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Non-linear BetatroN oscillations

Bruno AutinCERN, 1211 Genève 23 (Switzerland)

ABSTRACTThe equations of motion of a panicle oscillating in a non-linear magnetic field are solved using a time-dependent penurbation theory extended to the second order. The theory is applied to the design of correction fields which limit the amplitude growth of the oscillation. The correction schemes are verified by numerical integration of the equations of motion ("panicle tracking") and discussed on two special machines: the Berkeley Advanced Light Source and the CERN Antiproton Collector for which experimental data have been collected.

1. INTRODUCTION
The optical propenies of an accelerator or of a storage ring are usually defined in a hierarchical way. There is first the determination of the ideal trajectory which passes through the center of the quadrupoles where there is no magnetic field and which closes onto itself after one turn, this is the central orbit which is a consequence of the bending field distribution around the ring and gives its general shape to the machine: a circle, an oval, a racetrack, etc. Then come the focusing properties about the central orbit; they concern the oscillatory motion of the particles in a monochromatic beam whose energy corresponds to the central orbit and determine the number of betatron oscillations per turn, the tune, and the beam envelope via the β function. In a real beam, the particles have a certain energy distribution; the orbits and the focusing or chromatic properties of the off-momentum particles such as they result from the dipole and quadrupole fields are usually not acceptable; they have to be controlled using non-linear fields and especially Sextupolar fields which vary quadratically with the position of the particle with respect to the central orbit. A secondary effect of the non-linear fields is the alteration of the motion for the parti­cles with a large oscillation amplitude. It reduces the number of particles which can be injected or stored in the machine. It is especially severe for the superconducting machines, the large acceptance storage rings and the new generation of synchrotron light sources. A traditional cure has consisted of analyzing the motion into its Fourier components and suppressing the most harmful component yet keeping unchanged the chromatic properties (res­

onance method) [1]. However, modem machines are built in such a way that the operation point, the couple of the horizontal and vertical tunes, is far from any known dangerous resonance. The analysis and the compensation of the non-linear distortions must then be treated in the frame of a more general theory.
We use here a first and second-order theory of the general equations of motion. The order 0 is the linear theory (section 2) in which we introduce the main notations and we recall that the phase space particle trajectories are circles for the horizontal and vertical motions when the phase space is normalized. One transforms then the 



cartesian c∞rdinates (x, y, px, py) into the polar-coordinates (Jx, Jy, μx, μy) where J and μ are the action and the angle variables respectively. The reason for this change of coordinates lies in the fact that the integrated value of μ∕2π over one turn is the betatron tune and that the action angle is directly related to the beam size. The magnetic field (section 3) is described by a scalar potential which is directly analyzed in terms of the action-angle variables. The first-order differential system of the four coupled equations of motion (section 4) is derived from the Hamiltonian of the motion. This system is solved by successive approximations using the method of variation of 
the constants [2]. The constants are the initial values of the action and angle variables. At the first order, action and angle are replaced in the general system by their linear expressions and the integration is straightforward. At the second order, the first-order expressions of J and μ are injected into the differential system; the result is writ­ten in the form of double integrals which express the fact that the total effect of the non-linear fields is no longer a superposition of the individual fields as is the case in the first-order theory but that the non-linear fields are now correlated between them.

For closed machines (section 5), the condition of periodicity of the magnetic structure must be manifest. As this case is of paramount importance in practice, the integrals are written explicitly using the simplest models of integration. At the first order (section 5.1), the thin-lens approximation which consists of concentrating the field into a magnet of zero length using δ - functions is very convenient. At the second order (section 5.2), the thin- lens approximation cannot be used and the simplest model consists of assuming a constant value for the β function and a linear variation of the betatron phase with respect to the longitudinal coordinate inside a magnet. The various types of correlation are analyzed in order to give as much insight as possible into the physical problem. They apply to the coupling of a field with itself (section 5.2.1), to the correlation between a given field and the same field at the next turn (section 5.2.2) and to the correlation between two different fields (section 5.2.3). A technical difficulty appears in the evaluation of each type of correlation in the form of secular terms, those terms which repeat themselves identically at each turn and lead to an unphysical growth of the oscillation; fortunately, when all the correlations are summed up, these terms cancel out In the formalism which is developed here, the motion is completely described as the superposition of a periodic motion and of an oscillation about the periodic motion; this feature contrasts with other treatments [3] which are deliberately restricted to the periodic solution of the equations of motion. Our purpose being to design a machine with the maximum aperture, there is no reason to neglect the oscillatory part of the motion. In order to test the validity of the theory, one can compare scatter plots of a section of the phase space based on the analytical formulae with purely numerical non- perturbative techniques. However, the main interest of analytical formulae lies in the prescription of correction schemes (section 6).
The compensation method applies to the correction of the systematic non-linear distortions created by the chromaticity correction elements. It is illustrated in the case of a hadron machine, the CERN Antiproton Collector [4], and of a lepton machine, the Berkeley Advanced Light Source [5] and it is shown that a substantial improve­ment in machine aperture can be obtained at the cost of a rather modest correction scheme implemented in regions where the orbit position is independent of the particle momentum.



2. LINEAR TBEORY
In a particle accelerator, the shape of the beam is determined by the focusing system [6] which is composed of linear and non-linear magnetic fields. The linear elements are the quadrupoles whose field components are linear functions of the transverse c∞rdinates (x,y). In these fields, the panicles are submitted to restoring forces proportional to the distance of the particle from the magnetic axis where the field is zero and the transverse co­ordinates have their origin. The equations of the transverse motion of a particle are then:

d2x + Kx(s)x = O ds2d2y+K,(s)y=0 ds2
(1)

The curvilinear c∞rdinate s is taken along the reference trajectory which passes through the centre of the quadrupoles. In contrast with the harmonic oscillator equation, the focusing strength K is not constant but a function of s. One can still nevertheless write the solution to the differential equations in a phase-amplitude form [1]:
x = √2βx(s) Jx cos[ μx(s) + φx ] y = √2βy(s) Jy cos[ μy(s) + φy ] (2)

By back-substitution of x (or y) into the differential equations and identification with respect to the sine and cosine terms, it turns out that β and μ are related by
μ(s) =

- 0
_dO_ β(σ) (3)

and that the derivative of β which is traditionally defined via the coefficient
(4)satisfies the equation

dα.= Kβ-l±αds β (5)
For brevity, the subscripts are omitted when the relations between physical parameters like β, μ, J, φ,... or the statements about them are valid for the horizontal and the vertical plane as well. The four constants of the motion are the actions J and the angles φ. The Hamiltonian of the motion which has the form

H = ½[p2x + p2y + Kx x2 + Kyy2] (6)



with (x, y) and (px = dx/ds, py = dy/ds) as conjugate variables becomes
(7)

with (μx +Φx, μy +Φy) and (Jx ,Jy) as new position and momentum variables. As our purpose is essentially to determine the evolution of the beam envelope in the presence of non-linear fields, the equations of motion will be derived from a Hamiltonian of the same type as H1. The non-linear Hamiltonian is deduced from H1 by addition of a potential term V which has to be written in the angle-action variables.
3. SCALAR POTENTIAL OF THE MAGNETIC FIELD

The scalar potential of a magnetic multipole of order m is
σ(m∙2)V = -——Re( x + i y )m m! (8)

where g(m'2> is the (m-2)- derivative of the vertical component of the magnetic field gradient with respect to x. The order m may be defined from 1, g(-1) is then the dipole component and g(o) the quadrupole component, but we shall only consider fields corresponding to values of m larger than 2: g(1) g(2) ... are then the sextupolar, 
OCtupolar, ... components. In particle dynamics, the potential comes in the Hamiltonian of the motion in the form

v=e/pv (9)
where e is the charge and p the momentum of the particle. It is therefore convenient to use the derivatives of the focusing strength

K(m-2) = eg(m-2) (10)
By substituting the expressions of the betatron motion into (8), the expression of the potential V becomes

I(m/2) K∏V2)-i ;V= Σ Σ ΣCljk [ cos μjk +cos μijk] (11)i=0 J=O k=0
where I is the integer part function and m « ɪc. κ(m-2)(jxβx)2 (∙Jyβy)----------  ( 12)(2)3/2 j! k! (m-2i-j)! (2i-k)!

μ∓ijk=m∓ijk∙μ (13)



with
μ =(μx + Φx,μy + Φy) (14)

m±k = ( mxij , ± myιk ) (15)
mxιj=m-2(i+j) (16)

mylk = 2( i - k ) (17)

Special cases occur when either i or m-2i are zero, then my or mx are zero and the two cosines are the same in the expression of V which must be re-written
I(m/2) I(m/2)-iv= Σ Σ ∑Cijkcosμ+ijk (18)i=0 j=0 k=0

These cases correspond to the combinations
( i, j, k ) = ( 0, j<y, 0)( i, j, k ) = (2, 0, k<2) (19)

When m is even, mx and my can be zero simultaneously, a constant term then appears at the right hand side of V which is always defined within an an additive constant anyhow; the combinations of the type
(i,j, k) = (i,m-iti) (20)

have thus simply to be eliminated.
4. EQUATIONS OF MOTION IN THE ACTION-ANGLE VARIABLES

When a non-linear field is introduced, J and φ become functions of s and the equations of motion are solved using a method of variation of constants also called sometimes time dependent perturbation method. The non-linear Hamiltonian is
Hi = —+—+ V βχ βy (21)

The equations of motion are then



dj _ ∂H1  _ ∂vds ∂(μ+ϕ) ∂(μ+ϕ)d( μ+ϕ) _ ∂ H1 _ 1 + əV
ds = əj = β əj

(22)
Because of the relation (3) between μ and β, the second equation can be simplified and the system re-written

di=-əV 
ds əϕdϕ_ av ds^ əJ (23)

or, more explicitly,
I(m) I(M)-i□ T ɪ ι* ɪ÷l = Σ Σ Σ cijkπ⅛ [ sin MT* + sin Mijk 1 dδ i=0 j=0 k=0
I(m) I(m)-idJ 2 2 iv≡∑ Σ Σ Cijkmyik [ sin μ+jk - sin μ-ijk ] ds i=0 j=0 k=0

(24)

dφx VVV θɑɪik r + - 1-jr = ∑ Σ ∑-√-!∞sμijkk + ∞s μijk ] ds i=0 J=O k=0 σjχ (25)I(m) J(m)-idφy VVV əɑɪfr r * - i÷=Σ Σ ∑^÷[∞sμ+ijk + cosμ-ijk] ds i=o j=o k=o σjy
This set of equations can be solved by successive approximations.
4.1 First iteration

The first-order perturbation of the angle-action variables (J,φ) is obtained by assuming (J,φ) to be constant and equal to (J0,ϕ0) at the right hand side of the equations. In order to have an explicit form which can be gen­eralized at the second iteration, let us define the vectors
Ax(1) = (Ci,jk.C,j,k) 
Ay(1) = (Ci,j.k,-Ci,j,k) (26)



Fx(1) = ( ∂Cijk ∂ Cijk )∂jx ’ ∂JxəCijk əCijk ) 3jy ∂Jy

Ψ(1) = (sinμ+k,sin μ+ijk)
ϕ(1) = (cosμijk,cosμ-ijk)

The set of equations integrated over a length s takes the form
I(m/2) I(m∕2)-ι 1 f ________________Jkl= ∑ Σ ∑n⅛ Ai1>.Ψωdσι=O j=0 k=0 J0
I(m/2) I(m/2)-i 1 ,∙s ______________Jyl= Σ Σ ∑myιkl∣ A^.Ψu,dσ ι=O j=0 k=0 ,0

(27)

(28)

(29)

I(m/2) Km/2)-i ɪ Γs _____ ________Φχ∣= Σ Σ Σ I Fx(1).Φ(1)dσi=o J=O k=0 Jo
I(m/2) I(m/2)-i 1 fs _____ ________Φy∣= Σ Σ Σ Fy(l)∖Φllldσi=o J=O k=O Jo

(30)

4.2 Second iteration
At the second order, the coefficients C and the trigonometric functions that we call T for brevity have to be expanded as functions of J and φ respectively:

r, _ r, i əɑθ`jk τ , əɑθijk ɪC1Jk-Coijk+ ajχ Jχl+ θjy Jyl
Tɪjk = T0ijk + Φxl÷ oT0ijkΦyl ∂Φx  ∂Φy

The differential equations for the second-order terms of the action variables are thus
I(π√2) I(m/2)-i ; ,∑ ∑ tn⅛i[(‰÷⅛i ds i=0 k=0 ∂Jχ ∂Jy
I(m/2) I(m/2)-i ɪ v,djy2 V VVm r t dc°iJk τ ɪ dc°∙ik -÷-=2- L 2-myιk l(ɪ- jχl +~Ti-- ds l=0 j=o k=o ∂Jχ ∂Jy

Φχ1 + —--0i- Φyl )Cθijk ]∂ϕy (32)
ϕxl + —^~^^^Φyl )Cθnk ]



Due to the products Jx1Tx0ijk,...the multiplication of the trigonometric functions gives rise to a new generation of modes defined by the eight characteristic arguments
vɪ = μ+jfc(s) + tɪrɪjɪkɪ(ɑ)
Ψ2 = μ⅛k(s)-μ,tιj∣ki(σ)
Ψ3 = Uijk(S) + UjIjlkl(O)
ψ4 = U1Jk(S)-UiljIkl(O), (33)ψ5 = U,jk(s) + Uiijiki(o)
V6 = Uijk(S)-Uiijiki(O)Vi = U-ijk(S) + U+iijiki(O)
V8 = U-ijk(S)-Uiijiki(O)

and the four types of coefficients
b -1m ∂C0ijk(s) r , ʌb1=1/2mxiljl əjx C0ɪljlkl(ɑ). ιm ∂Cp ii jɪ kι(σ) r h2~2mxij əj Q)ijk(s) (34)h3 = 2myιljl əj Coiljlkl(G)
b4 = lmy.k3c°l^'w Coijk(S)

For a given set of indices (i, j, k), (il, jl, kl), the eight modes are independent but, among all the com­binations of indices, a repetition of the modes may occur. As the coefficients C are the products of independent functions of (βx, βy) and (Jx, Jy), the function of (βx, βy) in the coefficients b is the same for a given combi­nation of indices. The arguments ψ always appear in cosine functions and one can form the 8-vector
Ψ^=[cosψi] i=l,8 (35)

The functions of the action variables can also be written as 8-vectors whose components are linear combinations of the b coefficients
A? = ( a1, a2, a3,a4,a5, a6, a7, a8) 36)= ( aɪ, a2, aɜ, a4,-a5,-a6,-a7,-a8 )

aι = -hɪ + b2 - bɜ + b4a2 = b1+b2 + b3 + b4a3 = -b1 + b2 + bɜ + b4a4 = b1 + b2 - bɜ + b4 (37)a5 = -b1 + b2 - bɜ - b4a6 = b1 + b2 + bɜ - b4
a7 = -b1 + b2 + bɜ - b4a8 = b1 + b2 - bɜ - b4



The second-order perturbation of the action variables integrated over a length L have then the compact ex­pression which is the expected generalized form of the expressions derived at the first iteration
I(m/2) I(m∕2)-i i

Jx2 = Σ Σ Σ mxιj I

i=0 j=0 k=0
.'0

I(m/2) Km/2)-il il p ____  ——
ʤ Σ Σ Σ I A*j2) .Ψ 2 dσ

11=0 Jl=O kl=oJo (38)
•L

I(m/2) I(m/2)-i ;
Jy 2 = Σ Σ Σ myιk 1

i=0 j=0 k=0
Jo

I(m/2) I(m/2)-il 1 ɪ p ____  _____
ds £ Σ Σ I ʌp) .Ψ(2) dσ

il=0 jl=O kl=0 Jo

5. ACTION - ANGLE PERTURBATIONS IN A PERIODIC LATTICE
When the particle performs revolutions inside a ring, the solution to the equations of motion must reflect the periodic structure of the magnetic lattice. A ring has an intrinsic n-fold symmetry (n > 1) and is said to be made of n Superperiods', a superperiod is an assembly of more elementary repetitive elements: the periods are also called the cells of the lattice. The C coefficients are the same for all the superperiods and at the position of a given el­ement the linear phase is μ+2(n-l)πQ with n=l,..., N in the lattice unfolded over N superperiods. The purpose of this section is to show how the full integration over the N superperiods can be limited to an integration over a single superperiod.

5.1 First-order perturbation
As the pe∏urbing fields are zero everywhere but at magnet locations, the following type of substitutions can be performed in the solutions (29)

fs  __ p P-- --A<1> .Ψωdσ = ∑ ʌjŋ. dσ
’o ⅛=ι Jo

(39)

where p is the number of magnets. The length 1 may vary from magnet to magnet and the integral can be calcu­lated exactly. The analytical integration is useful for applications which require accurate results. It is, however, very heavy and it is much simpler to describe the essential features of the particle oscillation using the thin-lens approximation which consists of concentrating all the field into a δ-function (Fig.l). The ∫ symbol thus dis­appears from the formulae provided the rule
(i  __ p ---  ----A<1>.Ψωdσ=∑ A^0.Ψi,υl'o ɪrɪ (40)

is applied.



s. + (n - 1)L 1P
Fig. 1 Unfolded lattice with thin lenses in a first-order perturbation

By inspection of the expression (28), it can be seen that the cumulative effect of a peπurbing element ip over N superperiods is found by evaluating geometric series of the type
S = X exp i m*jk.(μ +(n-l)2πQ) n=l

where
Q - ( Qx . Qy )

(41)

(42)
The perturbation of the action at the end of the N-th superperiod is thus obtained from the expressions (29) and (30) where the integration is limited to the length L of a superperiod and the vector Ψ(1) is given by

with
ψ(1) = ψ(1) +ψ(1) + τN (43)

(1) cos m+ijk.(μ-πQ) cos mjijk.(μ∙πQ) Ψo - (------- ------ _ .------- ——~27^ 12sinm∙∙k.πQ 2sinm1jk.πQ (44)
n)_ ∞smfjk.(μ+(2N-l)πQ) ɪ N ^^ ( -------2 sinm∙jc.πQ cos mijk.(μ+(2N-l)πQ)2 sin mljk.πQ (45)

The phase components contain a stationary term, independent of N, which can also be obtained as the per­iodic solution of the equations of motion and a time-dependent term superimposed on the previous one. More­over, as one could expect, when the frequency of one of the oscillation modes becomes an integer, a resonance condition
m± ∙ Q =r ɪjk (46)

is fulfilled and the perturbation theory is no longer valid. This is the famous problem of the small denominators which is at the heart of KAM theory [7].



5.2 Second-order perturbation
In the previous section, the action distortion has been calculated at the end of a superperiod by a straight­forward addition of the elementary perturbations. At the second order, it is necessary to evaluate the distortion at every element inside a superperiod (Fig. 2 ).

sip∣ s , s . + L s + L sιp2 ipɪ ip2 s 1 + (n - 1)L s , + (n - l)L ιpl ιp2
Fig. 2 Unfolded lattice in a second-order perturbation

Let us consider two elements located at sɪ and s2 with s2 downstream of s1. In the double integration of (38), the perturbation at sɪ is calculated first and s2 plays the role of σ, then the perturbation is calculated at s2 and sɪ plays the role of σ. It is clear that these two correlations must have a similar structure since the vectors A are the same and the relative phases can only differ by their sign. To calculate the double integral, we shall group the two correlations between elements located at s1 and s2 in a single term, the integral over σ is thus extended to the elements downstream to s only so that its lower and upper limits are s and s+L respectively. 'Thethin-Iens model can be used in almost all cases. For correlations between different magnets (cross-correlation terms) or between images of a magnet in all the superperiods, one can indeed write
Γl fδ(s-sip)ds 'o Jo _____ _____ P ⅛∙1 _____ ______A<2>. Ψω δ( σ-σip, ) dσ = X ∑ A(2). T(2) l2 ip=l ip∣=1 (47)

but, for the correlation of a magnet with itself (self-correlation terms ), the double integral must be calculated differently using an explicit form for Ψ(2)
5.2.1 Self correlation

By inspection of the structure of the arguments ψi, it turns out that the components of Ψ(2) are
Ψ∙(2) = Reei: tμ⅛(s>+ejHijiki(σ)| i = 1,2,3,4 ψ(2) = Ree' l⅛w+εj∏Tjikiwl i = 5,6,7,8

where ε1 and ε2 are either +1 or -1. For a single magnet, the simplest approximation which can be used beyond the Ihin-Iens model assumes that the length is small enough that β can be considered as constant and therefore μ as a linear function of s according to (3)
μ(s) = μ(slp) + ɪ βipμ(σ) = μ(Sip) + -α- (49)



It is then elementary to show that the contribution of the self-correlation term to the second-order pertur­bation of the action in one superperiod is
ɪ A(2). Ψ(2) I2

whatever ε1 or ε2 may be; the vectors are evaluated at the beginning of the element. When the perturbation is summed over N superperiods (Fig. 3 ), it is useful to define the quantities
Q∓ijk = m∓ijk∙Q (50)

Sipl sipl+l sipl+(n- 1)LFig. 3 Cumulative effect of single elements in a second-order perturbation
The contribution from the self-correlation terms can then be written

I1 =1-A^. Ψι2½2 X Ree'2n(<fi'k+eaQiÌTiki)(n'ɪ} (51)2 n = l
For some combinations of modes that we call subtractive and note with the superscript the exponent vanishes if the betatron tunes fulfill the condition

Qϵijk + ϵ2Q∓ϵiljlkl = 0 (52)
which can also be applied to the betatron phases

μξ'k(Sip) + ε2μ∓ϵιk, (Sip) = 0 (53)
I1 takes the value

Il =½A(2)- ψ(2)-l2 (54)
the components of Ψ(2)- being simply

ψ(2)li, = N (55)
The other combinations are said to be additive, they are noted with the superscript "+" and their contribution is



Γf = i∙At*>*. ΨΓ,*12 (56)
the components of ψ<2>+ being given by

= *02h + Ψn¾ (57)
ψ8)f sin< πQf)k'⅛( sip ) + ε2 ( πQ∣lj'lkΓ⅛ljlk(f s∣P τ o, 1 ɪ =--------------------------------------------------------------------------------------------- ( ɔ O )2sinπ(Qf'k + ¾Q*k,)<2>÷ sin ( π( 2N-I X}fjlk+μfjlk( Sjp ) + e2( ιt( 2N-1 )Q∩.',k 1+μff',kl( sip ) ) )Xiι=- ------------------------------------------------------------------------------------------ (59)2sinπ(Q⅛ +ε2Q*kl)

The expression of I1 is puzzling because it contains terms which increase with N, the secular terms, and this is in contradiction with the principle of energy conservation. We shall see that the correlations between images of a same element in the various superperiods have also secular terms which, fortunately, cancel the previous ones.
5.2.2 Correlations between an element and its images in the superperiods

The distribution of the images is shown in Fig. 4.
J___________I..................... ..................._l____
Slpl s.p,+L sjpl+(n-l)L

Fig. 4 Images of a single element in the superperiods
We have to consider the new contribution to the action distortion

I2 = . I2 (60)
where the components of Ψ2 are

Ψ2p = ɪ Ree1 fμijVsip) + <n-*)2πQipc +ɛɪ 1jikɪ<sip> 1[ 1 +... +e, (n'2) εj2π %iki ] (61)n = 1
The decomposition made for I1 can be repeated for I2 and it turns out that

I2 ≡ - Γ∣ +ɪ-A^'. Ψ2^ I2 
lɪ = ɪ- A⅛2r . I2

(62)
(63)



with
ψ0)-s (sin πN(⅜tj2 sin π Qfjc (64)
ψ^)+ _ ψ(2)+ , ψ(2)+ ψ2ι ~ψ0,2ι+ψN,2ι (65)

(2)+ cos [μf1k + ε2 μfjειlkl - π ( Q⅛ + ε2 Qff1lkl ) ] ɪ 0,2i----------------------------------------------- —------------------------------------------------2 sin π QffJlkl sinπQ¾t∞s ⅛ijlk + ⅞ U,1∣lkl - ɪt (Q⅛+2ε2 Qjljlkl ) ]+ — ----------------- (OO)2sinjcQiljlkI sin jc< Qfj,k + ɛz Q,¾'∣kl >
ψ(2)÷ _ cos [μf1k + ɛz μ∏]∣kι ÷ π ( (2N-l)Qξ]k + ε2 QffJlkl ) )*N,2i - ------- ------------2sinπQ∏jiki sinjcQfjkcos [μf'k ÷ ε2 μ*'lkl - π ( (2N-1)Q⅜ ÷ 2 ε2 (N-I)Qff1lkl ) 12 sin it Qffjlkl sin it ( QfJk + ε2 Qilj'lkl ) (67)

For the subtractive modes, the secular terms in (62) cancel those found in the previous section and the phase vector (64) is independent of the position of the element.
5.2.3 Cross-correlations

For ±e interaction between elements located at two different positions (Fig. 5) in the superperiod, the calcu­lation can be conducted in the same way as in the previous case.

Fig 5 Cross-correlations between distinct elements
The contribution to the action distortion is then

I3 = ac122* . t32) I2 (68)
where the phase vector is of ±e form

ψff).ψU) . √2) T3 =T12 + T2ι (69)
with the components



Ψι¾ = X Ree' [μijVsιpi) + <n∙1>2π¾ +eι μiijik√,ip2> 1[ 1 + ... +e' ^,'2> ε*2π %iki ] (70)n = 1Ψ2¾ = X Ree1 l⅛<1*P2> +(n'1)2?I(fj'k +εj μiijiki^ipP>[ 1 + ... +e, *4) ε,2π %j'iki ] (71)n = 1
After summation and addition of the two types of correlations, one finds that the secular terms cancel out and that the residual contribution of the subtractive combinations is

I3=A<22,∙.Ψ⅛2,-∣2 (72)
with 2ψff)∙ = ( si1,n⅜ ) cos ( με,k(s.p2). μfit(s4pl) ) (73)sɪn rtQfjlk
It is interesting to note that, thanks to the relation (53), a single set of modes characterized by the indices (i, j, k) is sufficient to calculate this type of cross-correlation modes. For the additive modes, I3 becomes

IJ = A⅛22h . Ψ^+ I2 (74)
with Ψ^+=Ψ0¾ + Ψn¾ (75)

Ψi)¾= ----------------------------- ɪ-----------------------------4 sin KE2Qffjlkl sin π( Q⅛ ÷ ε2θffj*lkl )
( cos (Mijk(Sipi) + ε2P∙i1jlkl(sip2) ^ κ ( Qijk + 2ε2Qf1jlkl ) )
+ cos (μfjk(sip2) + e2μ∏]lkl(Sipι) - π Q⅛ ) )
_____________________ 1__________________4 sin πε2Q^f*lkl sinπQξ]k

| COS (μfjk(Sjp1) + ε2μiljlkl(Sip2) ∙ κ ( Qijk + ε2θi1jlkl ) )
cos (μ,jlk(Sip2)÷ ε2μ1↑j∖ki (Sipi) - π(Qfl'k + ε2Q*'1ki (76)



1Ψn¾ = - 4 sin πε2Qf≈j',k, sin π( <¾k + ¾Q÷*lk, )
I cos (⅛(Sipi) + e2g“',kl(SiP2) + π ( ( 2N-1 )Q⅛ + 2(N-I)ε2Q÷*u ) )
+ cos (μ⅛t(sip2) + ε2μ≈]lkl(sipl) + π ( ( 2N-1 )Q⅛ + 2N¾Q⅛lk, ) j
+ ----------- --- 1---------------4 sin πε2<¾'Ikl sin π Q⅛

! c°s (μfjk(sipi) + ε2μ∏ε*iki(sip2) + π ( ( 2N-1 )Qξjk - ε2Qf11lkl ) )
+ cos (μξ'k(s1p2) + ε2μ∏J1lkl(Sipi) + π( ( 2N-1 )Qξlk -ε2Q¾lkl )| (77)

These formulae complete the treatment of second-order perturbations. They are not easy to read but the complication inherent to high-order perturbations is less and less Untractable with symbolic codes such as Macsyma, Reduce or Mathematica [12] and it is left as an exercise to tabulate the resonances generated by a sextu- polar field and their driving terms.
6. COMPENSATION SCHEMES FOR AMPLITUDE DEPENDENT DISTORTIONS

As already mentioned in the introduction, systematic non-linear fields are introduced to act on the chromatic properties of the machine and it is the amplitude dependent distortions tthey produce that we want to correct. Their coupling with the off-momentum particles depends on the distance between the off-momentum closed orbit and the central orbit via a quantity called the orbit dispersion. If one cannot design a chromaticity correction system self compensated [8] with respect to the non-linear distortions, and this is often the case save in very large storage rings, the correcting fields are to be placed in dispersionless straight sections. The method which will be described [9] can be applied in any circumstance but, for clarity, we shall assume that momentum and amplitude dependent effects are decoupled.
6.1 Method

There are a few preliminary remarks which are very important in the design of a correction scheme. First, all the distortions depend not only on the initial amplitude but also on the initial phase of the panicle oscillation via the betatron phase advance μ (Eq. 14). A correction scheme must obviously be valid for all the particles in the beam. In order for it to be phase independent, the cosine and sine components of the oscillation have to be cor­rected simultaneously; in other terms, a vector correction has to be performed. A simplification occurs when the machine superperiod has a specular symmetry; then, for two symmetric elements, the driving term has the same amplitude and the associated phases are m.(-πQ+μ) and m.(-πQ+(2π Q-μ)) and thus opposite so that the sine components vanish. Amplitude independence is obtained by using a correcting field of the same nature as the chromaticity field. Let us note that a correction independent of the initial phase is also independent of the number 



of turns so that it is sufficient to take the periodic terms into consideration; this means that, when a scatter plot of the action or angle variables is observed at some position around the machine, both the average value and the oscillation of the variable about its average value are reduced.
Another aspect of the correction concerns the observation of the distortion. If the scheme respects the per­iodicity of the ring, it seems that a single observation point at the end of the superperiod is sufficient provided it is not a node of the oscillation. For a given chromatic field, the indices mxij (Eq. 16) and myιk (Eq. 17) of the oscillation modes are determined. For instance, the modes of a Sextupolar field are characterized by the four couples (1,0), (3,0), (1,2), (l,-2). The cosine and sine components of each mode are then calculated to the first order at the observation point for the action distortion using the relations (26), (29), (39) or (40) and (44), they form a known vector b. In the case of a sextupole, b has 8 or 4 independent components, depending on the superperiod symmetry:

x
b = ∑ K∙l√2Jχβχchromaticity sextupoles Jy βy cos ?(μχ - μχ0 +2 (μy - μy0) )Jyβycos(μχ-μχ0-2(μy-μyo))

(78)

The four other components are obtained by replacing cos by sin. The constant factors have been omitted. All the variables are characteristic of the sextupoles with the exception of the phase terms subscripted with O which are referred to the observation point.
The correction multipoles, in number n, are located at every possible place. Each corrector is characterized by a vector calculated with the same expressions as those used for the chromaticity multipoles but with a unit strength (Ki=l). Each correction vector is a column in the correction matrix A. The correction vector x is made of the n unknown correction strengths and the residual vector to be minimized is

r = A x + b (79)

A good minimization is obtained with the MICADO program [10] which selects the most efficient correctors in an iterative process, the number of correctors being equal to the order of the iteration. It is theoretically possible to get r zero but an exact cancellation of the first-order terms usually leads to a catastrophic over compensation of the non-linear distortions.
If a second-order calculation turns out to be necessary, the relation (79) is still valid if A is considered as a funcion of x. The correction multipoles selected in the first iteration are maintained but their strengths are re­calculated by adjoining to the first-order expressions the second-order expressions calculated in section 5.2 and minimizing the norm of r with respect to its components.



The last step consists of testing the correction scheme using a numerical tracking program which provides scatter plots of the motion and permits the quality of the correction to be assessed. In these programs, the equa­tions of motion are integrated numerically [11] in the non-linear fields and the solution is not limited by the order of a perturbative treatment.
6.2 Applications

The method which has just been outlined was applied to the CERN Antiproton Collector (ACOL) and to the Berkeley Advanced Light Source (ALS). An antiproton beam does not radiate and the goal is to make the beam envelope respect the size defined by the linear emittance as close as possible. In a synchrotron light source, the electrons or the positrons are ultra relativistic and radiate significantly; in the process of photon emission, a panicle can reach a very large ampliude, typically more than ten times the standard beam width, and the criterion is rather to get the maximum dynamic aperture. The dynamic aperture is defined as the set of all the couples of initial transverse coordinates (x,y) for which the particle oscillation is stable.
6.2.1 Antiproton Collector

The ring has a twofold Superperodicity and each superperiod has a specular symmetry. A quadrant is rep­resented in Fig. 6. The horizontal and vertical variations of the linear betatron tune with the momentum and the quadratic momentum dependence of the orbit in the long straight sections are controlled by three families of sextupoles (SFl, SF2, SD) in the arcs . The sextupolar field is superimposed on the linear field of the quadru­poles and obtained with a special design of the pole profiles.

The correction sextupolar fields were first distributed all along the straight sections and computations made with MICADO and tested with a numerical tracking program showed that a sufficient correction (Fig. 7) could be obtained with the sextupoles S produced by pole face windings (Fig. 8 ).
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-b-Fig. 7 Transverse dynamics in ACOL before (a) and after (b) correction



Fig. 8 Configuration of the Sextupolar conductors on the pole of a quadrupole
The experimental evidence of the importance of this type of correction should be given by comparing the number of antiprotons injected into the ring without and with sextupolar correction but this has not been possible until now because the antiproton beam had insufficient emittance. However, two measurements prove the validity of the method:i) the non-linear coupling observed when the horizontal and vertical betatron tunes are equal almost dis­appears after correction (Fig. 9 );

Fig. 9 Beam density distribution before (a) and after (b) sextupolar correction
ii) the motion of the bunch center of gravity resulting from a large injection error both in the horizontal and vertical planes (see F. Willeke, these proceedings) is much more regular after correction (Fig. 10 ).
6.2.2 Advanced Light Source

The Berkeley Advanced Light Source (ALS)has a 12-fold superperiodicity and each superperiod (Fig. 11) has a mirror symmetry. The computational techniques used for ACOL have been resumed for this machine.
The main difference between the two lattices lies in the triple bend achromat which makes tiny orbit dispersion and leads to outstandingly high strengths for the chromaticity sextupoles: K'l F = 11.4 πr2, K'1d = - 8.6 πr2.



-a - horizontal motion before correction

- b - vertical motion before correction
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- c - horizontal motion after correction

- d - vertical motion after correction
Fig. 10 Motion of the bunch center of gravity
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Fig. 11 ALS half superperiod
Two schemes were defined: one with a single weak sextupole (Ki 2 = 87 nτ2), and another one with three stronger sextupoles (K'l ɪ = -4.49 nr2, Ki 2 = 5.96 πτ2, Kl 3 = -13.2 πr2). From the inspection of the scatter plots (Fig. 12), it seems that the last scheme (case c) should give the best results. As a matter of fact, the im­provement of the dynamic aperture (Fig. 13 ), if there is any, with respect to case b does not justify the compli­cation of the three sextupole scheme. Each couple (x, y) which defines the dynamic aperture corresponds to the first unstable particle of a sample of 25 particles, all with the same initial amplitude but with different initial phases. To illustrate the importance of that definition, Fig. 14 shows the dynamic aperture which would be dedu­ced from a single particle (scattered points) as compared to the one which results from a multiple particle tracking (connected points ). As soon as a particle is near its limit of stability, the first-order perturbation theory is no longer sufficient and future schemes will be based on formulae expanded to the second order.

7. CONCLUSION
A theory of the non-linear betatron oscillation has been presented based on a solution of the action-angle equations of motion expanded to the second order. Emphasis has been put on the action variable because it is di­rectly related to the beam size. The intricacy of this type of calculation is greatly alleviated by the use of symbolic programs. The insight given by analytical calculations is applied to the design of correction schemes. Until now, these schemes have been derived using the first-order formulae only and they provide substantial improvements of the particle transverse dynamics but, when the criterion of the dynamical aperture is used, it becomes necessary to resort to second-order expressions. A correction scheme has been tested experimentally and it turns out that solutions made of a single family of correctors, and therefore very easy to implement in a real machine, may lead to substantial improvements in the use of the machine aperture.
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Fig. 12 Transverse dynamics in ALS for the bare machine (a), a one- (b) 
and a three- (c) sextupole correction scheme
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Fig. 13 Dynamic apertures for the bare machine (a) and two correction schemes (b,c).
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Fig. 14 Comparison of the dynamic apertures deduced from a single (scattered points ) and a multiple tracking (solid line )
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