or 3 the exception appeared, and sometimes for higher values, which does not enable the determination of a maximum summation value for all cases. Summation before integration avoids these problems.The subroutine showed to be fast. The total CPU time used for the computation of the potential at the beam centre for all the 298 points was about 2 minutes. Compared with the Fourier series or the finite element methods, this is about 10 to 20 times faster.

8. FINAL REMARKSSince this was a work on beam potential and not a treat on elliptic functions, some points on that matter may seem obscure, specially where proofs are not given in a complete way. I am sure that the reader can have a better understanding on that matter by studying the abundant literature published on elliptic functions, in particular those listed as references [4] (for a summary of general results), and [5], [6], [11], [12], [13] (for more detailed descriptions). Those listed as [2], [3] and [7] have several chapters on conformal mapping, including circles and rectangles, and on elliptic functions. Reference [3], p. 719, has an application for a point charge inside a rectangle.
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APPENDIX 1

THE IMAGE POINTS IN A RECTANGULAR GEOMETRY
In order to get zɪ = F(w,k), we will express the incomplete integral of the first kind with a complex argument

wF(w,k) = ʃ [(1 - w2)(1 - k2W2)]l/2 dw (A.1)0
as a sum of two of such integrals with real arguments. Using the change of the variable of integration

w = sinθ (A.2)
we will obtain

θF(w,k) = F(8,m) = J [1 - m sin2Ɵ]l/z dƟ (A.3)0
where m = k2 (we will use K when the variable of integration is w and m when it is θ ) .If w is real but |w| >1, or if it is not real, the angle 8 will not be real:

Ɵ = φ + iψ . (A.4)
Using the properties of the sine function with complex argument

w = sinƟ = sin(φ+iψ) = sinφ chψ + i cosφ shψ = u + iv (A.5)
it is possible to determine φ and ψ. When u ≠ 0 and v ≠ 0:
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tg2φ = u2 - y2 - 1 + (u2 - y2 - 1) + 4u2y22v2 (A.6)thψ = ū tgφ .

φ is determined less than a sign and an integer multiple of π. It must be only such that sinφ has the same sign as u (from A.5)f and cosφ is positive (from the second expression of A.6, knowing from A.5 that thψ and v have the same sign). This is not important since, as we shall see, we only use the square of its trigonometrical functions.φ and ψ being known, the integral (A.3) can be calculated4 from:
F(φ+iψ,m) = F(λ,m) + iF(μ,1-m) (A.7)

where cotg2λ is the positive root of
x2 - [cotg2φ + m sh2ψ∕sin2φ - 1 + m]x - (1 - m) cotg2φ = 0 (A.8) 

and
m tg2μ = tg2φ cotg2λ - 1 . (A.9)

In this case, there is an important uncertainty in λ and μ, since both are determined to be less than an integer multiple of it and a sign. In order to get an expression for an image point of z, we will reduce the possible values of λ and μ to eliminate this uncertainty, which is the same as to reduce the map of the w-plane into some closed domain of the z-plane, which we choose to be the original rectangle and another one obtained from the first by symmetry over the x-axis.Imposing a map of Re(w) > 0, Im(w) > 0 onto the right-hand side of the original rectangle, of Re(w) < 0, Im(w) > 0 onto its left-hand side, of Re(w) > 0, Im(w) < 0 onto the right-hand side of another rectangle created by symmetry of the first one over the x-axis, and of Re(w) > 0, Im(w) < 0 onto the left-hand side, we will impose them to satisfy -w/2 < λ, μ ≤ π∕2 (that is, they will be determined by applying directly 
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the functions arccotg and arctg over the results from A.8 and A.9), and in such a way that λ has the same sign as u, and μ the same sign as v.If w is a map of a point z inside the original rectangle and if we determine, as above, λ and μ from w = u+iv, such that z = F(w,k) = F(λ,m) + iF(μ,1-m), we can determine

zɪ = F(w,k) = F(u-if,k) ) f(λ,m) + iF(-μ,1-m)
since μ changes sign with v. Using the property F(-θ∕m) = -F(θ∕m), we will have finally

zɪ = F(λ,m) - iF(μ,1-m) = z . (A.10)
Thus, z is one image point of z. A similar result could be obtained for the cases u = 0 or v = 0.If u is one of the possible values for F(w,k), for a certain w, and z one of the possible values for F(w,k), the set of points with the form

4nK + 2mK'i + zor (A.11)4nK + 2mK'i + 2K - z
will be (from expressions (18) in the text) the set of all possible values of F(w,k).The ubiquity of the incomplete elliptic integrals of the first kind, expressed in (18) and (A.11) is also a consequence of the uncertainty of the definitions of λ and μ, which are, as already said, defined to be less than an integer multiple of π and a sign. We will only note4 that:

F(nιr+λ,m) = 2nK + F(λ,m) (A.12)F(n'π+μ,1-m) = 2n'K' + F(μ,1-m) 
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but the problem is rendered more complex since λ and μ being defined as above, not all combinations of nπ+λ and n'π+μ are valid but only those which combine 2nπ+λ with n,π+μ or (2n+1)π-λ with n'π-μ. For the set of all possible values of F(w,k) this will also give the result (18), or (A.11), for the images.
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APPENDIX 2

ON THE DIVERGENCE OF THE FREE SPACE POTENTIAL INTEGRAL FORMULA
The free space potential created by a bi-gaussian charge distribution centered at (o,o) is given8,9 by:

φf°t-y> = 4⅛ J
co exp[-(x2/(2σ2χ + q)) - (y2x∕(2σ2 + q))] √(2σ2x + q)(2σ2σ 2y + q)0By changing the integration variable7:2θy ÷ q)1/212σ2χ + q)

(B.1)

(B.2)
with

(B.3)

and supposing σx different from (B.1): σy, we obtain the new expression for
1_ λ__  f exp[(t2 - 1)(A + B∕t2)] dt2π εo J 1 - t2r (B.4)

The integrant function has one singularity in one of the extremes of the integration interval (at t = 1), and its limit when t -» 1 is ∞
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In order to perform the integration, we will remove the singularity by subtracting from (B. 4) another integral which does not depend on x and y, still satisfying Poisson's equation,

1 λ Γ dt 2πε0 J 1 - t2 r (B.5)
and we will obtain:

Φf(χ,y) = A_ f exp[(t2 - 1)(A + B/t2)] - 1 dt 2π ε0 J 1 - t2r
From now, the integrant function has a removable singularity at t = 1 (its limit when t -» 1 is -a-b, a finite value), and the integration interval being finite, the integral will be convergent.Since (B.4) is the sum of (B.5) with (B.6), (B.5) is well known as being divergent, and (B.6) has been shown to be convergent, (B.4) must be divergent. Then, for practical purposes, the expression (B.6)f or its correspondent in q-integration, must be used instead of (B.4). The integration in t is also simpler than in q, since the integrant function is simpler, known A(x) and B(y), and the integration interval is finite. Additionally, it will allow a simpler expression for the free space potential for rectangular boundaries.The additional term (B.5), independent of x and y, is not important in electric field calculations, since it will disappear when differentiating with respect to x or y, or in calculations of differences of potential. Expressions (B.4) and (B.6) are then equivalent.The above transformation (B.2) is meaningless if σx = σy = σ, and we will provide a new transformation:

t = ---------- (B.7) 2σ2 + qthen, (B.1) becomes
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kɸf(x,y)= λ/4πe0  ʃ ≡⅛Iisl dtO where k = 1∕2σ2 (B.9) r2 = x2 + y2 .

Using the same arguments as for the case σx ≠ σy, we could prove that this integral is also divergent. An equivalent convergent form could be:
k, . λ Γ exp(-r2t) - 1 ,.φf<x'y> = 4√∑7 J -t---------dt0 (B.10)

and the additional term is also unimportant for electric field or differences of potential calculations.



24
NOTES

[1] FORTRAN routines for the calculation of the 8-functions and the complete integrals of the first kind are available at CERN, namely the programs ELLICK (KERNLIB library, program C3O8, by K.S. Kolbig) for complete elliptic integrals and THETA1 (GENLIB library, program C314, by H.-H. Umstatter) for 8-functions.
[2] The FORTRAN program ELIN1 (GENLIB library, program C319, by H.-H. Umstatter) computes the incomplete elliptic integral of the first kind F(x,k), for -1 ≤ x ≤ +1.Programs also exist for the computation of the Jacobian elliptic function, either with real or complex arguments, namely ELFUN and CELFUN (GENLID library, programs C318 and C319, by H.-H. Umstatter). These routines compute the three functions sn(w,k), Cn(w,k) and dn(w,k), for w real (ELFUN) or complex (CELFUN). Restrictions are made for the arguments: |Re(w)| ≤ 3K, |Im(w)| ≤ 3K,. Outside this range, the precision is lower, and the signs of the functions can become incorrect.
[3] CHEBQU, Double-Precision Clenshaw-Curtis Integration. Author: T. Havie. GENLIB.CERN program library, program D115. Computes integrals using the modified Clenshaw-Curtis algorithm, written as an ordinary quadrature formula. The routine is fast and stable with respect to accumulation of round-off errors, when a very high precision is wanted^ *.
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