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Abstract

The elements of the Special Relativity theory are collected in a single package which accepts symbolic or 

numerical input as arguments of a given statement and returns symbolic or graphical and numerical output. In 

addition, the program can interact with a data base of particle properties.

Introduction

It is well known that a calculation in the four dimension space of Special Relativity becomes 
rapidly Untractable as soon as one ceases to deal with the simple classical configurations. A 
symbolic program [1 ] becomes thus helpful to perform lengthy manipulations and acquires its full 
strength when numerical results and graphical outputs are also available. 4-Vectors and tensors are 
defined in section 1. The Lorentz transformation for translating trihedra is introduced in section 2 
using the rapidity and the spherical angles which define the motion of the moving frame with 
respect to the observer’s frame. Various problems of collisions often encountered in practice are 
treated in section 3. The theoretical background is drawn from [2]. The symbolic code is not 
presented, it is considered as an engine that the user has only to call from within a Mathematica 

session using the instruction

«SpecialRelativity

before executing any of the statements listed in the paper.

1. Vectors and Tensors

A 4-vector A is made of one time-like component A0 and three space-like components A1, A2, 

A3.4-Vector lengths and scalar products are Lorentz invariant. We assume the light velocity equal 

to 1 so that the particle velocities v are identified with the relativistic parameter β (β = v/c).The 

scalar product of two 4-vectors is given by the statement

LorentzScalar{Ao, A1, A2, A3}, {B0, B1, B2, B3}]

The phase of a wave for instance is the scalar product of the pulsation-wave vector (ω, k) and of 

the space-time vector (t, x)

LorentzScalar{omega, kx, ky, kz},{t, x, y, z}]

omega t - kx x - ky y - kz z
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The length of a vector is obtained with

LorentzLength[{ Aq, ʌɪ, A2, A3 }]

The energy-momentum vector length is the particle mass
LorentzLength{E, p, O, O}]

Sqrt[E,2 - p*2]
The time and space components of a 4-vector can be extracted using

time[{ Ao, A1, A2, A3 }] 

space[{ A0, A1, A2, A3 }]

Sometimes, the state of a particle is defined by its length and its space-like vector and it may be 
necessary to convert this state into a genuine 4-vector using

Four Vector [Length, { Ao, A1, Ao, A3 }]

The only type of tensor which is treated in this paper is the electromagnetic tensor. However, the 
Lorentz transformations which will be defined later can be applied to any anti-symmetric tensor of 

rank 2. The electromagnetic tensor of electric field components ( Ex, Ey, Ez ) and magnetic field 

components ( Bx, By, Bz ) can be written in the matrix form

and is accessible using the statement

EMTensor[ Ex, Ey, Ez, Bx, By, Bz ]

The electric field of a charge at rest can be defined in spherical c∞rdinates as

field[e_, phi_, psi_ ] = EMTensore Cos[psi] Sin[phi], e Sin[psi], e Cos[psi] Cos[phi, 0,0,0]

2. Lorentz Transformations

By convention, a Lorentz transformation is defined from the particle frame towards an 
observation system. In the particle frame, the particle is at rest and the only non zero component of 
a 4-vector is the timelike component which is the proper time for the space - time vector and the 
mass for the momentum - energy vector. The transformation is completely determined by the 
momentum vector of the particle in the observation frame.
The modulus of the momentum vector is

p=βγmc
c is the light velocity, m the mass of the particle, ß the ratio of the particle speed to c and γ the ratio 
of the particle energy E to its rest energy m cλ2. β and γ are related by
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It is convenient to consider the product βγ as the independent parameter so that

These expressions are at the origin of the definition of the rapidity ζ 
ζ = sinh'1 βγ

which, together with the unit vector u = p / p ( Figure 1), 
ux= cos ψ sin φ 

uy = sin ψ 
uz= cos ψ cos φ

enter the matrix of a Lorentz transformation

cosh ζ sinh ζ ux sinh ζ uy sinh ζ uz

sinh ζ ux 1 + (cosh ζ - 1) ux^ (cosh ζ - 1) ux uy (cosh ζ - 1) uxuz

sinh ζ uy (cosh ζ - ɪ) ux uy 1 + (cosh ζ - 1) uy^ (cosh ζ - 1) uy uz

sinh ζ uz (cosh ζ - 1) ux uz (cosh ζ - 1) uy uz 1 + (cosh ζ - 1) uz^

Figure 1. Definition of the reference systems in a Lorentz transformation 
from the particle frame towards the observation frame.



One notes that a Lorentz transformation is completely defined by the three parameters: βγ, φ and ψ, 
it is called with the statement

Lorentz [ βγ, φ, ψ 

A 4-vector can be submitted to a cascade of n transformations specified by the parameters 
(βY)i,Φi, Ψi (i = 1, n)

The associated statement is then

LorentzVectorH { βγ,φ, ψ }1....... { βγ,φ, ψ }n }}, { A0, A1, A2, A3 }

The Doppler shift is derived by applying a Lorentz transformation to the ( ω, k ) 4-vector. In the 
following example, the source moves along the z-axis and radiates towards the observer along the 
same axis:

LorentzVector[{{bg, O, O}},{omega, O, O, -k}]

{ - (bg k) + Sqrt[1 + bg^2] omega,O,O, - Sqrt[1 + bg^2] k + bg omega }
When the input is numeric, the transformed 4-vector and the graph of the initial and final spacelike 
vectors are returned in blue and red respectively ( unfortunately, the high quality of the plots is 
altered by the black and white reproduction ). In the following example, two transformations are 
cascaded.

LorentzVector{1, O, 0},{.9, Pi/2, 0}},{l, O, 1, O}] // N

{1.90263, 1.27279, 1., 1.}

A second rank tensor written in matrix form F becomes

F = LFLt 
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after the Lorentz transformation L. For multiple Lorentz transformations, the statement

LorentzTensor{{ βγ, φ, φ } l___ { 0γ, φ, ψ }n }}, tensor]

returns the transformed tensor and, for numerical input, the initial and final configurations of the 
component vectors. In the next example, we give the special form of the transformed tensor when 
the boost is along the z-axis and make it familiar by re-introducing ß and γ separately instead of ßγ. 
LorentzTensorf {{bg, O, O}}, EMTensorex, ey, ez, bx, by, bz]] /.

g->β*g //

-(g (ex + by β))

O

bz
-(g (by + ex ß))

Sqrtf l+bg^2]->g /. b

O

g (ex + by ß) 

g (ey - bx S) 

ez

Factor] // MatrixForm

- (g (ey bx ß) )
-bz

O
g (bx - ey ß)

-ez

g (by + ex ß)
-(g (bx - ey ß))

O
As an example of a tensor transform, we consider the Coulomb field of a particle at rest defined in 
the previous section with the function field and look for its transform in the the observation frame:

LorentzTensor{{2, O, O}}, field[l, O, Pi/4]] // N // MatrixForm

O. O. -1.58114 -O .707 107

O. O. O. O.

1.58114 O. O. 1. 41421

O .7 07 107 O. -1.41421 O.
The electric field is dilated in the y-direction and the magnetic field lies along the x axis.
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3. Collisions

In the collision process, the particle trajectories are in the same plane before and after the 
CollisionThe origin is at the collision point and the two axes ( z, x ) are the bissectrices of the 

momentum vectors of the colliding particles. The angle between the incident momentum vector and 
the z-axis is θ. The center of mass moves in the plane which has just been defined and that we call 

horizontal. New particles may be created in reference frames defined by the angles φ and ψ; the 
y-axis is vertical ( Figure 2 ).

The center of mass energy-momentum 4-vector is the sum of the energy-momenta of the incident 

particles. Its length is usually denoted √s. The statement
CMEnergyMomentum[massl, momentuml, mass2, mo men tu m2, θ] 

returns the expression of the center of mass energy-momentum vector

CMEnergyMomentum[ml,pl,m2,ρ2,t] // Factor
{ Sqrt[ml^2 + pl^2] + Sqrt[m2^2 + p2^2],(pl - p2) Cos[t], (pl + p2) Sin[t],0 } 
and, for numerical input, a numerical output and the graph of the momentum vectors of the incident 

particles which are added to give the center of mass momentum.
A classical problem consists of determining the momentum of the incident particles to aim at a 

resonance of mass √s. It is solved using
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Incidentmomentummassl, mass2, mo men tu m2, θ, √s]

in the general case where the incident particles have different momenta; the subscript 1 is referred 
to beam 1 of unknown momentum and the subscript 2 to beam2 whose characteristics are given.
Incidentmomentum[0, O, p2, t, ss)

SS ^ 2

4 p2 Cos [t] ^2
If the two incident particles have the same, but unknown, momentum, the above statement has to
set the optional argument EqualMomenta to True:

Incidentmomentummassl, mass2, momentum, θ, √s, EqualMomenta->True ]

The previous example becomes in that case:

IncidentmomentumO, O, p, t, ss, EqualMomenta->True]

ss

2 CoS[t]
The purpose of the following statements is to establish expressions for the momentum of the 

particles created in the collision so that the various Lorentz transformations which may be required 
could be determined.

The center of mass momentum is given by

CMmomentummomentuml, momentum2, θ]

CMmomentumpl, ρ2, t

Sqrt[pl^2 + p2*2 - 2 pl p2 Cos[2t]]
In a 2-body decay, the total energy is equally shared by the two particles and equal to √s / 2 or, 

in other words, to half the mass M of the initial particle which is desintegrated. The momentum of 
the created particle of mass m is given by

Particlemomentum Μ, m ]

ParticlemomentumM, m]

M^2

Sqrt [----- - m*2]

4

4. Particle Properties Data Base

A calculation has almost always to be concluded by numerical applications. It is therefore 
necessary to have a data base where the particle properties are stored. Here, the data base has a 
limited number of information but it can be extended at will. The statement

Particle

returns the list of particles:
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Particle

{Bmeson, Photon, Upsilon} 
and

Data
the list of properties:

Data

{mass, lifetime}

Information is retrieved by typing

property [ particle ]

For instance, the mass of the Upsilon is given in electron-volt by 
mass[Upsilon]

1.058 10^10

Conclusion

An application relevant to Special Relativity theory and based on the functionality and the 
programing language of a general symbolic program ( Mathematica ) has been described. A natural 
extension would include rotating frames. What has been said for the complexity of the calculations 
in the 4-dimension space of Special Relativity is still truer in the field of General Relativity and of 
tensor manipulation. Here too, applications have been written [3,4]. The technique of transmitting 
knowledge and information through an application where text and interactive statements are merged 
belongs to the realm of electronic textbooks which will play a more and more important role in the 

future.
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