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Abstract

Landau damping is a very important stabilization mecha-
nism of beams in circular hadron accelerators. In the longitu-
dinal plane, Landau damping is lost when the coherent mode
is outside of the incoherent synchrotron frequency spread. In
this paper, the threshold for loss of Landau damping (LLD)
for constant inductive impedance Im𝑍/𝑘 is derived using the
Lebedev matrix equation (1968). The results are confirmed
by direct numerical solutions of the Lebedev equation and
using the Oide-Yokoya method (1990). For more realistic
impedance models of the ring, new definitions of an effec-
tive impedance and the corresponding cutoff frequency are
introduced which allow using the same analytic expression
for the LLD threshold. We also demonstrate that this thresh-
old is significantly overestimated by the Sacherer formalism
based on the previous definition of an effective impedance
using the eigenfunctions of the coherent modes.

INTRODUCTION

The loss of Landau damping [1] has been observed in
operations of different accelerators (Tevatron [2], RHIC [3],
SPS [4] and LHC [5]) and has been studied for many years
using different approaches [6–16]. A general way to analyze
beam stability is to solve the Vlasov equation linearized for a
small perturbation of a stationary particle distribution func-
tion. The first self-consistent system of equations suitable
for the eigenvalue analysis of longitudinal beam stability was
proposed by Lebedev in 1968 [6]. In the recent paper [17],
we derived an analytic expression for the LLD threshold in
the presence of the constant reactive impedance Im𝑍/𝑘 us-
ing the Lebedev equation. It agrees with the LLD threshold
determined numerically by solving the two matrix equa-
tions: the Lebedev matrix equation and the Oide-Yokoya
equation [18]. In this paper, we present the derivation of the
LLD threshold which based on a novel method to compute
an effective impedance with an effective cutoff frequency.
This allows to evaluate the LLD threshold for complicated
impedance models (like the one of the CERN SPS).

MAIN EQUATIONS AND DEFINITIONS

We consider the case of a single RF system, for the sake
of simplicity, while the derivations can be adapted to other
RF waveforms. The Lebedev equation can be written us-
ing variables (ℰ, 𝜓), which correspond respectively to the
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energy and phase of the synchrotron oscillations,

ℰ =
̇𝜙2

2𝜔2
𝑠0

+ 𝑈𝑡(𝜙), (1)

𝜓 = sgn(𝜂Δ𝐸)𝜔𝑠(ℰ)
√2𝜔𝑠0

∫
𝜙

𝜙max

𝑑𝜙′

√ℰ − 𝑈𝑡 (𝜙′)
. (2)

Here, Δ𝐸 and 𝜙 are respectively the energy and phase
deviations of the particle from the synchronous particle,
𝜂 = 1/𝛾2

tr − 1/𝛾2 is the slip factor, 𝛾tr is the Lorentz factor
at transition energy, and 𝑓𝑠0 = 𝜔𝑠0/2𝜋 is the frequency of
small-amplitude synchrotron oscillations in a bare RF po-
tential. The total potential can be obtained from the sum
voltage 𝑉𝑡

𝑈𝑡(𝜙) = 1
𝑉0 cos 𝜙𝑠0

∫
𝜙

Δ𝜙𝑠
[𝑉𝑡(𝜙′) − 𝑉0 sin 𝜙𝑠0] 𝑑𝜙′, (3)

where 𝑉0 is the RF voltage amplitude, and 𝜙𝑠0 is the
synchronous phase. The synchronous phase shift due to
intensity effects Δ𝜙𝑠 satisfies the relation 𝑉0 sin 𝜙𝑠0 =
𝑉0 sin(𝜙𝑠0 + Δ𝜙𝑠) + 𝑉ind(Δ𝜙𝑠), where 𝑉ind is the induced
voltage. In practice, 𝑈𝑡 can be obtained for an arbitrary
impedance model thanks to an iterative procedure [15].
Then it can be used to compute the synchrotron frequency
as a function of the energy of synchrotron oscillations
𝜔𝑠(ℰ) = 2𝜋/𝑇𝑠(ℰ) in Eq. (2) from the period of oscil-
lations including intensity effects.

Below we will consider particle distributions belonging
to a binomial family 𝑔 (ℰ) = (1 − ℰ/ℰmax)𝜇. For a finite
𝜇, which is usually the case for proton bunches, a full length
𝜏full is defined as

𝜏full = [𝜙max(ℰmax) − 𝜙min(ℰmax)] /𝜔RF. (4)

Lebedev Equation
Using the variable and notations described above, an infi-

nite system of equations for harmonics of the line density
perturbation 𝜆̃ at frequency Ω [6], can be written as

𝜆̃𝑝(Ω) = −𝜁
ℎ

∞
∑

𝑘=−∞
𝐺𝑝𝑘(Ω) 𝑍𝑘(Ω)/𝑘

𝑍norm
𝜆̃𝑘(Ω), (5)

which we refer to as the Lebedev equation. Here, 𝜁 is the
dimensionless intensity parameter,

𝜁 = −
𝑞𝑁𝑝 ℎ2 𝜔0 𝑍norm

𝑉0 cos 𝜙𝑠0
, (6)

𝑍norm is the impedance normalization factor in units of Ohms,
which can be arbitrarily chosen (see also Table 1). The
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elements 𝐺𝑝𝑘, called beam transfer matrices [19] are

𝐺𝑝𝑘(Ω) = −𝑖 𝜔𝑠0
𝜋𝐴𝑁

×
∞
∑
𝑚=1

∫
ℰmax

0
𝑑𝑔(ℰ)

𝑑ℰ
𝐼𝑚𝑘(ℰ)𝐼∗

𝑚𝑝(ℰ)𝜔𝑠(ℰ)
Ω2/𝑚2 − 𝜔2

𝑠 (ℰ)
𝑑ℰ (7)

where 𝑝 and 𝑘 are the revolution frequency harmonics, 𝑚 is
the azimuthal mode number (𝑚 = 1: dipole mode, 𝑚 = 2:
quadrupole mode, etc.), the normalization factor for the
distribution function is

𝐴𝑁 = 𝜔𝑠0 ∫
ℰmax

0
𝑔 (ℰ)
𝜔𝑠(ℰ)𝑑ℰ, (8)

and

𝐼𝑚𝑘(ℰ) = 1
2𝜋 ∫

𝜋

−𝜋
exp [𝑖 𝑘

ℎ𝜙(ℰ, 𝜓) − 𝑖𝑚𝜓] 𝑑𝜓, (9)

with ℎ the harmonic number. Note that the elements 𝐺𝑝𝑘
depend on intensity parameter 𝜁 as they are found after the
stationary problem is solved.

The solution of Lebedev equation for particular Ω and 𝜁
exists if the determinant of the following matrix is zero

𝐷(Ω, 𝜁) = det ∣𝛿𝑝𝑘 + 𝜁
ℎ 𝐺𝑝𝑘(Ω)𝑍𝑘(Ω)/𝑘

𝑍norm
∣ = 0. (10)

Below we will show how this criterion can be used to deter-
mine the LLD threshold.

Threshold of Loss of Landau Damping
In this subsection, we will derive the LLD thresholds in a

general case for the binomial family of particle distributions
and dominating inductive impedance above transition energy
𝜂Im𝑍/𝑘 > 0 (or space charge below transition).

Analyzing solutions of the dispersion integral obtained
from the Vlasov equation for an infinite plasma, N. G. van
Kampen [20, 21] found that they have continuous and dis-
crete parts. In application to longitudinal beam dynamics,
at low intensities (𝜁 ≈ 0), all van Kampen modes remain
within the continuous spectrum, Ω = 𝑚𝜔𝑠(ℰ). Landau
damping results then from the phase mixing of these modes
which do not represent the collective motion of the parti-
cles. Above the threshold the discrete van Kampen modes
emerge from the continuous spectrum, implying that Landau
damping is lost [9].

For the dipole mode (𝑚 = 1), the LLD threshold
𝜁th is reached when there is a coherent mode whose fre-
quency Ω equals the maximum incoherent frequency 𝜔̂𝑠 =
max[𝜔𝑠(ℰ)], i.e., Ω = 𝜔̂𝑠. This implies that for any in-
finitesimally small increase of intensity this mode will move
outside the incoherent frequency band. At low intensities,
the synchrotron frequency distribution in a single RF system
is a monotonic function of the energy of synchrotron oscil-
lations ℰ. Assuming that still holds at the LLD threshold
for a dipole mode 𝑚 = 1, we can search for a value of the
parameter 𝜁, at which Ω = 𝜔̂𝑠 = 𝜔𝑠(0) is a solution of
Eq. (5). Since, as follows from definition (9), 𝐼𝑚𝑘(0) = 0,

the integral (7) defining the elements 𝐺𝑝𝑘 converges for all
𝑝 and 𝑘.

The solution of the Lebedev equation can be found thanks
to the following property of the matrix

det [exp (𝜀 𝑋)] = exp [𝜀 tr (𝑋)] , (11)

where tr(𝑋) is the trace of an arbitrary square matrix 𝑋,
and 𝜀 is the small parameter 𝜀 ≪ 1, which will be defined
later. Consider that 𝑋 also depends on 𝜀, 𝑋(𝜀) = 𝑋(0) +
𝜀(𝑑𝑋/𝑑𝜀)(0)+..., expansion up to the first order of 𝜀 yields,

det [𝐼 + 𝜀 𝑋(𝜀)] = det (exp {ln [𝐼 + 𝜀𝑋(𝜀)]})
= exp (tr {ln [𝐼 + 𝜀𝑋(𝜀)]}) ≈ 1 + 𝜀 tr [𝑋(0)] , (12)

with the identity matrix 𝐼. Thus, we get a general expression
for the LLD threshold from Eq. (10)

𝜁th = −ℎ [
∞
∑

𝑘=−∞
𝐺𝑘𝑘(Ω)𝑍𝑘(Ω)/𝑘

Im𝑍/𝑘 ]
−1

. (13)

Naturally, the parameter 𝜀 ∝ 𝜁. Its dependence on the
bunch length will be deduced below. Thus, 𝐺𝑘𝑘 needs to
be evaluated at zero intensity, as inclusion of potential well
distortion will already result in keeping a higher-order term
of the parameter 𝜀.

In the present work, the elements 𝐺𝑘𝑘 are calculated an-
alytically for short bunches in a single RF system, while
similar derivations for the double RF system can be found
in [22]. Keeping only one element of the sum over azimuthal
harmonics (𝑚 = 1), from Eq. (7) we can obtain 𝐺𝑘𝑘 at the
LLD threshold (Ω = 𝜔𝑠0)

𝐺𝑘𝑘 ≈ 𝑖16𝜇(𝜇 + 1)
𝜋𝜙4

max
[1 − 1𝐹2 (1

2 ; 2, 𝜇; −𝑦2)] , (14)

where 𝑝𝐹𝑞(𝑎1, .., 𝑎𝑝; 𝑏1, ..., 𝑏𝑞; 𝑧) is the generalized Hyperge-
ometric function with 𝑦 = 𝑘𝜙max/ℎ, and 𝜙max corresponds
to a half bunch length expressed in radians. These ma-
trix elements can be presented as a combination of Bessel
functions for the particular values of 𝜇. For example, in
the case of 𝜇 = 1/2, 𝜇 = 1, and 𝜇 = 2, one obtains
𝐺𝑘𝑘 ∝ [1 − 𝐽1(2𝑦)/𝑦], 𝐺𝑘𝑘 ∝ [1 − 𝐽2

0(𝑦) − 𝐽2
1(𝑦)], and

𝐺𝑘𝑘 ∝ [1/2 − 𝐽2
0(𝑦) − 𝐽2

1(𝑦) + 𝐽0(𝑦)𝐽1(𝑦)/𝑦], respectively.
As 𝐺𝑘𝑘 ∝ 1/𝜙4

max, we can now define the small parameter

𝜀 = 𝜁/𝜙4
max

and check the validity of expansion (12) later by comparison
with exact semi-analytic calculations.

For the case of the inductive impedance 𝑍𝑘 = 𝑖𝑘𝑍norm,
the sum in Eq. (13) can also be analytically evaluated by
approximating it with an integral

1
ℎ

∞
∑

𝑘=−∞
𝐺𝑘𝑘(Ω)𝑍𝑘(Ω)/𝑘

𝑍norm
≈ 𝑖

ℎ ∫
∞

−∞
𝐺𝑘𝑘(Ω) 𝑑𝑘 → ∞,

which diverges for 𝜇 > 0. This can be easily seen from the
asymptotic behavior of the elements 𝐺𝑘𝑘 as they saturate at
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kφmax/h
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χ

µ = 2.0

µ = 1.0

µ = 0.5

Sacherer

Figure 1: Examples of the function 𝜒(𝑘𝜙max/ℎ, 𝜇) defined
by Eq. (17) for three different distribution functions from the
binomial family (𝜇 = 0.5, 1, and 2). The values 𝑘𝜙max/ℎ,
for which the LLD thresholds corresponds to that used in
Sacherer [7] criterion, is shown with a square.

a constant value for larger 𝑘. Once we have truncated the
sum at arbitrary 𝑘max, the LLD threshold becomes

𝜁th = 𝜋𝜙5
max

32𝜇(𝜇 + 1)𝜒(𝑘max𝜙max/ℎ, 𝜇) , (15)

or in terms of intensity

𝑁𝑝,th = − 𝜋𝑉0 cos 𝜙𝑠0𝜙5
max

32𝑞ℎ2𝜔0𝜇(𝜇 + 1)𝜒(𝑘max𝜙max/ℎ, 𝜇)𝑍norm
,

(16)
where we introduced the function

𝜒(𝑦, 𝜇) = 𝑦 [1 − 2𝐹3 (1
2 , 1

2 ; 3
2 , 2, 𝜇; −𝑦2)] . (17)

Examples of this function for different 𝜇 values are shown
in Fig. 1.

For 𝜇 = 1/2, the Sacherer formalism proposes the LLD
threshold which can be written in our notations [23]

𝜁th,S = 𝜙5
max/18. (18)

It can be recovered from Eq. (15) for 𝑦max ≈ 3.32 (see also
Fig. 1). This means that for a given bunch length the com-
monly used criteria Eq. (18) is accurate only for the special
choice of the cutoff frequency 𝑓𝑐 ≈ 1/𝜏full. Based on this,
for space charge below transition energy with a rather high
cutoff frequency, the LLD threshold will be significantly
overestimated for bunches with 𝜏full ≫ 1/𝑓𝑐. Instead, our
criteria Eq. (15) gives a simplified expression

𝜁th ≈ 𝜋𝜙4
maxℎ

32𝜇(𝜇 + 1)𝑘max
, (19)

since the generalized Hypergeometric function 2𝐹3 ap-
proaches zero for 𝑦 → ∞. One can see that the threshold is
inversely proportional to the cutoff frequency, and the fifth
power in the dependence on the bunch length is replaced by
the fourth.

Table 1: The Machine and RF Parameters of the LHC at
Injection Energy and of the SPS at Extraction Energy [25]

Parameter Units LHC SPS
Circumference, 𝐶 m 26658.86 6911.55
Harmonic number, ℎ 35640 4620
Transition gamma, 𝛾tr 55.76 17.95
RF frequency, 𝑓RF MHz 400.79 200.39
Beam energy, 𝐸0 TeV 0.45 0.45
RF voltage, 𝑉0 MV 6 7.2
Norm. factor, 𝑍norm Ohm 0.07 1

COMPARISON WITH MELODY CODE
The analytic threshold according to Eq. (15) can be

compared with semi-analytical results obtained using code
MELODY (Matrix Equations for LOngitudinal beam DY-
namics calculations) [24] in applications to the LHC and
SPS. The main accelerator parameters are listed in Table 1.
In calculations based on the Lebedev equation (5), the de-
terminant 𝐷(𝜔̂𝑠, 𝜁) is numerically evaluated for different 𝜁
changed iteratively until condition Eq. (10) is satisfied.

In the Oide-Yokoya method [18], the Vlasov equation is
converted into a matrix equation and its eigenvalues are
calculated as a function of the intensity parameter 𝜁. To
find the threshold, the difference between the maximum
eigenfrequency and the maximum incoherent frequency is
evaluated. The threshold corresponds to the intensity where
the difference vanishes (see details in [17]).

Inductive Impedance
Here we will first show the results for the truncated in-

ductive impedance 𝑍𝑘 = 𝑖𝑘𝑍norm for |𝑘| < 𝑘max and 𝑍𝑘 = 0
elsewhere. Figure 2 shows the LLD threshold as a func-
tion of the full bunch length calculated for two different
cutoff frequencies using analytic equation (15) and code
MELODY. One can see that numerical results obtained us-
ing the Oide-Yokoya method and the Lebedev equation agree,
with the maximum 2% relative error in the covered bunch-
length range. They are close to the analytic expression (15),
while, as expected, there is some discrepancy for larger
bunch lengths since the analytic threshold was derived in
short-bunch approximation while still taking the synchrotron
frequency spread into account. We also observe that the de-
pendence on the bunch length is even slightly weaker than
the fourth power. The dependence on the cutoff frequency
can be also seen in Fig. 2 and results, for two values of the
unperturbed bunch length with increasing cutoff frequencies,
in Fig. 3. It confirms the vanishing of the LLD threshold for
𝑓𝑐 → ∞.

Effective Impedance
Above we discussed the results for a truncated inductive

impedance, while in reality the impedance could be a much
more complicated function of frequency. An example of
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Figure 2: The LLD intensity threshold as a function of the
full bunch length 𝜏full calculated using the Lebedev equa-
tion (5) and the Oide-Yokoya method for different cutoff
frequencies (𝑓𝑐 = 𝑘max𝑓0) of the inductive impedance. The
analytic predictions from Eq. (15) are plotted as solid lines.
Case of 𝜂 > 0 and other parameters are 𝑍norm = 0.07 Ohm,
𝑉0 = 6 MV, and 𝜇 = 2. The corresponding intensity param-
eter 𝜁 is shown on the second vertical axis.
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Figure 3: LLD intensity threshold in the logarithmic scale
as a function of the cutoff frequency of a reactive impedance
𝑓𝑐 = 𝑘max𝑓0 (multiplied by the full bunch length 𝜏full) for
two different values of 𝜏full. The analytic predictions from
Eq. (15) are shown as solid lines and the results of semi-
analytic calculations using MELODY as squares. Parameters
as in Fig. 2. The corresponding intensity parameter 𝜁 is
shown on the second vertical axis.

the SPS impedance model [26] is shown in Fig. 4. We
aim to comprise the frequency dependence of a particular
impedance model in just two numbers: (Im𝑍/𝑘)eff, the equiv-
alent (effective) value of the inductive impedance and 𝑘eff,
the corresponding effective cutoff frequency. In Ref. [17] we
proposed the following definition of the effective impedance

(Im𝑍/𝑘)eff =
𝑘eff

∑
𝑘=−𝑘eff

𝐺𝑘𝑘Im (𝑍𝑘/𝑘) /
𝑘eff

∑
𝑘=−𝑘eff

𝐺𝑘𝑘, (20)
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Figure 4: The present SPS reactive impedance model Im𝑍/𝑘
(black curve) after the impedance reduction campaign during
the 2nd Long Shutdown (LS2) 2019-2020. The values of
the cumulative sum used for calculation of the effective
impedance (20) are shown as blue (𝜇 = 0.5) and orange
(𝜇 = 2) curves (𝜙max = 2).

while 𝑘eff was chosen such that Im𝑍𝑘/𝑘 < 0 for 𝑘 > 𝑘eff.
Then the LLD threshold can be written as

𝜁th = 𝜋𝜙5
max

32𝜇 (𝜇 + 1) 𝜒 (𝑘eff𝜙max/ℎ, 𝜇)
𝑍norm

(Im𝑍/𝑘)eff
, (21)

and in terms of intensity one gets

𝑁𝑝,th = − 𝜋𝑉0 cos 𝜙𝑠0𝜙5
max

32𝑞ℎ2𝜔0𝜇(𝜇 + 1)𝜒(𝑘eff𝜙max/ℎ, 𝜇) (Im𝑍/𝑘)eff
.

(22)
This formula was successfully verified for the case of a single
broadband resonator impedance with quality factor 𝑄 = 1
and different values of the resonant frequency 𝑓𝑟.

In the recent study [27], further investigations were done
for the impedance defined as a sum of broadband and nar-
rowband resonator impedance models

𝑍𝑘 = 𝑅
1 + 𝑖𝑄 ( 𝑘𝑓0

𝑓𝑟
− 𝑓𝑟

𝑘𝑓0
)

+ 𝑅2

1 + 𝑖𝑄2 ( 𝑘𝑓0
𝑓𝑟,2

− 𝑓𝑟,2
𝑘𝑓0

)
(23)

with shunt impedances 𝑅 = 𝑍norm𝑄𝑓𝑟/𝑓0, and 𝑅2 =
𝑍norm𝑄2𝑓𝑟,2/𝑓0, respectively. To study the impact of the
impedance of the resonance structure with the resonant fre-
quency below the cutoff frequency of the main broadband
impedance, the systematic analysis of different cases with
various 𝑄2 ∈ [1, 1000] and 𝑓𝑟,2 ∈ (0, 𝑓𝑟) was performed. As
the result, a new definition of the effective cutoff frequency
was suggested

𝑘eff = arg max
𝑘

∑
𝑘′=0

𝐺𝑘′𝑘′Im(𝑍𝑘′/𝑘′), (24)

which corresponds to a value of 𝑘 for which the maximum
of the cumulative sum is reached. For a single broadband
resonator both old and new methods give the same effective
cutoff frequency. For the SPS impedance model the cumu-
lative sum of expression Eq. (24) is presented in Fig. 4,
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which reaches the maximum value at 𝑘eff𝑓0 ≈ 0.8 GHz
(for 𝜙max ≈ 1). In Fig. 5, the analytic prediction (21) for
a smooth distribution with 𝜇 = 2 is compared with the
full semi-analytic calculations using MELODY. The max-
imum error is about 40% for long bunches which is only
slightly larger than for the case of a simple constant inductive
impedance Im𝑍/𝑘 = 𝑍norm (see Fig. 2).

It is worth to compare this new definition of the effec-
tive impedance with the one based on the Sacherer formal-
ism (Im𝑍/𝑘)eff,S. This formalism requires to find a set of
orthogonal coherent modes for a given distribution. Then,
the effective impedance is computed as a sum of their power
spectral harmonics multiplied by Im𝑍𝑘/𝑘. For parabolic
bunches (𝜇 = 0.5) and dipole mode one gets [23]

(Im𝑍/𝑘)eff,S =
∞
∑

𝑘=−∞

𝐽2
3/2(𝑘𝜙max/ℎ)

|𝑘𝜙max/ℎ| Im (𝑍𝑘/𝑘)

/
∞
∑

𝑘=−∞

𝐽2
3/2(𝑘𝜙max/ℎ)

|𝑘𝜙max/ℎ| , (25)

so that the LLD threshold is 𝜁th,S = 𝜙5
max/18 ×

𝑍norm/ (Im𝑍/𝑘)eff,S. As expected for very short bunches
Sacherer criterion agrees with threshold (21) and MELODY
results, while for longer bunches it significantly overesti-
mates the LLD threshold (see Fig. 5). However, we also see
a non-monotonic behavior of the LLD threshold obtained
using MELODY for this particle distribution. This can be
understood from the fact that distribution with 𝜇 = 0.5 has
abrupt tails which affect the synchrotron frequency 𝜔𝑠(ℰ)
as a function of the synchrotron oscillation energy via po-
tential well distortion and its derivative 𝑑𝜔𝑠(ℰ)/𝑑ℰ can
become a non-monotonic function. This was also observed
for a simplified impedance model (23), where the discrep-
ancy between MELODY and analytic predictions was due to
potential well distortion [27]. If this type of distribution is
expected in operation, we suggest firstly to estimate the LLD
threshold using Eq. (21) and then to check the presence of
non-monotonic behavior of the derivative of the synchrotron
frequency as a function of the synchrotron oscillation energy.

CONCLUSION
Loss of Landau damping (LLD) in the longitudinal plane

can be an important performance limitation of existing and
future synchrotrons. In the present paper, the analytic ex-
pression for the LLD threshold of the dipole oscillations is
discussed for the case of a single RF system and a particle
distribution of the binomial family.

The new analysis shows that the LLD threshold is zero
for a constant inductive impedance Im𝑍/𝑘 above transi-
tion (the LHC case) or capacitive (space charge) below.
Once a finite cutoff frequency is introduced, the threshold
becomes inversely proportional to the cutoff frequency 𝑓𝑐
for 𝑓𝑐 ≫ 1/𝜏full (𝜏full is the full bunch length). We have
confirmed this dependence by solving the Lebedev matrix
equation semi-analytically as well as using the Oide-Yokoya
method, also showing that both numerical methods agree
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ζ

Figure 5: The LLD threshold as a function of bunch length
for the SPS impedance model (Fig. 4). The stars con-
nected with lines are calculated by MELODY. The lines
are the prediction from the analytical formula (21). The red
curve is LLD threshold calculated using Sacherer effective
impedance (25). Case of 𝜂 > 0 and other parameters are
𝑍norm = 1 Ohm, 𝑉0 = 7.2 MV. The corresponding intensity
parameter 𝜁 is shown on the second vertical axis.

extremely well. The commonly used dependence of the LLD
threshold on the bunch length to the fifth power is justified
only in the low cutoff-frequency limit (𝑓𝑐 ≤ 1/𝜏full). The
LLD threshold obtained by the Sacherer approach can be
reproduced only when 𝑓𝑐 ≈ 1/𝜏full. The dependence of the
threshold on the bunch length changes to the power of four
for the case of a higher cutoff frequency (𝑓𝑐 ≫ 1/𝜏full).

We introduced a new definition of the effective impedance
and the corresponding cutoff frequency to estimate the LLD
threshold of more complicated impedance models. It does
not require finding a set of the orthogonal modes which is es-
sential for the Sacherer formalism. For the case of a smooth
particle distribution function (𝜇 = 2) and the impedance
model of the CERN SPS the agreement of analytic expres-
sion with full semi-analytic calculations is very good. For
parabolic bunches (𝜇 = 0.5), the deviations are larger due
to impact of potential well distortion. We also have shown
that the Sacherer definition of the effective impedance can
significantly overestimate the LLD threshold, especially for
the bunch lengths 𝜏full > 1/𝑓𝑐.
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