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Abstract We consider the production of a heavy quark pair
in proton–proton collisions. For bottom and charm quarks,
the final state invariant mass is typically much smaller than
the collider energy (e.g. at the LHC), so that high-energy
logarithms may spoil the perturbativity of the theoretical pre-
diction at fixed order. The resummation of these logarithms
to all orders is thus needed to obtain reliable predictions.
In this work, we extend previous results on high-energy (or
small-x) resummation to differential distributions in rapid-
ity, transverse momentum and invariant mass, and implement
them in the public code HELL.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . .
2 Multi-differential small-x resummation in HELL . . .

2.1 Extension of kt factorization to differential
observables in pp collisions . . . . . . . . . . .

2.2 Small-x resummation of differential distribu-
tions in the HELL language . . . . . . . . . . . .

2.3 All partonic channels . . . . . . . . . . . . . . .
2.4 Matching to fixed order . . . . . . . . . . . . . .

3 Heavy-quark pair production . . . . . . . . . . . . . .
3.1 Results differential in the single heavy-quark . .
3.2 Results differential in the heavy-quark pair . . . .

4 Conclusions . . . . . . . . . . . . . . . . . . . . . .
Appendix A: The off-shell coefficient function . . . . . .

A.1 Kinematics for the single quark . . . . . . . . . .
A.2 Kinematics for the pair . . . . . . . . . . . . . .
A.3 Matrix element . . . . . . . . . . . . . . . . . . .
A.4 On-shell limit . . . . . . . . . . . . . . . . . . .

a e-mail: federico.silvetti@uniroma1.it (corresponding author)
b e-mail: marco.bonvini@roma1.infn.it

Appendix B: Simplifications in the resummation formu-
lae for pair kinematics . . . . . . . . . . . . . . . . .

References . . . . . . . . . . . . . . . . . . . . . . . . .

1 Introduction

In the era of LHC precision physics, considerable efforts
are required to match theoretical prediction with experimen-
tal accuracy. Such an endeavour requires several different
inputs, e.g. high-order predictions for partonic processes,
high-quality parton distributions and all-order resummation
of large logarithmic contributions.

In this work, we focus on the latter and specifically on
the so-called high-energy logarithms of the form αn

s
1
x logk 1

x ,
k < n, where x is a dimensionless scaling variable that
becomes small when the collider energy s is large. These
perturbative terms arise beyond the leading order in both
the partonic cross sections and the DGLAP splitting func-
tions governing PDF evolution (in MS-like schemes). At the
energy scales of many LHC processes, x � 1 and these loga-
rithms spoil the perturbativity of the fixed-order results. This
calls for an all-order resummation of these corrections.

The theoretical framework to perform this high-energy
(or small-x) resummation has been established during the
last 30 years starting with the resummation of splitting
functions [1–16] by means of the Balitsky–Fadin–Kuraev–
Lipatov (BFKL) equation [17–22] and arriving recently to
PDF determination with resummed theory [23–25].

One of the key steps to achieve a consistent resummed pre-
diction is the resummation of partonic cross sections, which
can be carried out to leading logarithmic (LL) precision using
the kt factorization theorem [26–28]. Recently, the resum-
mation technique for partonic cross sections has been refor-
mulated and adapted for stable numerical implementation
[29–31]. This led to the release of the High-Energy Large
Logarithms (HELL) public code, which aims to provide a
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systematic framework for implementing small-x resumma-
tion.

So far, only inclusive observables have been considered in
HELL. The sensitivity of inclusive observables to resumma-
tion effects is, however, limited. Indeed, the small-x region at
parton level is mixed with the medium- and high-x regions
in the convolution that defines the hadron-level cross sec-
tion, thereby smoothening out much of the impact of high-
energy logarithms (see e.g. Ref. [31]). Differential distribu-
tions, instead, can be more directly sensitive to specific val-
ues of partonic x , thereby enhancing the effect of small-x
resummation in some kinematic regions. Moreover differen-
tial distributions are of greater phenomenological interest,
as they can be compared more directly with experimental
measurements.

In this work we will focus on invariant mass, rapidity
and transverse momentum distributions. The resummation
of small-x logarithms in these differential cross sections was
developed in Refs. [32–34], focussing on Higgs production
via gluon fusion. Here, we revisit these results and extend
them to the modern resummation formalism of Refs. [29–
31], thereby allowing for a stable numerical implementation
thus opening the door to phenomenological studies.

We apply our findings to heavy flavour pair production,
and construct resummed predictions for distribution in invari-
ant mass, rapidity and transverse momentum of either the
heavy-quark pair or one of the heavy quarks. This process
is particularly interesting due to the availability of measure-
ments from the LHCb experiment for the production of charm
and bottom quarks in the forward region, where one of the
incoming partons is certainly at small x and thus the effect
of resummation should be marked. In addition, these data
reach values of x down to x ∼ 10−6, which is a region of
proton momentum fractions so far unexplored, as the HERA
data is limited to x � 3 · 10−5 in the perturbative regime.
Our results thus provide an important ingredient to refine the
determination of PDFs at small-x , which serves both as a test
of QCD in extreme regimes and as a tool to improve high-
energy phenomenology. All our results are available through
the new release of the HELL code.

The structure of this paper is the following. Section 2 is
dedicated to presenting the formalism of kt factorization in
a proton collider and its use to construct small-x resummed
results for differential distributions in the language of HELL.
Then, Sect. 3 is dedicated to the application of resummation
to differential heavy flavour production, parametrising the
final state respectively as the entire quark-antiquark pair or
as a single quark. We conclude in Sect. 4, and collect in
the appendices various details on analytical expressions for
heavy quark production and aspects of numerical implemen-
tation.

2 Multi-differential small-x resummation in HELL

The resummation of small-x logarithms in physical observ-
ables is based on kt factorization [26–28,35–37]. The basic
observation is that the leading small-x logarithms arise, in
a physical gauge, from kt integration over gluon exchanges
in the t channel. Therefore, in the small-x limit, the generic
amplitude squared can be decomposed into contributions that
are two-gluon irreducible (2GI) in the t channel and thus
do not contain any logarithmic enhancement. Instead, the
small-x logarithms are produced by the integration over the
momenta of the gluons connecting these 2GI block. In this
way the cross section of the process factorizes [26–28] into
a process dependent 2GI coefficient, called off-shell coeffi-
cient function, and process independent “unintegrated” PDFs
that contain the traditional collinear PDFs and the sum over
all possible process independent 2GI kernels connected by
off-shell gluons. By making explicit the dependence of unin-
tegrated PDF on collinear PDFs and comparing the result
with the standard collinear factorization, one finally obtains
an expression for the LL resummation of small-x logarithms
in the collinear partonic coefficient functions.

The last step of this procedure was traditionally performed
in Mellin moment space, which allows to obtain rather sim-
pleanalytical expressions. Despite the elegance of this result,
it was soon realized that subleading effects due to the running
of the strong coupling are important and should be included
systematically in the resummation procedure to obtain per-
turbatively stable results [11,38]. However, the inclusion of
such terms in Mellin space is complicated, and not suitable
for efficient numerical implementations. Recently, an alter-
native but equivalent formulation of the resummation was
proposed [29], that solves the technical limitations of the
original formulation by working directly in kt space, lead-
ing to an efficient numerical implementation. This novel
approach is at the core of the public code HELL, and allowed
for a number of phenomenological applications [30,31],
including the first consistent PDF fits with small-x resum-
mation [23–25].

So far, all HELL applications are for inclusive observables
(DIS structure functions [29,30] and the total Higgs pro-
duction cross section [31]). The resummation of differential
observables, of obvious interest for LHC phenomenology,
has been considered in the Mellin-space formalism. Specif-
ically, resummed expressions for rapidity distributions [32],
transverse momentum distributions [33] and double differen-
tial distributions in both rapidity and transverse momentum
[34] are available. It is the purpose of this section to reformu-
late these results in the new HELL language, thereby supple-
menting them with the running coupling contributions and
thus providing a ready-to-use numerical implementation.
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In this work, we focus on processes at hadron-hadron col-
liders that are gluon–gluon initiated at lowest order. These
include, for instance, Higgs production, jet production, or
heavy quark pair production; the latter will be considered as
a practical application in Sect. 3. The reason for this choice
is that the resummation is simpler, because at LL there are
no collinear singularities. In other processes where the low-
est order is initiated by (massless) quarks, because small-x
logarithms at LL appear from chains of emissions ending
with a gluon, the diagram entering the computation of the
off-shell coefficient function must contain at least a gluon to
(massless) quark splitting, thus producing a collinear singu-
larity. One example is the Drell-Yan process. In such cases,
the collinear singularities must be treated at the resummed
level (similarly to what is done in DIS, see Ref. [30]). A
study of the Drell-Yan process where this issue is addressed
at differential level is left to future work [39].

Before moving to the resummation, we establish the nota-
tion by presenting the structure of differential distributions in
collinear factorization for a process in proton–proton colli-
sions. We consider a generic final-state momentum q (it can
be the momentum of a single particle or the sum of momenta
of different particles) in the collider center-of-mass frame,
and we write the distribution differential in its invariant mass
squared Q2 ≡ q2, rapidity Y = 1

2 log q0+q3

q0−q3 and transverse

component squared q2
t = (q1)2 + (q2)2 as

dσ

dQ2dYdq2
t

(
τ, Q2, Y, q2

t

)

= τ
∑

i j

∫ 1

τ

dx

x

∫
dy

dCi j

dQ2dydq2
t

(
x, Q2, y, q2

t , αs ,
Q2

μ2
F

)

× Li j

( τ

x
, Y − y, μ2

F

)
,

(2.1)

with τ = Q2/s (s is the collider energy squared) and the sum
extends over all possible partons i, j in each proton. In this
expression the function

dCi j

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
(2.2)

is the parton-level coefficient function, which depends on
x = Q2/ŝc (the parton-level analog of τ ) where ŝc is the par-
tonic center-of-mass energy,1 and on y which is the rapidity
of q with respect to the partonic center-of-mass frame, and is
related to the proton-level rapidity Y by a longitudinal boost.
Indeed, Y − y is the rapidity of the partonic center-of-mass
frame with respect to the collider frame, and it is determined
by the momentum fractions x̂1, x̂2 of the partons in each
proton by Y − y = 1

2 log x̂1
x̂2

. Note that we have omitted the

1 We call it ŝc (c stands for collinear) because we will use ŝ for the
energy squared of another system.

dependence of αs and of the coefficient function on the renor-
malization scale μR, as such dependence is subleading in the
small-x limit we are interested in. Finally, the function

Li j

(
x̄, ȳ, μ2

F

)
= fi

(√
x̄e ȳ, μ2

F

)
fi
(√

x̄e−ȳ, μ2
F

)

×θ
(

e−2|ȳ| − x̄
)

(2.3)

is the (collinear) parton luminosity, given by the two PDFs

with momentum fractions x̂1,2 =
√

τ
x e±(Y−y), and including

a θ function which is encodes the condition x̂1,2 ≤ 1.
Equation (2.1) can also be rewritten as an integral over the

parton momenta x̂1, x̂2, which represents the direct extension
of the analogous formula in DIS. However, this form is more
suitable for further manipulations. Indeed, it has the form
of a Mellin-Fourier convolution, which implies that it can
be diagonalized by taking a Mellin-Fourier transform with
respect to τ and Y ,

∫ 1

0
dτ τ N−1

∫ ∞

−∞
dY eibY

dσ

dQ2dYdq2
t

=
∑

i j

dCi j

dQ2dydq2
t

(
N , Q2, b, q2

t , αs,
Q2

μ2
F

)
Li j

(
N , b, μ2

F

)
,

(2.4)

where

dCi j

dQ2dydq2
t

(
N , Q2, b, q2

t , αs,
Q2

μ2
F

)

=
∫ 1

0
dx xN

∫ ∞

−∞
dy eiby

× dCi j

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)

Li j

(
N , b, μ2

F

)
=
∫ 1

0
dx̄ x̄ N

∫ ∞

−∞
d ȳ eibȳ Li j

(
x̄, ȳ, μ2

F

)

= fi

(
N + i

b

2
, μ2

F

)
f j

(
N − i

b

2
, μ2

F

)
. (2.5)

In the last equality we have used the definition Eq. (2.3)
and changed variable from x̄, ȳ to x̂1,2 = √

x̄e±ȳ and used
explicitly the θ function to obtain the product of two Mellin
transforms

fi (N , μ2
F) =

∫ 1

0
dx̂1,2 x̂

N
1,2 fi (x̂1,2, μ

2
F). (2.6)

We further observe that the dependence on the transverse
momentum does not affect the structure of the cross section
formula, and thus impacts only the kinematics.
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2.1 Extension of kt factorization to differential observables
in pp collisions

The works of Refs. [32–34] provide a proof of a resummation
formula for differential observable at LL accuracy with fixed
coupling through the so-called ladder-expansion approach.
This may seem somewhat different from the original works
[26–28] where the resummation is obtained by proving a
kt factorization and comparing it with the standard collinear
factorization formula. In fact, despite the different languages,
the two approaches are based exactly on the same underlying
factorization property and lead to exactly the same result. It
is thus natural to imagine that the results of Refs. [32–34] on
differential distributions could be reformulated in terms of
the kt factorization approach.

Indeed, it is not difficult to follow the steps of the deriva-
tion of Refs. [32–34] and recognise the ingredients of kt fac-
torization to construct a factorized formula. Here, rather than
repeating such a derivation, we limit ourselves to formulate
the result in kt factorization, showing that it corresponds to
the results of Refs. [32–34] at LL and fixed coupling.

Similarly to the inclusive case, the differential cross sec-
tion in kt factorization turns out to be a straightforward exten-
sion of the collinear factorization Eq. (2.1) where the partons
are replaced by off-shell gluons and integration over this off-
shellness is added. The result reads

dσ

dQ2dYdq2
t

= τ

∫ 1

τ

dz

z

∫
dη

∫ ∞

0
dξ1

∫ ∞

0
dξ2

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, η, q2
t , αs)L

(
τ

z
, Y − η, ξ1, ξ2

)
,

(2.7)

where

L (z̄, η̄, ξ1, ξ2) = Fg

(√
z̄eη̄, ξ1

)
Fg

(√
z̄e−η̄, ξ2

)

×θ
(
e−2|η̄| − z̄

)
(2.8)

and ξ1,2 = k2
1,2/Q

2 are the offshellness of the gluons nor-
malized to the hard scale Q2, and k1,2 are the transverse
components of the off-shell gluon momenta (for more details
on the kinematics, see Appendix A). In the expression above
dC is the (differential) off-shell coefficient function, repre-
senting the process-dependent hard scattering initiated by
off-shell gluons. More precisely, it corresponds to the last
2GI part (in the t channel) of the amplitude squared of the
process, saturating the off-shell gluon indices with a suit-
able projector [26–28]. Everything else is collected into the
two unintegrated gluon PDFs Fg , that include the standard
collinear PDFs and the chain of emissions from the initial
parton to the last gluon (the ladder in the language of Refs.
[32–34]). The integration variables z and η are the analog of
x and y of Eq. (2.1), but referred to the center-of-mass frame

of the off-shell partons. More precisely, we consider as the
parton-level center-of-mass frame in kt-factorization the one
obtained if we set the off-shellness equal to zero, so that it
is related to the collider frame by a longitudinal boost. More
details are given in Appendix A.

We now show that Eq. (2.7) is equivalent to the result of
Ref. [34].2 First, we take the Mellin–Fourier transform of
this expression with respect to τ and Y ,

∫ 1

0
dτ τ N−1

∫ ∞

−∞
dY eibY

dσ

dQ2dYdq2
t

=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

× dC
dQ2dηdq2

t
(N , ξ1, ξ2, Q

2, b, q2
t , αs)L (N , b, ξ1, ξ2) ,

(2.9)

with
dC

dQ2dηdq2
t
(N , ξ1, ξ2, Q

2, b, q2
t , αs)

=
∫ 1

0
dz zN

∫ ∞

−∞
dη eibη

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, η, q2
t , αs)

L (N , b, ξ1, ξ2)

=
∫ 1

0
dz̄ z̄N

∫ ∞

−∞
dη̄ eibη̄L (z̄, η̄, ξ1, ξ2)

= Fg

(
N + i

b

2
, ξ1

)
Fg

(
N − i

b

2
, ξ2

)
, (2.10)

where we have used the definition Eq. (2.8), changed vari-
able from z̄, η̄ to x1,2 = √

z̄e±η̄ (the longitudinal proton’s
momentum fractions carried by each off-shell gluon) and
used the θ function to obtain the product of two Mellin trans-
forms

Fg(N , ξ) =
∫ 1

0
dx1,2 x

N
1,2Fg(x1,2, ξ). (2.11)

At this point we follow Ref. [26–28] to write the unintegrated
PDF as

Fg (N , ξ) = R(N , αs)γ (N , αs)

(
Q2

μ2
F

)γ (N ,αs )

×ξγ (N ,αs )−1 fg(N , μ2
F), (2.12)

where γ (N , αs) is the resummed (gluon) anomalous dimen-
sion at LL and R(N , αs) is a scheme dependent factor. Note

2 Notice that Ref. [34] considers only the double differential distribu-
tion in rapidity and transverse momentum, because it focusses on the
Higgs production process, where the invariant mass is clearly fixed to
the Higgs mass. However, the derivation there is general enough to be
valid also for invariant mass distributions.
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that we are ignoring quark contributions for simplicity (we
will discuss quarks later in Sect. 2.3). Plugging Eq. (2.12)
into Eq. (2.9) we immediately recover the result of Ref. [34].
Integrating over q2

t we also reproduce the result of Ref. [32].
To reproduce the result of Ref. [33], which is not differen-

tial in rapidity, it is simpler to integrate Eq. (2.7) over Y and
then take simply a Mellin transform before using Eq. (2.12).
The first step leads to

dσ

dQ2dq2
t

= τ

∫ 1

τ

dz

z

∫ ∞

0
dξ1

∫ ∞

0
dξ2

× dC
dQ2dq2

t
(z, ξ1, ξ2, Q

2, q2
t , αs)L

(
τ

z
, ξ1, ξ2

)
, (2.13)

with

L (z̄, ξ1, ξ2) =
∫

dη̄Fg(
√
z̄eη̄, ξ1)Fg(

√
z̄e−η̄, ξ2) θ(e−2|η̄| − z̄)

=
∫ 1

z̄
dx2 Fg

(
z̄

x2
, ξ1

)
Fg(x2, ξ2). (2.14)

Because this new rapidity-integrated luminosity has the form
of a Mellin convolution, after taking a Mellin transform of
the cross section we get
∫ 1

0
dτ τ N−1 dσ

dQ2dq2
t

=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

dC
dQ2dq2

t

×(N , ξ1, ξ2, Q
2, q2

t , αs)Fg (N , ξ1) Fg (N , ξ2) , (2.15)

with

dC
dQ2dq2

t
(N , ξ1, ξ2, Q

2, q2
t , αs)

=
∫ 1

0
dz zN

dC
dQ2dq2

t
(z, ξ1, ξ2, Q

2, q2
t , αs). (2.16)

Plugging now Eq. (2.12) into Eq. (2.15) we finally obtain the
result of Ref. [33].

Because the unintegrated PDF depends on ξ through ξγ−1,
the integrals over ξ1,2 take the form of Mellin transforms.
Therefore, the results above can be expressed (up to factors)
as the γ ’th Mellin moments with respect to ξ1,2 of the par-
tonic off-shell coefficient functions, usually called impact
factors. These results can be further supplemented with run-
ning coupling effects as described in Refs. [11,38]. However,
as anticipated, adding running coupling effects to the impact
factors is not suitable for numerical implementation. In the
next section we will start again from Eq. (2.7) to construct a
resummed expression at differential level in the HELL lan-
guage, which makes the inclusion of running coupling effects
straightforward and leads to a stable numerical implementa-
tion.

2.2 Small-x resummation of differential distributions in the
HELL language

The main advantage of the formulation of small-x resum-
mation of Refs. [29–31] used in the HELL code is the much
simpler and reliable numerical implementation. The reason is
twofold. On the one hand, the inclusion of running coupling
effects in the resummation can be done straightforwardly
without approximation and without affecting the numerical
performance, as opposed to the impact-factor approach of
Refs. [11,38] where it leads to a divergent series that has to be
treated in an approximate way. On the other hand, the result
can be expressed in terms of the off-shell coefficient function
directly in momentum space, as opposed to the impact-factor
formulation where a double Mellin transform in both z and
ξ is required for each initial-state off-shell gluon. If these
Mellin transforms can be computed analytically, the (very
minor) price to pay of the HELL formulation is that the ξ

integration has to be performed numerically. However, when
the Mellin transform in ξ cannot be computed analytically,
the impact-factor formulation becomes problematic, while in
the HELL approach this does not represent a problem.

The key step of the HELL approach is to write the uninte-
grated PDF in terms of the collinear gluon and quark-singlet
PDFs in a way that includes running coupling effects. The
generic form of such an expression, valid at least at LL, is
[29–31]

Fg(N , ξ) = U ′ (N , Q2ξ, μ2
F

)
fg(N , μ2

F)

+CF

CA

[
U ′ (N , Q2ξ, μ2

F

)
− δ(ξ)

]
fq(N , μ2

F), (2.17)

where

U ′ (N , Q2ξ, μ2
F

)
≡ d

dξ
U
(
N , Q2ξ, μ2

F

)
(2.18)

and U (N ,k2, μ2
F) is the evolution function of the collinear

gluon3 from the scale μ2
F to the scale k2, times the scheme

dependent function R(N , αs). In other words, U (N ,k2, μ2
F)

is the solution of the DGLAP equation using the small-x LL
anomalous dimension, which involves only gluons (they do
not mix with the quarks at LL). Keeping running coupling
effects when solving the DGLAP evolution equation pro-
vides the necessary ingredient to include the sought running
coupling effects in the resummation [29–31]. Conversely,
evaluating the evolution function at fixed-coupling we get
back Eq. (2.12).

3 It is worth noting that the quark part of (2.17) uses the same evolutor
of the gluon part. This is justified as, in the x → 0 limit, the leading
splitting functions, Pgg and Pgq , are identical up to a factor CF

CA
. The

subtraction of the δ (ξ) in the quark part, that represents the no-splitting
event in which the parton remains collinear, is required as the first split-
ting of the quark into a gluon must be present, and so that contribution
must start at order αs .
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In practice, to simplify the numerical implementation and
avoid potential numerical issues, the evolution function is
approximated in a way that reproduces exactly the results of
Refs. [11,38], namely it is valid at LL and at “leading running
coupling” (i.e. leading β0 terms are retained). Within this
approximation it takes the form [30,31]

U (N , Q2ξ, μ2
F) 
 R(N , αs) Dhigher-twist

(
Q2

μ2
F

ξ

)

×UABF

(
N ,

Q2

μ2
F

ξ

)
, (2.19)

where

Dhigher-twist(ξ)

=

⎧
⎪⎪⎨

⎪⎪⎩

1 ξ ≥ 1

1 − (−αsβ0 log ξ)
1+ 1

αsβ0 ξ0 < ξ < 1

0 ξ ≤ ξ0,

(2.20)

ξ0 = exp
−1

αsβ0
,

is a damping function at small ξ , designed to keep unaffected
the perturbative expansion of the evolution function while
ensuring that it vanishes at the Landau pole ξ0 as it would do
at LL with full running coupling [30], and

UABF(N , ξ) =
(

1 + r(N , αs) log ξ
) γ (N ,αs )

r(N ,αs )
,

r(N , αs) = α2
s β0

d

dαs
log
[
γ (N , αs)

]
, (2.21)

is the approximated evolution function. The anomalous
dimension γ appearing above is in principle the LL anoma-
lous dimension. However, it is convenient to include sublead-
ing contributions in it that simply produce subleading effects
in the resummation but make the result consistent with the
resummation in DGLAP evolution. As this discussion is not
central for the present work, we refer the Reader to Ref. [31]
for further detail. In the numerical implementation, we will
ignore the scheme factor R(N , αs). The reason is that we
use to perform small-x resummation in the so-called Q0MS
scheme [28,36,40,41] where by definition R(N , αs) = 1.
This scheme differs from the usual MS scheme at relative
order α3

s (at LL), and therefore it can be safely used in con-
junction with MS fixed-order computations up to NNLO.

Let us focus for simplicity on the gluon contribution
only, thus neglecting the quark term in Eq. (2.17). Plugging
Eq. (2.17) into Eq. (2.9) we get
∫ 1

0
dτ τ N−1

∫ ∞

−∞
dY eibY

dσ

dQ2dYdq2
t

=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

dC
dQ2dηdq2

t
(N , ξ1, ξ2, Q

2, b, q2
t , αs)

×U ′
(
N + i

b

2
, Q2ξ1, μ

2
F

)
fg

(
N + i

b

2
, μ2

F

)

×U ′
(
N − i

b

2
, Q2ξ2, μ

2
F

)
fg

(
N − i

b

2
, μ2

F

)
. (2.22)

Comparing this expression with the gluon–gluon channel of
the collinear factorization expression Eq. (2.4) and Eq. (2.5)
we find the identification

dCgg

dQ2dydq2
t

(
N , Q2, b, q2

t , αs,
Q2

μ2
F

)

=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

dC
dQ2dηdq2

t
(N , ξ1, ξ2, Q

2, b, q2
t , αs)

×U ′
(
N + i

b

2
, Q2ξ1, μ

2
F

)
U ′
(
N − i

b

2
, Q2ξ2, μ

2
F

)
.

(2.23)

So far this is not dissimilar to the approach of older works;
in particular, if one replaces U ′ with the LL fixed-coupling
expression from Eq. (2.12) one recognises the definition
of the impact fator. Here instead, we keep a more generic
expression for U ′ and further manipulate the result. Indeed,
we notice that the N , b dependence of the right-hand side
of Eq. (2.23) has the same form of the right-hand side of
Eq. (2.4) or Eq. (2.9). We thus recognise Eq. (2.23) as the
Mellin-Fourier transform of

dCgg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)

=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)

×U ′
(√

x

z
eη̄, Q2ξ1, μ

2
F

)
U ′
(√

x

z
e−η̄, Q2ξ2, μ

2
F

)
,

(2.24)

which is expressed as a 4-dimensional integral (to be
performed numerically in general) over simple quantities,
namely the differential off-shell coefficient function and the
evolution factors in physical momentum space. This result
is very convenient from a numerical point of view. The two
additional integrations over z and η are much simpler to com-
pute than the inverse Mellin-Fourier transform over N and
b of Eq. (2.23), especially in HELL, because the anomalous
dimension appearing in the definition of U ′ is available in
HELL only for values of N along a specific inversion contour,
which would not be sufficient here due to the ±ib imaginary
shift. Instead, because the evolution function U is univer-
sal (process independent), it is computed once and for all
in HELL directly in momentum space, and it can be easily
used in an expression like Eq. (2.24). Moreover, as already
mentioned, with respect to the impact-factor formulation this
result easily incorporates the running coupling contributions
through the use of the proper evolution functionU , Eq. (2.19).
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We want to emphasize a difference with respect to previ-
ous formulations of resummation in the HELL language. In
previous works, because the N dependence of the off-shell
coefficient function is subleading, we used to set N = 0 in
it before computing the inverse Mellin transform. The main
motivation was that the analytical expressions obtained in this
way were simpler, and in some cases it is not possible to com-
pute the Mellin transform of the off-shell coefficient function
analytically for generic N , but it is possible for N = 0. In
our case, this approach would correspond to setting N = 0
in the off-shell coefficient function in Eq. (2.23) before com-
puting the inverse Mellin-Fourier transform. However, when
dealing with differential distribution we are often not able
to compute analytically the Mellin transform of the off-shell
coefficient function, not even in N = 0. So there would be no
advantage in setting N = 0 in it. Conversely, there would be
disadvantages. Indeed, some physical kinematic constraints
would be approximated if computed in N = 0. One of the
consequences is that the endpoint of the rapidity distribution,
which is a physical property of the process determined by its
kinematics, would be wrong when setting N = 0. This is
not dissimilar to what has been found in Ref. [30] in the case
of DIS, where quark mass effects on kinematic constraints
were lost when setting N = 0, requiring a restoration of the
constraints by hand. Here, we thus decide that it is much
better (and simpler) to keep the subleading N dependence,
thereby preserving physical kinematic constraints, without
paying any price from the numerical point of view.

2.3 All partonic channels

In the resummed expression Eq. (2.24) the key ingredient is
(the ξ -derivative of) the evolution function in x space,4 com-
puted in HELL as the inverse Mellin transform of Eq. (2.19).
We observe that such inverse Mellin transform is a distribu-
tion. Indeed, expanding U (N , Q2ξ, μ2

F) in powers of αs the
zeroth order term is just 1, whose inverse Mellin is δ(1 − x).
Since this is the only distributional contribution inU , we find
it more convenient to write it explicitly,

U (N , Q2ξ, μ2
F) = 1 +Ureg(N , Q2ξ, μ2

F)

�
U (x, Q2ξ, μ2

F) = δ(1 − x) +Ureg(x, Q
2ξ, μ2

F), (2.25)

where Ureg is an ordinary function. Computing the ξ -
derivative appearing in Eq. (2.17) is not entirely trivial.
To do so we first introduce explicitly a factor θ(ξ) in
the definition of the evolution function, U (N , Q2ξ, μ2

F) =

4 As we are running out of letters, we are now using x for the generic
first argument of the evolution function in momentum space, not to be
confused with the variable x = Q2/ŝc which is the argument of the
collinear coefficient function.

θ(ξ)
[
1 +Ureg(N , Q2ξ, μ2

F)
]
, which is conceptually harm-

less as certainly the scale Q2ξ = k2 has to be positive. When
deriving we get

U ′(N , Q2ξ, μ2
F) = δ(ξ) + δ(ξ)Ureg(N , 0, μ2

F)

+ θ(ξ)U ′
reg(N , Q2ξ, μ2

F)

= δ(ξ) − δ(ξ)

∫ μ2
F

Q2

0
dξ ′ U ′

reg(N , Q2ξ ′, μ2
F)

+ θ(ξ)U ′
reg(N , Q2ξ, μ2

F)

= δ(ξ) +
[
U ′

reg(N , Q2ξ, μ2
F)
]

+ (2.26)

where in the second step we have used the fact that
Ureg(N , μ2

F , μ
2
F) = 0 and in the last step we have defined

the plus distribution according to

∫ ∞

0
dξ f (ξ) [g(ξ)]+ =

∫ μ2
F

Q2

0
dξ [ f (ξ) − f (0)] g(ξ)

+
∫ ∞

μ2
F

Q2

dξ f (ξ)g(ξ). (2.27)

The δ(ξ) term appearing as the derivative of the zeroth order
of the evolution has a precise physical meaning: it represents
the undisturbed gluon, that does not emit and thus it remains
on-shell (ξ = 0). This indeed corresponds to the term sub-
tracted in the quark contribution to the unintegrated PDF,
Eq. (2.17).

We now observe that the introduction of the plus dis-
tribution is not really necessary, because the contribution
Ureg(N , 0, μ2

F) appearing in the first line of Eq. (2.26) is
finite. More precisely, because U (N , 0, μ2

F) = 0 by con-
struction, Eq. (2.19), we have Ureg(N , 0, μ2

F) = −1, corre-
sponding in x-space to

Ureg(x, 0, μ2
F) = −δ(1 − x). (2.28)

If this is the case, the first two terms in the first line of
Eq. (2.26) would cancel, thus leaving the simpler result
U ′(N , Q2ξ, μ2

F) = U ′
reg(N , Q2ξ, μ2

F) which is what we
would have obtained if we hadn’t introduced the θ function.
This implies that the nice physical distinction between the
no-emission contribution δ(ξ) and the at-least-one-emission
contributionU ′

reg(N , Q2ξ, μ2
F) gets lost. This is clearly unde-

sirable, and may hint at a problem in the construction of the
evolution function.

To understand and overcome this problem, we observe
that the ξ → 0 limit of U ′

reg, Eq. (2.28), is localised at large
x . But the evolution function at large x is not expected to be
accurate, as it is constructed to resum logarithmic contribu-
tions at small x . Therefore, we can (and we do) damp the
function Ureg(x, Q2ξ, μ2

F) (and thus its ξ -derivative) at large
x , with a damping function of the form (1 − x)a (we use
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a = 2 in the code). After damping, the evolution function
satisfies

Ureg(x = 1, Q2ξ, μ2
F) = 0, (2.29)

for any value of ξ , including ξ = 0. In this way, we obtain
Ureg(x, 0, μ2

F) = 0 and thus Ureg(N , 0, μ2
F) = 0, implying

that the second term in the first line of Eq. (2.26) vanishes,
thus giving

U ′(N , Q2ξ, μ2
F) = δ(ξ) +U ′

reg(N , Q2ξ, μ2
F)

�
U ′(x, Q2ξ, μ2

F) = δ(ξ)δ(1 − x) +U ′
reg(x, Q

2ξ, μ2
F). (2.30)

In other words, because of the large-x damping, the plus
distribution is ineffective. For completeness, we have verified
that the numerical integral of U ′

reg(x, Q
2ξ, μ2

F) from zero to

μ2
F/Q

2 gives indeed zero for all values of x .

Let us now come back to the resummed coefficient
function. According to Eq. (2.30), the unintegrated PDF
Eq. (2.17) can be rewritten as

Fg(N , ξ) =
[
U ′

reg

(
N , Q2ξ, μ2

F

)
+ δ(ξ)

]
fg(N , μ2

F)

+CF

CA
U ′

reg

(
N , Q2ξ, μ2

F

)
fq(N , μ2

F). (2.31)

Physically, the δ(ξ) contribution in the equation above repre-
sents the (on-shell) gluon that does not emit, thus producing
no logs: this is the fixed-order contribution, and it reproduces
the on-shell result. The other term, U ′

reg, is the term contain-
ing at least one emission, and thus at least one small-x log.

Starting from Eq. (2.31) and proceeding as in the previous
section, keeping also the quark contributions this time, we
obtain the following expressions

dCgg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄
dC

dQ2dηdq2
t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)

×
[
U ′

reg

(√
x

z
eη̄, Q2ξ1, μ

2
F

)
+ δ(ξ1)δ

(
1 −

√
x

z
eη̄

)][
U ′

reg

(√
x

z
e−η̄, Q2ξ2, μ

2
F

)
+ δ(ξ2)δ

(
1 −

√
x

z
e−η̄

)]
, (2.32a)

dCqg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
= CF

CA

∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)

×U ′
reg

(√
x

z
eη̄, Q2ξ1, μ

2
F

)[
U ′

reg

(√
x

z
e−η̄, Q2ξ2, μ

2
F

)
+ δ(ξ2)δ

(
1 −

√
x

z
e−η̄

)]
, (2.32b)

dCgq

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
= CF

CA

∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)

×
[
U ′

reg

(√
x

z
eη̄, Q2ξ1, μ

2
F

)
+ δ(ξ1)δ

(
1 −

√
x

z
eη̄

)]
U ′

reg

(√
x

z
e−η̄, Q2ξ2, μ

2
F

)
,

(2.32c)

dCqq

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=
(
CF

CA

)2 ∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)

×U ′
reg

(√
x

z
eη̄, Q2ξ1, μ

2
F

)
U ′

reg

(√
x

z
e−η̄, Q2ξ2, μ

2
F

)
. (2.32d)
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These results can be written in a more compact form as

dCgg

dQ2dydq2
t

= dCreg

dQ2dydq2
t

+ dCaux +
dQ2dydq2

t
+ dCaux −

dQ2dydq2
t

+ dC
dQ2dηdq2

t
(x, 0, 0, Q2, y, q2

t , αs),

(2.33a)

dCqg

dQ2dydq2
t

= CF

CA

[
dCreg

dQ2dydq2
t

+ dCaux +
dQ2dydq2

t

]
, (2.33b)

dCgq

dQ2dydq2
t

= CF

CA

[
dCreg

dQ2dydq2
t

+ dCaux −
dQ2dydq2

t

]
, (2.33c)

dCqq

dQ2dydq2
t

=
(
CF

CA

)2 dCreg

dQ2dydq2
t

(2.33d)

having defined

dCreg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)U

′
reg

(√
x

z
eη̄, Q2ξ1, μ

2
F

)
U ′

reg

(√
x

z
e−η̄, Q2ξ2, μ

2
F

)
(2.34)

and

dCaux ±
dQ2dydq2

t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=
∫ ∞

0
dξ

∫ 1

x

dz

z

dC
dQ2dηdq2

t

(
z, ξ, 0, Q2, y ± 1

2
log

z

x
, q2

t , αs

)
U ′

reg

(
x

z
, Q2ξ, μ2

F

)
,

(2.35)

where in the last equation we have used the symmetry
ξ1 ↔ ξ2 of the off-shell coefficient. So in conclusion the
resummed expressions for all channels are written in terms
of a “regular” resummed coefficient and two simpler “auxil-
iary” functions,5 each defined in terms of integrals over ordi-
nary functions (and thus easy to implement numerically). The
gg coefficient function also depends on the on-shell limit of
the off-shell coefficient; however, whenever the resummed
result is matched to a fixed-order computation, this contri-
bution will be subtracted and thus in practical applications it
will never be needed.

We observe that the auxiliary functions are obtained by
putting on shell one of the incoming gluons. Therefore, they
represent a contribution in which resummation, obtained
from kt factorization, acts on a single initial state parton,
while the other obeys the standard collinear factorization.
This resembles the hybrid factorization discussed in Refs.
[42–47] and used to describe forwardproduction. We believe
that our auxiliary contribution does indeed represent the same
resummed contributions obtained from the hybrid factoriza-

5 The name “auxiliary” follows the nomenclature introduced in Ref.
[31], extended to differential distributions.

tion. However, there may be some differences due to the
different approaches to resummation, that we aim at investi-
gating in a future work.

2.4 Matching to fixed order

The resummed result Eq. (2.32) contains only the small-x
logarithms. For phenomenological applications, it has to be
matched with a fixed-order computation. To do this, we need
to compute its expansion in powers of αs up to some order,
subtract it and replace it with the exact fixed-order result at
the same order.

Computing the αs expansion of the resummed result is in
principle straightforward, but it needs some care in practice
as we shall now see. Note that the αs dependence comes fully

from the integrand of Eq. (2.32), and specifically from the
evolution function U ′

reg, as the off-shell coefficient function
is needed only at the lowest non-trivial order to achieve LL
accuracy. To construct the expansion of U ′

reg, let us consider
the expansion ofUreg first. Because of Eqs. (2.19) and (2.21),
it is clear that such an expansion contains powers of log ξ .
The first couple of orders take the form (in both the MS and
Q0MS schemes)

Ureg(N , Q2ξ, μ2
F) = αs(μ

2
F)γ0(N ) log

Q2ξ

μ2
F

+ α2
s (μ

2
F)

[
γ1(N ) log

Q2ξ

μ2
F

+ 1

2
γ0(N )

× (γ0(N ) − β0) log2 Q2ξ

μ2
F

]
+ O(α3

s ), (2.36)

having assumed the expansion γ (N , αs) = αsγ0 + α2
s γ1 +

O(α3
s ) for the resummed anomalous dimension (see Refs.

[31,48] for explicit expressions). After computing the deriva-
tive with respect to ξ , terms of the form logk ξ/ξ appear. Such
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terms are not integrable in the ξ → 0 limit, and thus require
a regularization procedure.

To do so, we recall that the actual form of the deriva-
tive of the evolution function has a plus distribution around
U ′

reg, Eq. (2.26). The plus distribution does not play a role

at resummed level because to all orders U ′
reg(N , 0, μ2

F) = 0,
but this is not true order by order. The order by order expan-

sion of the evolution function diverges at ξ = 0, and so the
plus distribution becomes essential.

With a slight abuse of notation,6 starting from Eq. (2.36),
we can write the first couple of orders of the expansion of
U ′

reg,

U ′
reg(N , Q2ξ, μ2

F) = αs(μ
2
F)γ0(N )

(
1

ξ

)

+

+ α2
s (μ

2
F)

⎡

⎢
⎣γ1(N )

(
1

ξ

)

+
+γ0(N ) (γ0(N ) − β0)

×
⎛

⎜
⎝

log Q2ξ

μ2
F

ξ

⎞

⎟
⎠

+

⎤

⎥
⎦+ O(α3

s ), (2.37)

or, in x space,

U ′
reg(x, Q

2ξ, μ2
F) = αs(μ

2
F)P0(x)

(
1

ξ

)

+

+ α2
s (μ

2
F)

⎡

⎢
⎣P1(x)

(
1

ξ

)

+
× + (P00(x) − β0P0(x))

×
⎛

⎜
⎝

log Q2ξ

μ2
F

ξ

⎞

⎟
⎠

+

⎤

⎥
⎦+ O(α3

s ), (2.38)

6 The most correct way of writing these results is to keep the plus
distribution around U ′

reg everywhere.

having defined P00(x) as the Mellin convolution of two
P0’s, and having used the expansion P(x, αs) = αs P0(x) +
α2
s P1(x) + O(α3

s ) which is the inverse Mellin transform of
the resummed anomalous dimension γ (N , αs).

Plugging these expansions into Eq. (2.34) and Eq. (2.35)
we finally obtain the sought perturbative expansion of the
resummed result. In particular, we find up to relative O(α2

s )

dCreg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=
∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 1

x

dz

z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q

2, y − η̄, q2
t , αs)

[
α2
s (μ

2
F)

(
1

ξ1

)

+

(
1

ξ2

)

+
P0

(√
x

z
eη̄

)
P0

(√
x

z
e−η̄

)
+ O(α3

s )

]
(2.39)

dCaux ±
dQ2dydq2

t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=
∫ ∞

0
dξ

∫ 1

x

dz

z

dC
dQ2dηdq2

t

×
(
z, ξ, 0, Q2, y ± 1

2
log

z

x
, q2

t , αs

)
⎧
⎪⎨

⎪⎩
αs(μ

2
F)P0

(
x

z

)(
1

ξ

)

+

+ α2
s (μ

2
F)

[
P1

(
x

z

)(
1

ξ

)

+
+
(
P00

(
x

z

)
−β0P0

(
x

z

))
⎛

⎜
⎝

log Q2ξ

μ2
F

ξ

⎞

⎟
⎠

+

⎤

⎥
⎦+ O(α3

s )

⎫
⎪⎬

⎪⎭
(2.40)

out of which we can construct the expansion of each coeffi-
cient function through Eq. (2.33).

We note in conclusion that this procedure is not dissimilar
to what was used in previous works, see e.g. Ref. [31], where
the expansion was obtained by expanding the impact factor.
However, the derivation obtained here is more “direct”, and
the result is written in a form that is immediately usable
to compute the expansion numerically, without the need to
compute analytically the impact factor.

3 Heavy-quark pair production

Having described the general formalism for the small-x
resummation of differential distributions in HELL, we now
focus on a specific process: heavy-quark pair production in
proton–proton collisions. This process is relevant because at
the LHC, and in particular at LHCb, it is measured in the
forward region where one parton is at small x , and it can
thus provide important constraints on the PDFs (the gluon in
particular) in a region of x that is so far unexplored. More-
over, NLO results for this process are available [49,50], and
NNLO corrections have also been computed recently [51],
making this process suitable for precision studies.

The process can be schematized as

p (P1) + p (P2) → Q (p) + Q̄ ( p̄) + X, (3.1)

123



Eur. Phys. J. C           (2023) 83:267 Page 11 of 33   267 

where the two incoming protons have light-cone momenta
P1,2 with (P1 + P2)

2 = s, the outgoing heavy quarks have
mass m and momenta p, p̄ with p2 = p̄2 = m2, and X rep-
resents any additional radiation together with the remnants
of the protons. For simplicity, we consider the final state
to be given by the heavy quarks themselves, thus ignoring
their hadronization and eventual decay into lighter hadrons.7

These effects should not affect the impact of resummation,
as they factorize (at least at LL) with respect to the hard scat-
tering process. A full phenomenological study of the process
including these effects is beyond the scope of this paper and
is left to future work. Rather, the scope of this section is to
demonstrate the application of the framework introduced in
this paper.

The resummation of high-energy logarithms in heavy
quark pair production has been considered in the literature,
both at the level of the total cross section [27,52] and for some
differential observables [45,46,53–55]. To perform small-x
resummation of differential distributions in our approach, we
need to compute the coefficient function of the partonic sub-
process where two off-shell gluons produce the final state. At
lowest order, as appropriate for LL resummation, the process
is

g∗(k1) + g∗(k2) → Q (p) + Q̄ ( p̄) , (3.2)

where the off-shell gluon momenta are parametrized as8

k1 = x1P1 + k1, (3.3a)

k2 = x2P2 + k2. (3.3b)

In this way, the off-shellness of the gluons is given by a
transverse component with respect to the beam axis. The
longitudinal momentum fractions x1,2 correspond to the first
argument of the unintegrated PDFs, and their ratio is related
to the longitudinal boost of the partonic reference frame used
to compute the coefficient function by Y − η = 1

2 log x1
x2

.
Note that this frame is not in general the partonic center-of-
mass frame due to the presence of a transverse component in
the gluon momenta, but it reduces to it in the limit where the
gluons are on shell. Additional information on the kinematics
is given in Appendix A.

In order to compute the actual off-shell coefficient func-
tion, we need to decide which is the vector q with respect

7 This simplification does not raise concerns about infrared safety, as
the mass of the heavy quarks acts as an infrared regulator for the final
state.
8 Here we are using a slightly inconsistent notation. Indeed, we assume
that the bold vectors k1,2 are 2-dimensional Euclidean vectors in the
transverse plane. However, when they are summed to 4-dimensional
Minkowski vectors, we mean them to be the 4-vector with the same
spatial components. The confusion may only arise when they appear in
a scalar product, because the two interpretations would differ by a sign.
In these cases, we always consider them as 2-vectors.

to which we want to be differential. There are two natural
choices: either q is one of the two heavy quark momenta p
or p̄, or it is the sum of the two momenta, thus representing
the momentum of the pair. We now present results for either
choice in turn.

3.1 Results differential in the single heavy-quark

In this section we consider the final state to be one of the
heavy quarks, and thus focus on the differential distribution
in the components of the momentum q = p. The details of
the computation of the partonic off-shell coefficient function
are given in Appendix A.1.

We start by presenting the resummed result at parton
level, computed according to Eqs. (2.33). We consider the
resummed coefficient functions for bottom pair production,
with mb = 4.6 GeV, double differential in (partonic) rapid-
ity y and transverse momentum pt of the bottom quark.9 In
Fig. 1, we show such distribution as a function of y and for
fixed pt = 2 GeV, which is a value accessible at LHCb for the
production of b-hadrons. In the left panel, we plot separately
the regular Eq. (2.34) and auxiliary Eq. (2.35) contributions
out of which the various channels can be built according
to Eqs. (2.33), while, in the right panel, we combine them
according to those equations to construct the coefficient func-
tions for the gg, gq, qg and qq channels. We observe that
the shapes of these functions are quite peculiar, mostly due to
the peak of the auxiliary contribution at large rapidity. How-
ever, we stress that these are parton-level results, and they are
not expected to behave smoothly. In fact, due to the all-order
nature of these contributions, it is natural that they present
some new features missing in the fixed order.

To appreciate the effect of the resummed contributions on
physical cross sections, we present the differential distribu-
tions after convolution with the PDFs in Fig. 2, considering
for definiteness bottom pair production at LHC 13 TeV. We
use the NNPDF31sx [23] PDF set that has been obtained in
the context of a study on the inclusion of small-x resum-
mation in PDF fits. The advantage of this set is that it pro-
vides PDFs consistently obtained with and without the inclu-
sion of small-x resummation. In the following, we will use
the same fixed-order PDFs to compute both the fixed-order
and the resummed result, in order to emphasise the effect of
resummation in the perturbative coefficient. Also, we pro-
vide resummed results obtained with the resummed PDFs,
to see how much the resummation in PDFs impacts the cross
section. However, performing a thorough phenomenological
study is beyond the scope of this paper and is left to future
work.

9 As we consider the bottom quarks to be on shell, the invariant mass
distribution is a delta function and therefore for this process the triple
differential distribution is of no interest.
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Fig. 1 The auxiliary Eq. (2.35) and regular Eq. (2.34) functions as
a function of partonic rapidity y for single quark production of mass
m = 4.6 GeV at pt = 2 GeV and x = 10−5 (left plot). The resummed

coefficient functions at parton level for each partonic channel con-
structed according to Eq. (2.33) for the same kinematics (right plot)

Fig. 2 The double differential distribution in rapidity and transverse
momentum of the bottom quark, plotted as a function of the rapidity
for pt = 2 GeV, for bottom pair production at LHC 13 TeV. The left
plots are obtained using NNPDF31sx at fixed order, while in the right

plot the resummed result is computed with the resummed PDFs from
the same family. The uncertainty band represents an estimate of NLL
corrections

The plots of Fig. 2 show the double differential distribu-
tion in rapidity Y and transverse momentum pt at various
orders (upper plots) and their ratio to the LO (lower plots),
as a function of Y and for fixed pt = 2 GeV. In the left
plots, we use the same (fixed-order) PDFs for both fixed-

order results and resummed results. We show the LO cross
section in dashed orange and the NLO one in dashed blue. The
latter, obtained from POWHEG-box [56–58], is about twice
as large as the LO result, which is partly due to the large value
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Fig. 3 Breakdown of the individual contributions to the resummed
result from the gg, gq + qg and qq channels separating the regular and
auxiliary parts. The left plot focuses on the resummed contribution to be

matched to the LO, while the right plot focuses on the resummed con-
tribution to be matched to NLO. The results in these plots are obtained
using NNPDF31sx with resummation

of αs at this low scale.10 In solid we plot the LO+LL (orange)
and NLO+LL (blue) results. We observe that resummation
is a positive correction at LO, of about 50% at central rapid-
ity and decreasing towards the rapidity endpoints. At NLO,
the correction of resummation is still positive, but smaller
in size, showing that the perturbative expansion converges
better when resummation is included. Overall, the NLO+LL
result is approximately a 140% correction over the LO across
the whole rapidity range except towards the endpoints, where
it goes down a bit following the analogous behaviour of the
NLO. When the resummed LO+LL and NLO+LL results are
computed with resummed PDFs (right plots), the impact of
resummation becomes much larger, as a consequence of the
fact that the resummed gluon is larger than the fixed-order
one at small x [23–25]. In particular, the NLO+LL curve has
a large K-factor at large rapidities, where the contribution
from the gluon at small x is dominant. This shows that this
observable is very sensitive to the PDFs at small x , and it thus
represents an important process to give additional constraints
to PDF fits, in agreement with the findings of Refs. [59–61].

It is interesting to understand how the various contribu-
tions add up to form the resummed result. First of all, we
stress that the LO cross section is made of two contributions,
one in the gg channel and one in the qq̄ channel. The second
one, however, is very small, so the LO curve is almost entirely
given by its gg contribution. As far as the resummed result
is concerned, we not only distinguish between channels but
also between the regular and auxiliary contributions, as given
in Eqs. (2.33). The breakdown of the individual resummed
contributions to be added to the LO is shown in Fig. 3 (left).
We observe that the dominant contributions are those com-

10 We use μR = μF = mb, which is not the standard choice in
POWHEG and probably not the best choice in terms of stability of
the perturbative expansion, but it allows a simple matching with the
resummed contribution.

ing from the auxiliary part, both in the gg channel and in the
qg + gq channel. The regular contributions are smaller and
localised in a region of central rapidity. Also, we note a clear
hierarchy in the contributions by the various channels, with
the gg dominating over the qg + gq, and the qq being very
small. We also stress that the qg + gq channel is symmetric
because we plot them together, but each individual contri-
bution, qg and gq, is obviously asymmetric (see Fig. 1).
The right plot of Fig. 3 shows the analogous breakdown for
the resummed contribution to be added to the NLO to con-
struct the NLO+LL result. The difference here is only in the
auxiliary contributions, as the regular contribution starts at
relative O(α2

s ) and is thus unaffected when subtracting the
expansion at O(αs). Because of this subtraction, the auxil-
iary contributions become comparable with the regular ones
at mid rapidities, but they still dominate in the forward region,
as expected.

In order to understand the stability of the resummed result,
we now discuss its uncertainties. Because our resummed
results are accurate at LL only, the first uncertainty we con-
sider is the one coming from the unknown subleading log-
arithmic contributions. In previous HELL works [29–31,48]
such uncertainty is studied by varying subleading ingredients
in the construction of the resummed anomalous dimension
entering the evolution function Eq. (2.19) in two different
ways,11 and by varying the form of the evolution function
itself by replacing r(N , αs), Eq. (2.21) with αsβ0. The effect
of these three independent ways of varying subleading log-
arithms in the resummed result is then added in quadrature

11 One variation is given by a modified way of implementing the resum-
mation of subleading running coupling contributions in the anomalous
dimension [30]. The other variation makes use of what we called LL′
anomalous dimension introduced in Ref. [29] in place of the full NLL
one, which gives by far the largest contribution to the uncertainty (see
also Ref. [31]).
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Fig. 4 Scale uncertainty for the double differential distribution in
rapidity and transverse momentum of the bottom quark, plotted as a
function of the rapidity for pt = 2 GeV, for bottom pair production at

LHC 13 TeV. The left plot shows factorization scale uncertainty only,
while the right plot shows the standard 7-point uncertainty envelope

to form a representative uncertainty for the final result. We
adopt this procedure here, and we show the resulting uncer-
tainty as a band in Fig. 2. While this way of computing the
uncertainties may possibly underestimate the actual size of
NLL contributions, it is clear from the plot that the difference
between LO+LL and NLO+LL cannot be due to subleading
logarithms only, as it is much larger than their uncertainty.
Therefore, at this scale and value of pt , contributions that are
subleading power at small x are important. This can be seen
also by looking at the difference between additive match-
ing (our default) and multiplicative matching,12 shown as
a dotted line in the plot. The difference between these two
curves, being related to the ratio between the exact NLO
and its small-x approximation, also includes the effect of
subleading power contributions, and it is indeed outside the
uncertainty band from subleading logarithms.

In Fig. 4 we also show the scale uncertainty band of our
results. In the left plot, we consider only the factorization
scale variation by a canonical factor of 2 up and down, while
in the right plot we construct the envelope of the customary 7-
point variation ofμF andμR. Because the rapidity distribution
is symmetric, in each plot we show the fixed-order result for
negative rapidity and the resummed result for positive rapid-
ity, for a better visualisation of the bands. As far as μF varia-
tion is concerned, we note a clear reduction of the uncertainty
after the inclusion of the resummation, demonstrating the
perturbative stabilisation that small-x resummation allows
to achieve. However, the uncertainty of the resummed result
becomes comparable to the one of the fixed order once μR

12 We recall that additive matching means that the resummed contribu-
tion is added to the fixed order subtracting the doubly counted contribu-
tions (corresponding to the expansion of the resummed result up to the
order at which the fixed order is computed), while in the multiplicative
matching the fixed order is multiplied by the resummed result divided
by its expansion.

variations are also taken into account. This is not surprising,
for two reasons. The first one is that the value of αs varies
significantly as μR changes because the scale of the process
is low (for the same reason, the NLO uncertainty is larger
than the LO one). The other reason is that at LL there are
no logarithms of μR in the resummed result to compensate
for the change in αs , as μR dependence in the resummation
starts at NLL. To see a reduction of the 7-point uncertainty
band the resummation should be performed at the currently
unknown NLL order.

To conclude the section, we now consider the same dou-
ble differential rapidity distribution but as a function of pt

at fixed central rapidity Y = 0. This is shown with fixed-
order PDFs in Fig. 5. We observe that going towards large
transverse momentum two effects are manifest: the NLO cor-
rection grows, and the impact of resummation on the LO gets
larger while matching resummation to NLO gives a smaller
correction. This suggests that the large NLO contribution at
large pt is dominated by small-x logarithms, and once these
are resummed the perturbative convergence improves signif-
icantly. As the resummation has no direct dependence on the
transverse momentum other than in kinematic constraints,
this is just a consequence of the kinematics. In particular,
we suspect that the smaller available phase space at large
pt makes contributions from the low-x region dominant also
at central rapidity (at large rapidity this is expected at any
pt ). We plan to investigate this effect further in future phe-
nomenological studies.

3.2 Results differential in the heavy-quark pair

In this section we consider the final state to be the heavy-
quark pair, and so focus on the differential distribution in the
components of the momentum q = p + p̄ which is the sum
of the momenta of the two heavy quarks. For instance, this
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Fig. 6 The triple differential distribution in invariant mass, rapidity
and transverse momentum of the bottom pair, plotted as a function of
the rapidity for Q = 20 GeV and pt = 50 GeV, for bottom pair pro-
duction at LHC 13 TeV. The left plots are obtained using NNPDF31sx

at fixed order, while in the right plot the resummed result is computed
with the resummed PDFs from the same family. The uncertainty band
represents an estimate for the NLL corrections

Fig. 5 The double differential distribution in rapidity and transverse
momentum of the bottom quark, plotted as a function of pt for central
rapidity Y = 0, for bottom pair production at LHC 13 TeV

choice is appropriate for describing the measurement of a
bound state of the heavy quarks, e.g. the J/ψ for cc̄ pairs
or the ϒ for bb̄ pairs or heavier resonances. The details of
the computation of the partonic off-shell coefficient function
are given in Appendix A.2. Because at the lowest order the
process is effectively a 2 to 1 process, the differential coef-
ficient function contains delta functions, Eq. (A.48). This
implies that the computation of some of the integrals defining
the resummed collinear coefficient functions, as described in
Sect. 2.3, can be carried out analytically, partly simplifying
the numerical implementation. Explicit expressions are pre-
sented in Appendix B.

Note that these simplifications pose some problems in pre-
senting the results. Indeed, for instance, for the triple differ-
ential distribution the regular coefficient function Eq. (2.34)
is an actual function, while the auxiliary coefficient Eq. (2.35)
is a distribution, making a visual comparison at parton level

impossible. This problem can be overcome by showing the
cross section at hadron level only, after integration with the
PDFs. For definiteness, we consider bottom pair production
at LHC 13 TeV, with bottom mass mb = 4.6 GeV, as done in
the previous section. Similarly, we use the same NNPDF31sx
[23] PDF set considered before.

In Fig. 6 we show the triple differential distribution, plot-
ted as a function of the rapidity Y of the pair and at fixed
invariant mass Q = 20 GeV and fixed transverse momen-
tum qt = 50 GeV. In this case, the LO curve is not present, as
it is proportional to δ(q2

t ), and so it is zero for any non-zero
value of the transverse momentum. Consequently, we can-
not show a ratio plot. We observe that the NLO (blue dashed
curve) is smaller than the LL curve (solid orange), which is
effectively a LO+LL result. After matching with the NLO,
the resummed NLO+LL curve (solid blue) represents a small
positive correction to the NLO result, pointing toward the
still larger LL prediction. This suggests that the inclusion of
resummation tends to predict a higher cross section than at
NLO, and possibly leads to a better convergence of the per-
turbative expansion. As we did for Fig. 2, we show on the
left the resummed result computed with the same fixed-order
PDFs used for the NLO, while we show on the right panel
the resummed contribution computed using the resummed
PDFs. In this case, the difference between the two options is
very mild, probably due to the larger value of τ and the larger
invariant mass, showing that this observable is not particu-
larly powerful in constraining the PDFs at small x .

Similarly to Fig. 3, we also show the breakdown of the
individual contributions to the cross section in Fig. 7. When
matching to LO (left plots) we note a pattern similar to what
was observed for the single-quark distributions in the previ-
ous section. Namely, the auxiliary term dominates over the
regular contribution, and the gg channel is larger than the
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Fig. 7 Breakdown of the individual contributions to the resummed
triple differential distribution in invariant mass, rapidity and transverse
momentum of the bottom pair from the gg, gq + qg and qq chan-
nels separating the regular and auxiliary parts. The left plot focuses on
the resummed contribution to be matched to the LO, while the right

plot focuses on the resummed contribution to be matched to NLO. The
results in these plots are obtained using NNPDF31sx with resumma-
tion at LHC 13 TeV, as a function of the rapidity, for invariant mass
Q = 20 GeV and for transverse momentum qt = 50 GeV

Fig. 8 Scale uncertainty for the triple differential distribution in rapid-
ity and transverse momentum of the bottom quark pair, plotted as a
function of the rapidity for pt = 50 GeV, for bottom pair production at

LHC 13 TeV. The left plot shows factorization scale uncertainty only,
while the right plot shows the standard 7-point uncertainty envelope

qg + gq, in turn larger than the qq channel. The resummed
contribution is positive, consistent with the fact that this pure
LL distribution is effectively a LO+LL result. When sub-
tracting the O(αs) expansion to match the resummation to
NLO (right plots) we find a smaller contribution from resum-
mation. Again, we note that the auxiliary contributions are
now comparable in size with the regular ones at mid rapidi-
ties, but they keep giving a much larger contribution at large
rapidities.

We conclude the section by briefly commenting on the
uncertainties. In Fig. 6 the resummed curves are supple-
mented with an uncertainty band computed as discussed
in the previous section to estimate the impact of sublead-
ing logarithmic contributions. This uncertainty is relatively
larger than in the case of single-quark kinematics, but still
it cannot account for the full difference between LO+LL
and NLO+LL, which thus gets significant contributions from

non-small-x effects. The use of multiplicative matching at
NLO+LL, probing some subleading power contributions,
differs from the additive matching by an amount that is
comparable with the uncertainty band from subleading loga-
rithms. Moving to scale variations, we show in Fig. 8 μF

variations on the left plot and a full 7-point variation on
the right plot. Considerations similar to what we have done
for the single-quark kinematics apply. We limit ourselves to
observe that in both plots there is a visible reduction moving
from LO+LL to NLO+LL, again hinting at a stabilisation of
the perturbative expansion once resummation is included.

Further studies of different distributions and different
kinematic configurations, relevant for phenomenological
applications, are beyond the scope of this more theoretical
paper and are left to future work.
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4 Conclusions

In this paper we have extended the HELL formalism for the
small-x resummation of physical observables to differential
distributions at LL. We have obtained resummed formulae
for differential partonic coefficient functions which are valid
for any process that is gluon–gluon initiated at LO. The appli-
cation of the formalism to other kinds of processes requires
the treatment of collinear subtractions to all orders at small
x , whose extension at differential level is left to future work
[39].

With respect to previous implementations of small-x
resummation, we no longer perform an approximation, valid
at LL, where the off-shell coefficient function was computed
at N = 0 in Mellin space. This approximation simplifies the
resummation of inclusive cross sections where such Mellin
transform could be computed analytically. Here, because in
general we are not able to compute this Mellin transform
analytically at differential level, adopting such approxima-
tion would not lead to any simplification. Rather, it would
break the kinematic limits of the observables, which is clearly
undesirable.

We have considered heavy-quark pair production at
proton–proton colliders as a representative application of our
results. We have resummed distributions differential both in
the momentum of a single heavy quark and in the sum of the
momenta of both heavy quarks (momentum of the pair). The
selection of numerical results presented serves as a demon-
stration that the methodology works and that it can be used
for phenomenology. They also show that the impact of small-
x resummation for these observables is significant, as we
expect from the low-x values that heavy quark pair produc-
tion can reach at LHC. However, the results presented in this
work do not represent a full phenomenological study, that
would also require the description of the hadronisation of
the heavy quarks in order to compare with the data. Such a
phenomenological study, with the goal to include the process
in a PDF fit to improve the PDF quality at low x , is left to
future work.

The new version of the HELL code, that implements the
resummation of heavy quark pair production at differential
level, is available at the url

www.roma1.infn.it/∼bonvini/hell

The preparation of tables for quick interpolation, needed
for phenomenological applications, requires some time and
leads to a large amount of data, because of the dependence
on many kinematic variables. Therefore, rather than provid-
ing general tables within the code (as previously done for
DIS and Higgs), we only provide scripts for the generation
of such tables, which can then be produced and used directly
by the user focussing only on the kinematics of interest.
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Appendix A: The off-shell coefficient function

In this Appendix we give all the details for the computation
of the off-shell coefficient function for heavy quark pair pro-
duction at proton–proton colliders. The partonic process at
the lowest order, relevant for LL resummation, is

g∗ (k1) + g∗ (k2) → Q (p) + Q̄ ( p̄) . (A.1)

where Q and Q̄ are the two heavy quarks of mass m. We
parametrize the momenta as

k1 = x1P1 + k1 (A.2a)

k2 = x2P2 + k2 (A.2b)

p = z1x1P1 + z2x2P2 + p (A.2c)

p̄ = (1 − z1)x1P1 + (1 − z2)x2P2 + k1 + k2 − p, (A.2d)

where, in the collider center-of-mass frame, the protons
momenta are

P1 =
√
s

2
(1, 0, 0, 1), P2 =

√
s

2
(1, 0, 0,−1). (A.3)

In these definitions we have already used momentum con-
servation, and we have made a choice of reference frame.
There are 7 initial-state parameters (s, x1, x2,k1,k2) and 4
final-state parameters (z1, z2,p). Note however that using
the on-shell condition for the final-state quarks we can con-
strain one of the final-state parameters. Indeed, there are two
on-shell conditions,

m2 = p2 = z1z2x1x2s − |p|2 (A.4a)
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m2 = p̄2 = (1 − z1)(1 − z2)x1x2s − |k1 + k2 − p|2,
(A.4b)

setting the squared momenta p2 and p̄2 to the same mass
m2. Therefore, only three of the four final state parameters
are independent.

The partonic off-shell coefficient function is computed
in the “partonic” reference frame, that corresponds to the
partonic center-of-mass frame if the two gluons were on shell,
namely if k1 = k2 = 0. In other words, the partonic frame
is related to the collider frame by a longitudinal boost of
rapidity

η̄ = 1

2
log

x1

x2
. (A.5)

In this frame, the partonic coefficient can only depend on
x1, x2 and s through the product x1x2s. Moreover, because
we assume unpolarized protons, an overall azimutal angle is
irrelevant. Thus the coefficient can only depend on 4 out of
the 7 initial-state parameters. We choose them to be

z ≡ Q2

x1x2s
(A.6a)

ξ1 ≡ |k1|2
Q2 (A.6b)

ξ2 ≡ |k2|2
Q2 (A.6c)

ϕ ≡ angle between k1 and k2. (A.6d)

Here, Q2 is “the hard scale”, whose value depends on the
final state we want to look at. We set Q2 = q2, where q is
the final state momentum with respect to which we want to be
differential. In particular, if we want to study the kinematics
of the heavy-quark pair, then q = p+ p̄ and Q2 is the squared
invariant mass of the pair, while for the single heavy quark
then q = p and Q2 = m2 is the mass squared of the quark
itself.

Before discussing each of these cases in turn, we note that
x1x2s is not ŝ = (k1 + k2)

2 = x1x2s − |k1 + k2|2, because
of the transverse component of the gluons; we may call it
the “longitudinal part” of ŝ (meaning the contribution to ŝ
due to the longitudinal part of the gluon momenta). The full
partonic center-of-mass energy ŝ can be written as

ŝ = Q2
[

1

z
− ξ1 − ξ2 − 2

√
ξ1ξ2 cos ϕ

]
(A.7)

in terms of the new variables, which reduces to the usual
expression ŝ = Q2/z when the gluons are on shell.

A.1 Kinematics for the single quark

Here we consider the differential distribution in the kinemat-
ics of one of the final-state heavy quarks. For definiteness,
we consider the heavy quark of momentum p, but since the
process is symmetric the results will equally apply also to
the antiquark with momentum p̄. We introduce the variables

Q2 ≡ p2 = z1z2x1x2s − |p|2 = m2 (A.8a)

η ≡ 1

2
log

p0 + p3

p0 − p3 − η̄ = 1

2
log

z1

z2
(A.8b)

p̂2
t ≡ p2

Q2 = p2

m2 (A.8c)

ϑ = angle between p and k1 + k2. (A.8d)

Because Q2 = m2 is fixed, the most differential distribution
we are interested in is (p2

t = p̂2
t Q

2)

dC
dη dp2

t
(z, ξ1, ξ2,m

2, η, p̂2
t ), (A.9)

which is integrated over ϑ and averaged over ϕ. Note that
from now on we are omitting the argument αs from the off-
shell distribution as we are interested in the lowest order
result only.

Let us consider the phase space. The two-body phase space
is given by

dφ2(k1 + k2; p, p̄)

= θ(ŝ − 4m2)
d4 p

(2π)3

d4 p̄

(2π)3 δ
(
p2 − m2

)
δ
(
p̄2 − m2

)

× (2π)4 δ(4) (k1 + k2 − p − p̄) θ(p0)θ( p̄0)

= θ(ŝ − 4m2)
d4 p

4π2 δ
(
p2 − m2

)
δ
(
(k1 + k2 − p)2 − m2

)

× θ(p0)θ(k0
1 + k0

2 − p0) (A.10)

with ŝ = (k1 + k2)
2. We need to express this phase space

in terms of the new variables. The variable ŝ is given in
Eq. (A.7), the integration element can be written as

d4 p = Q2

4
dQ2 dη d p̂2

t dϑ, (A.11)

and the antiquark momentum squared is

p̄2 = (k1 + k2 − p)2

= (1 − z1)(1 − z2)x1x2s − |k1 + k2 − p|2

= Q2
[

1 + 1

z
−
√

1 + p̂2
t

z
(eη + e−η) − ξ1 − ξ2

− 2
√

ξ1ξ2 cos ϕ
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+ 2

√(
ξ1 + ξ2 + 2

√
ξ1ξ2 cos ϕ

)
p̂2

t cos ϑ

]
, (A.12)

where we have used the inverse relations

z1 =
√
z(1 + p̂2

t )e
η, z2 =

√
z(1 + p̂2

t )e
−η. (A.13)

The conditions imposed by the two theta functions in the
energies translate easily into conditions on z1 and z2 that
depend on x1 and x2, namely z1x1+z2x2 ≥ 0 and (1−z1)x1+
(1 − z2)x2 ≥ 0. From the on-shell conditions Eq. (A.4) we
also know that z1z2x1x2 ≥ 0 and (1 − z1)(1 − z2)x1x2 ≥ 0.
Because x1 and x2 are positive, it follows that z1 and z2 satisfy
the conditions 0 ≤ z1,2 ≤ 1, that translate into

z(1 + p̂2
t ) ≤ e−2|η|. (A.14)

After the trivial integration over Q2, the phase space can thus
be recast as

dφ2 = θ

(
1

z
− ξ1 − ξ2 − 2

√
ξ1ξ2 cos ϕ − 4

)

× θ

(
1

z
− (1 + p̂2

t )e2|η|
)

1

16π2 dη d p̂2
t dϑ

× δ

⎛

⎝1

z
−
√

1 + p̂2
t

z
(eη + e−η) − ξ1 − ξ2

−2
√

ξ1ξ2 cos ϕ

+2

√(
ξ1 + ξ2 + 2

√
ξ1ξ2 cos ϕ

)
p̂2

t cos ϑ

)

. (A.15)

To simplify the notation, we introduce the function

ξ(ξ1, ξ2, ϕ) = ξ1 + ξ2 + 2
√

ξ1ξ2 cos ϕ = |k1 + k2|2,
(A.16)

and simply write ξ without arguments for short. Putting
everything together we have

Q2dC
dη dp2

t
(z, ξ1, ξ2,m

2, η, p̂2
t ) = σ0

1

2

∫ 2π

0

dϕ

2π

∫
dφ2

dη d p̂2
t

|M|2 = σ0

32π2

∫ 2π

0

dϕ

2π
θ

(
1

z
− ξ − 4

)
θ

(
1

z
− (1 + p̂2

t )e
2|η|
)

×
∫ 2π

0
dϑ |M|2δ

⎛

⎝1

z
−
√

1 + p̂2
t

z
(eη + e−η) − ξ + 2

√
ξ p̂2

t cos ϑ

⎞

⎠, (A.17)

where in the first line 1/2 is the flux factor, σ0 = 16π2α2
s /Q

2

and the 1/2π comes from the average over ϕ. The matrix
element squared |M|2 is given in Appendix A.3.

It is most convenient to use the δ function to integrate over
ϑ , as all other variables appear at least quadratically. The fact
that | cos ϑ | ≤ 1 produces the constraint

∣∣∣∣
∣∣

1

z
−
√

1 + p̂2
t

z
(eη + e−η) − ξ

∣∣∣∣
∣∣
≤ 2

√
ξ p̂2

t . (A.18)

We then get

Q2dC
dη dp2

t
(z, ξ1, ξ2,m

2, η, p̂2
t ) = σ0

32π2

∫ 2π

0

dϕ

2π
θ

(
1

z
− ξ − 4

)
θ

(
1

z
− (1 + p̂2

t )e
2|η|
)

× θ

⎛

⎝2
√

ξ p̂2
t − |1

z
−
√

1 + p̂2
t

z
(eη + e−η) − ξ |

⎞

⎠
|M|2

ϑ=ϑ̄
+ |M|2

ϑ=2π−ϑ̄√

4ξ p̂2
t −

(
1
z −

√
1+ p̂2

t
z (eη + e−η) − ξ

)2
, (A.19)

ϑ̄ = cos−1
ξ − 1

z +
√

1+ p̂2
t

z (eη + e−η)

2
√

ξ p̂2
t

, 0 ≤ ϑ ≤ π. (A.20)

The theta functions in Eq. (A.19) may prove troublesome
from a numerical point of view. Indeed, if used as “if” con-
ditions that set the integrand to zero when the theta functions
are zero, the numerical integration may become inaccurate.
It is much more convenient to translate them into integration
limits of some variable. To do so, we define

X = 1√
z

≥ 1 (A.21)

so that the constraint imposed by the three theta functions
become

X ≥ √
4 + ξ, (A.22a)
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X ≥
√

1 + p̂2
t e

|η|, (A.22b)

− 2
√

ξ p̂t ≤ −X2 + 2BX + ξ ≤ 2
√

ξ p̂t,

B ≡
√

1 + p̂2
t cosh η ≥ 1. (A.22c)

Focussing on ξ , we may write

ξ ≤ X2 − 4, (A.23a)

ξ + 2 p̂t
√

ξ + 2BX − X2 ≥ 0, (A.23b)

ξ − 2 p̂t
√

ξ + 2BX − X2 ≤ 0. (A.23c)

The functions ξ ±2 p̂t
√

ξ +2BX−X2 represent two parabo-
lae in

√
ξ with centers (minima) in

√
ξ = ∓ p̂t , at which they

both equal − p̂2
t + 2BX − X2. If this value is positive, there

is no solution to the system, so we have the condition

p̂2
t − 2BX + X2 ≥ 0 (A.24)

that represents an equation for the other variables to be taken
into account later, together with Eq. (A.22b). Under this con-
dition, the solution of the inequalities Eq. (A.23b), (A.23c)
is the region between the two right solution of the second
inequality and the largest between the right solution of the
first and the left solution of the second, which are identical
but have opposite sign. Thus we get

∣∣∣∣ p̂t −
√
p̂2

t − 2BX + X2

∣∣∣∣ ≤ √
ξ ≤ p̂t +

√
p̂2

t − 2BX + X2.

(A.25)

The other condition Eq. (A.23a) is always automatically sat-
isfied. Indeed, we can prove that

√
X2 − 4 ≥ p̂t +

√
p̂2

t − 2BX + X2 (A.26)

for all meaningful values of X (namely values for which the
square roots are real). Indeed this condition can be manipu-
lated to

(B2 − p̂2
t )X

2 − 4BX + 4(1 + p̂2
t ) ≥ 0, (A.27)

which is always satisfied because the minimum of the
quadratic function, located at X = 2B/(B2 − p̂2

t ), is
always non-negative. Indeed the minimum is proportional
to B2 − 1 − p̂2

t which is non-negative because B2 ≥ 1 + p̂2
t .

Therefore, Eq. (A.25) is the complete condition on ξ .
We now focus on the other variables, that must satisfy

the inequalities Eq. (A.22b) and (A.24). Let us focus on
Eq. (A.24), solving it for X . The parabola X2−2BX+ p̂2

t has
a minimum in X = B where it equals p̂2

t −B2. This is always
negative, as by construction B2 ≥ 1 + p̂2

t > p̂2
t . Therefore,

there are two separate solutions, X ≥ B +
√
B2 − p̂2

t and

X ≤ B −
√
B2 − p̂2

t . However, since we always have

√
1 + p̂2

t e
|η| ≥ B, (A.28)

the second solution is not compatible with Eq. (A.22b), and
it is therefore forbidden. We are thus left with the condition

X ≥ B +
√
B2 − p̂2

t ≥ B + 1 ≥ 2, (A.29)

together with Eq. (A.22b). We can show that Eq. (A.22b) is
always compatible with Eq. (A.29). Indeed the inequality

B +
√
B2 − p̂2

t ≥
√

1 + p̂2
t e

|η| (A.30)

holds because we can manipulate it into
√
B2 − p̂2

t ≥
√

1 + p̂2
t

(
e|η| − cosh η

)
=
√

1 + p̂2
t sinh|η|

(A.31)

and then, squaring both sides (which are both positive) and
rearranging,

(1 + p̂2
t )
(

cosh2|η| − sinh2|η|
)

− p̂2
t ≥ 0

⇒ 1 + p̂2
t − p̂2

t ≥ 0 (A.32)

which is clearly true. In conclusion, X satisfies only the
inequality Eq. (A.29) which automatically encodes all the
others.

It is useful to mention also the conditions on the kinematic
limits of the on-shell resummed coefficient, as well as on
the integration variables defining the resummed result. From
Eq. (2.34), recalling that the first argument of the evolution
function is a momentum fraction and is thus smaller than
1, we obtain the condition x/z ≤ e−2|η̄|. Similarly, from
Eq. (A.14) we also have z(1+ p̂2

t ) ≤ e−2|η|. From the product
of the two inequalities, we obtain the condition

A2 ≡ x(1 + p̂2
t ) ≤ e−2|η|−2|η̄| ≤ e−2|η+η̄| = e−2|y|. (A.33)

The condition A ≤ e−|y|, with A ≡
√
x(1 + p̂2

t ), repre-
sents a constraint on the arguments of the on-shell coefficient
function. However, this is not the most stringent one. Indeed,
looking at the first inequality, we can derive the integration
range of η̄, which is given by

Aey − x p̂2
t

1 − Ae−y
≤ e2η̄ ≤ 1 − Aey

Ae−y − x p̂2
t
. (A.34)

For this range to be non-trivial, the upper limit must be larger
than the lower limit, leading to the condition

e|y| ≤ 1 + x p̂2
t

2A
+
√

(1 + x p̂2
t )2

4A2 − 1 (A.35)

123



Eur. Phys. J. C           (2023) 83:267 Page 21 of 33   267 

which is smaller than 1/A in the region where the square root

exists, given by the condition p̂2
t ≤ 1−2

√
x

x or, equivalently,

x ≤
⎛

⎝

√
1 + p̂2

t − 1

p̂2
t

⎞

⎠

2

≤ 1

4
. (A.36)

To conclude, we recall that the matrix element squared
that we will present in Appendix A.3 must be expressed in
terms of the variables defined here. To achieve this, we need
to express z1, z2 in terms of p̂t, η through Eq. (A.13), and to
write the product k2 ·p appearing in Eqs. (A.67c) and (A.67d)
as

k2 · p
Q2 =

√
ξ2 p̂2

t cos(ϑ + ϕ′), (A.37)

where ϕ′ is the angle of k1 + k2 with respect to k2, which
can be computed from the cartesian representation (aligning
the x axis along k2)

q =
( |q| cos ϕ′

|q| sin ϕ′
)

=
( |k2| + |k1| cos ϕ

|k1| sin ϕ

)
(A.38)

leading to

sin ϕ′ =
√

ξ1 sin ϕ
√
q̂2

t

cos ϕ′ =
√

ξ2 + √
ξ1 cos ϕ

√
q̂2

t

, (A.39)

which gives the result

ϕ′ =

⎧
⎪⎪⎨

⎪⎪⎩

cos−1
(√

ξ2+√
ξ1 cos ϕ√
q̂2

t

)
if sin ϕ ≥ 0

2π − cos−1
(√

ξ2+√
ξ1 cos ϕ√
q̂2

t

)
if sin ϕ < 0.

(A.40)

A.2 Kinematics for the pair

We now consider the heavy-quark pair as a fictitious inter-
mediate state, with momentum

q ≡ p + p̄

≡ α1x1P1 + α2x2P2 + q (generic parametrization)

= k1 + k2 (momentum conservation)

= x1P1 + x2P2 + k1 + k2, (A.41)

where by momentum conservation α1 = α2 = 1 and
q = k1 + k2. For this intermediate state, we introduce the
variables13

Q2 ≡ q2 = α1α2x1x2s − |q|2 = x1x2s − |k1 + k2|2
= (k1 + k2)

2 ≡ ŝ (A.42a)

13 Note that we are using the same names Q2 and η that we used for
the single quark kinematics, now referring to another momentum.

η ≡ 1

2
log

q0 + q3

q0 − q3 − η̄ = 1

2
log

α1

α2
= 0

(rapidity of q in the partonic frame) (A.42b)

q̂2
t ≡ q2

Q2 = |k1 + k2|2
Q2 (A.42c)

ψ ≡ angle between q and k1 + k2 = 0. (A.42d)

Our goal is to compute the parton-level off-shell coefficient
function (q2

t = q̂2
t Q

2)

dC
dQ2 dη dq2

t
(z, ξ1, ξ2, Q

2, η, q̂2
t ), (A.43)

which is integrated over ψ and averaged over ϕ.
Let us consider the phase space. The two-body phase space

of the two final state heavy quarks can be factorized into the
phase space of the pair and its “decay” as

dφ2(k1 + k2; p, p̄) = θ(ŝ − 4m2)

×
∫ ŝ

4m2

dq2

2π
dφ1(k1 + k2; q) dφ2(q; p, p̄) (A.44)

where

dφ1(k1 + k2; q)

= d4q

(2π)3 δ
(
q2 − ŝ

)
(2π)4 δ(4) (k1 + k2 − q)

= 2π d4q δ
(
q2 − ŝ

)
δ(4) (k1 + k2 − q) , (A.45)

with ŝ = (k1 + k2)
2 the invariant mass of the pair, and

dφ2(q; p, p̄) = d4 p

(2π)3

d4 p̄

(2π)3 δ
(
p2 − m2

)
δ
(
p̄2 − m2

)

(2π)4 δ(4) (q − p − p̄) θ(p0)θ( p̄0). (A.46)

The full phase space Eq. (A.44) can be simplified using the
delta function of the one-body phase space to perform the q2

integral, giving

dφ2(k1 + k2; p, p̄)
= θ(ŝ − 4m2) d4q δ(4) (k1 + k2 − q) dφ2(q; p, p̄)
= θ(ŝ − 4m2) dQ2 dη dq̂2

t dψ dφ2(q; p, p̄)
× δ

(
Q2 − ŝ

)

δ(η) δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

δ(ψ)

= θ(Q2 − 4m2) dQ2 dη dq̂2
t dψ dφ2(q; p, p̄)

× 1

Q2 δ

(
1 + q̂2

t − 1

z

)
δ(η)

× δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

δ(ψ), (A.47)
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where we have rewritten d4q, the delta function and ŝ in terms
of the new variables.

The two-body phase space can be used to integrate the
matrix element and remove the “internal” degrees of free-
dom of the pair, while the one-body phase space can be used
to obtain the desired differential observable. Thus, we imme-
diately find the relation

Q4 dC
dQ2 dη dq2

t dϕ
(z, ξ1, ξ2, Q

2, η, q̂2
t , ϕ)

= dC
dϕ

(z, ξ1, ξ2, Q
2, ϕ)

× δ

(
1 + q̂2

t − 1

z

)
δ(η)

× δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

, (A.48)

where we had to include also the explicit dependence on
ϕ as it appears in the delta function. This result expresses
the fully differential distribution in terms of the distribution
differential only in the angle ϕ between k1 and k2, and it
will be used in Appendix B to construct simplified explicit
expressions for the resummed contributions.

The key object that we need is thus

dC
dϕ

(z, ξ1, ξ2, Q
2, ϕ) = θ(Q2 − 4m2)

1

2

1

2π
σ0

∫
dψ δ(ψ)

×
∫

dφ2(q; p, p̄) |M|2, (A.49)

where σ0 = 16π2α2
s /Q

2, the factor 1/2 is the flux factor
and the 1/2π comes from the ϕ average. The matrix element
squared |M|2 is given in Appendix 1. Note that because
of the delta functions in Eq. (A.48) not all the variables of
Eq. (A.49) are independent. In particular one can write 1/z =
1 + ξ1 + ξ2 + 2

√
ξ1ξ2 cos ϕ and use it to fix one of them in

terms of the others.
We now focus on the computation of dC/dϕ. We observe

that the two-body phase space Eq. (A.46) contains two delta
functions corresponding to the mass shell condition of the
heavy quarks. We write them in terms of the new variables,
and get

0 = p2 − m2 = z1z2
Q2

z
− |p|2 − m2 (A.50a)

0 = p̄2 − m2 = (1 − z1)(1 − z2)
Q2

z
− |q − p|2 − m2

= (1 − z1 − z2)
Q2

z
− |q|2 + 2q · p,

(A.50b)

where in the last step we have used the first on-shell condition.
The second condition contains a scalar product, and thus an
angle, which is not ideal as this appears in the argument of

the delta function. In order to get rid of the scalar product,
we use the first condition to fix z2, through the equation

z2 = z
|p|2 + m2

z1Q2 (A.51)

so that the second condition becomes

0 = p̄2 − m2 = (1 − z1)
Q2

z
− |p|2 + m2

z1
− |q|2 + 2q · p,

(A.52)

We can now get rid of the scalar product by introducing a
new vector � defined by

p = z1q + � (A.53)

so that

0 = p̄2 − m2 = (1 − z1)
Q2

z
− |z1q + �|2 + m2

z1

− |q|2 + 2z1|q|2 + 2q · �

= (1 − z1)

(
Q2

z
− |q|2

)
− |�|2 + m2

z1

= (1 − z1)Q
2 − |�|2 + m2

z1
, (A.54)

that only depends on squared vectors (in the last step we have
used 1 + q̂2

t = 1
z ). This can be now used to fix

|�|2 = z1(1 − z1)Q
2 − m2. (A.55)

The two-body phase space can thus be rewritten as

dφ2(q; p, p̄)

= d4 p

(2π)3

d4 p̄

(2π)3 δ
(
p2 − m2

)

× δ
(
p̄2 − m2

)
(2π)4 δ(4) (q − p − p̄) θ(p0)θ( p̄0)

= d4 p

4π2 δ
(
p2 − m2

)
δ
(
(q − p)2 − m2

)
θ(p0)θ(q0 − p0)

= Q2

8π2z
δ

(
z1z2

Q2

z
− |p|2 − m2

)

× δ

(
(1 − z1 − z2)

Q2

z
− |q|2 + 2q · p

)
dz1 dz2 d2p

× θ(z1)θ(z2)θ(1 − z1)θ(1 − z2)

= 1

8π2 δ

(
(1 − z1)Q

2 − |�|2 + m2

z1

)

× θ(z1)θ(1 − z1)
dz1

z1
d2�

= 1

16π2 θ
(
z1(1 − z1)Q

2 − m2
)

dz1 dω
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= 1

16π2 θ

⎛

⎝

√
1

4
− m2

Q2 − |1

2
− z1|

⎞

⎠ dz1 dω

= 1

16π2

√
1

4
− m2

Q2 sin β dβ dω (A.56)

where ω is the azimuthal angle of � with respect to k1 +k2.
Note that the condition Q2 > 4m2, needed to satisfy the
theta function, is always verified in Eq. (A.49). If we wish
to compute the z1 integral numerically, it is convenient to
change variable as

z1 = 1

2
−
√

1

4
− m2

Q2 cos β, β ∈ [0, π ] (A.57)

which we used to obtain the last line of Eq. (A.56). Interest-
ingly, in terms of these variables |�|2 becomes

|�|2 = Q2 − 4m2

4
sin2 β

⇒ |�| = 1

2

√
Q2 − 4m2 sin β, (A.58)

where we do not need to include an absolute value, as in the
allowed range sin β is always positive.

The form of the phase space Eq. (A.56) is very conve-
nient from a numerical point of view. To be able to perform
all integrations, we also need to express the matrix element
squared appearing in Eq. (A.49) in terms of the variables β

(or z1) and ω. We start by rewriting

z2 = z
|z1q + �|2 + m2

z1Q2

= z
z2

1|q|2 + |�|2 + 2z1q · � + m2

z1Q2

= z
[
1 − z1(1 − q̂2

t ) +2
√
q̂2

t

√
z1(1 − z1) − m2/Q2 cos(ω − ψ)

]

= z

⎡

⎣1 − (1 − q̂2
t )

⎛

⎝1

2
−
√

1

4
− m2

Q2 cos β

⎞

⎠

+
√
q̂2

t

√
1 − 4m2/Q2 sin β cos(ω − ψ)

⎤

⎦ (A.59)

where ψ = 0 for our choice of variables, Eq. (A.42).
Finally, we will see in Appendix A.3 that the matrix element
depends on the scalar product k2 · p through the variables T
Eq. (A.67c) and U Eq. (A.67d). We can write

k2 · p
Q2 = k2 · (z1q + �)

Q2

= z1(k2
2 + k2 · k1) + k2 · �

Q2

= z1ξ2 + z1
√

ξ1ξ2 cos ϕ +√
ξ2

√
1

4
− m2

Q2 sin β cos ω′,

(A.60)

where ω′ is the angle between � and k2. It is given by ω′ =
ω + ϕ′, where ϕ′ is the angle of q = k1 + k2 with respect to
k2, given in Eq. (A.40). For the on-shell limit ξ2 → 0 it is
also useful to write

p̂2
t ≡ p2

Q2 = z2
1ξ1 + |�|2

Q2 + 2z1
√

ξ1
|�|
Q

cos ω (A.61)

in terms of the new phase-space variables. In the fully on-
shell limit the result simplifies further

p̂2
t = |�|2

Q2 = z1(1 − z1) − m2

Q2 . (A.62)

A.3 Matrix element

In this Appendix we report the matrix element squared for
heavy quark pair production from two off-shell gluons. This
has been computed in Refs. [27,52]. Here, we rewrite that
result in terms of the variables that we have defined above.

The matrix element is separated into an abelian and a non-
abelian parts as

|M|2 = 1

2CA
|M|2ab + 1

4CF
|M|2nab (A.63)

with

|M|2ab = 1

z2

×
[

1

TU
− 1

ξ1ξ2

(
1 + z2(1 − z1)

zT
+ z1(1 − z2)

zU

)2
]

(A.64)

and

|M|2nab = 1

z2

[
− 1

TU
+ 2z

S
+ (T −U )(z1 − z2)

STU

+ 2

ξ1ξ2

(
1

2
+ z2(1 − z1)

zT
− �

S

)

×
(

1

2
+ z1(1 − z2)

zU
+ �

S

)]
, (A.65)

where

� = z1(1 − z2)

z
− z2(1 − z1)

z
+ ξ1z2 − ξ2z1

+ z2 − z1

2z
+ p · (k2 − k1)

Q2 (A.66)
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and

S = ŝ

Q2 = (k1 + k2)
2

Q2 = 1

z
− ξ1 − ξ2 − 2

√
ξ1ξ2 cos ϕ

(A.67a)

T = t − m2

Q2 = (p − k1)
2 − m2

Q2 = 2k1 · p
Q2 − ξ1 − z2

z
(A.67b)

= ( p̄ − k2)
2 − m2

Q2 = −2k2 · p
Q2 + ξ2

+ 2
√

ξ1ξ2 cos ϕ − 1 − z1

z
(A.67c)

U = u − m2

Q2 = (p − k2)
2 − m2

Q2 = 2k2 · p
Q2 − ξ2 − z1

z
(A.67d)

= ( p̄ − k1)
2 − m2

Q2 = −2k1 · p
Q2 + ξ1

+ 2
√

ξ1ξ2 cos ϕ − 1 − z2

z
. (A.67e)

Note that in the case of the pair kinematics, where q = p+ p̄,
we have ŝ = Q2 and thus S = 1. We can use the expressions
of T and U to rewrite

p · (k2 − k1)

Q2 = 1

2

[
U − T + ξ2 − ξ1 + z1 − z2

z

]
(A.68)

so that � simplifies to

� = z1 − z2

z
+ ξ1z2 − ξ2z1 + U + ξ2 − T − ξ1

2
. (A.69)

We also recall the relation

ŝ + t + u = 2m2 − |k1|2 − |k2|2, (A.70)

namely

S + T +U + ξ1 + ξ2 = 0. (A.71)

Thus, one can always express one of these variables in terms
of the other four.

Note that the matrix element squared is symmetric under
the simultaneous exchange

k1 ↔ k2, z1 ↔ z2. (A.72)

This implies that, in the pair kinematics, after integrating over
the two z1 and z2 variables (which appear symmetrically in
the phase space) the off-shell coefficient is symmetric under
the exchange of the two gluon virtualities. Similarly, in the
single-quark kinematics, the off-shell coefficient is symmet-
ric under the exchange of the two gluon virtualities and a sign
change in the rapidity η.

A.4 On-shell limit

The resummation discussed in Sect. 2.3 requires also the
coefficient function with just one gluon off-shell. This result
can be obtained by simply taking the partial on-shell limit,
say k2 → 0, of the fully off-shell result. Here we per-
form this limit at the level of the matrix element squared.
We will also compute the fully on-shell limit, needed for
the fixed-order expansion, which also serves as a cross
check.

When taking the on-shell limit, one must be careful in the
choice of the parameters used to write the matrix element.
Previously, we have used the most convenient variables to
obtain a compact form, but some of them are not independent
of the others. When taking an on-shell limit, any such relation
must be made explicit.

We commented at the beginning of this appendix that the
off-shell coefficient depends on 7 independent variables, 4
initial-state ones and 3 final-state ones. Since the matrix
element is dimensionless, we shall conveniently choose a
set of dimensionless variables. Thus, for the initial state we
use the variables z, ξ1, ξ2, ϕ defined in Eq. (A.6), while for
the final state we could consider any three variables out of
ϑ, p̂t, z1, z2, namely

ϑ, p̂t, z1 or ϑ, p̂t, z2 or ϑ, z1, z2 or p̂t, z1, z2.

(A.73)

The relation between these four variables is given by the
equation

p̂t =
z1+z2−1

z + ξ1 + ξ2 + 2
√

ξ1ξ2 cos ϕ

2
√

ξ1 + ξ2 + 2
√

ξ1ξ2 cos ϕ cos ϑ
, (A.74)

which descends from the on-shell condition p2 = p̄2 (=
m2). All these choices are acceptable provided they are kept
throughout the computation of the on-shell limit. Once the
on-shell limit k2 → 0 is taken, we must also compute the
average over ϕ (as it is no longer well defined), so that the
remaining variables upon which the matrix element can be
expressed are just 5, e.g. z, ξ1, ϑ, z1, z2 or z, ξ1, p̂t, z1, z2. If
we also want to compute the fully on-shell limit k1,2 → 0,
the azimutal angle of p becomes arbitrary, and the result
depends on just 3 independent variables, z, p̂t, z1 or z, p̂t, z2

(not z, z1, z2 because they are no longer independent in
the on-shell case). Therefore, it is convenient to have p̂t in
our variable set, so we discard the third set of Eq. (A.73).
The most convenient set is probably the last, p̂t, z1, z2, so
we go for it.

When looking at the matrix element squared, Eqs. (A.64)
and (A.65), it is clear that there is a potential singularity in
the on-shell limit due to the presence of a factor 1/ξ2. This is
harmless if the terms in rounded brackets are of order

√
ξ2.
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To prove this, we first expand S, T,U at small ξ2. From the
representations of Eqs. (A.67a), (A.67c) and (A.67d) we get
immediately

S = 1

z
− ξ1 − 2

√
ξ1ξ2 cos ϕ + O(ξ2) (A.75a)

T = −1 − z1

z
+ 2

√
ξ1ξ2 cos ϕ

− 2
√
p̂2

t ξ2 cos(ϑ ′ − ϕ) + O(ξ2) (A.75b)

U = − z1

z
+ 2

√
p̂2

t ξ2 cos(ϑ ′ − ϕ) + O(ξ2), (A.75c)

where ϑ ′ is the angle of pwith respect to k1, which coincides
with ϑ in the on-shell limit k2 → 0.

Let us start from the abelian part of the matrix element,
Eq. (A.64). Expanding the rounded brackets at small ξ2, we
find

1 + z2(1 − z1)

zT
+ z1(1 − z2)

zU

= 1 − z2

1 − z
1−z1

(
2
√

ξ1ξ2 cos ϕ − 2
√

ξ2 p̂2
t cos(ϑ ′ − ϕ)

)

− 1 − z2

1 − z
z1

2
√

ξ2 p̂2
t cos(ϑ ′ − ϕ)

+ O(ξ2)

= −2z
√

ξ2

[
z2

1 − z1

√
ξ1 cos ϕ +

(
1 − z2

z1
− z2

1 − z1

)

×
√
p̂2

t cos(ϑ ′ − ϕ)

]
+ O(ξ2), (A.76)

which is indeed of order
√

ξ2. Averaging over ϕ, the abelian
part of the matrix element squared becomes

|M|2ab
k2→0=

∫ 2π

0

dϕ

2π

1

z2

[
1

TU
− 4z2

ξ1

(
z2

1 − z1

√
ξ1 cos ϕ

+
(

1 − z2

z1
− z2

1 − z1

)√
p̂2

t cos(ϑ ′ − ϕ)

)2
]

= 1

z1(1 − z1)
− 2

ξ1

[(
z2

1 − z1

)2

ξ1

+
(

1 − z2

z1
− z2

1 − z1

)2

p̂2
t

+ z2

1 − z1

(
1 − z2

z1
− z2

1 − z1

)
2
√

ξ1 p̂2
t cos ϑ

]
, (A.77)

where we have replaced ϑ ′ with ϑ as they now coincide. Note
that we are using more variables than needed. Indeed, using
Eq. (A.74) we can rewrite cos ϑ in terms of other variables.
In particular, in the ξ2 → 0 limit it is easy to obtain from
Eq. (A.74) the relation

2
√

ξ1 p̂2
t cos ϑ = z1 + z2 − 1

z
+ ξ1, (A.78)

from which we finally find

|M|2ab
k2→0= 1 − 2z2(1 − z2)

z1(1 − z1)
− 2

ξ1

×
(

1 − z1 − z2

z1(1 − z1)

)2 [
p̂2

t − z1z2

z

]
. (A.79)

For the non-abelian part, Eq. (A.65), let us start by expanding
�, Eq. (A.69), to order

√
ξ2:

� =
(

ξ1 − 1

z

)(
z2 − 1

2

)

+√
ξ2

(
2
√
p̂2

t cos(ϑ ′ − ϕ) −√
ξ1 cos ϕ

)

+ O(ξ2). (A.80)

The rounded brakets of Eq. (A.65) become

1

2
+ z2(1 − z1)

zT
− �

S
= 2z

√
ξ2

[(
z2

1 − zξ1
− z2

1 − z1

)√
ξ1 cos ϕ −

(
1

1 − zξ1
− z2

1 − z1

)√
p̂2

t cos(ϑ ′ − ϕ)

]
+ O(ξ2)

1

2
+ z1(1 − z2)

zU
+ �

S
= 2z

√
ξ2

[
− z2

1 − zξ1

√
ξ1 cos ϕ +

(
1

1 − zξ1
− 1 − z2

z1

) √
p̂2

t cos(ϑ ′ − ϕ)

]
+ O(ξ2), (A.81)
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so that we can finally find the partial on-shell limit of the
non-abelian part of the matrix element,

|M|2nab
k2→0=

∫ 2π

0

dϕ

2π

{
− 1

z2TU
+ 2

zS
+ (T −U )(z1 − z2)

z2STU
+ 8

ξ1

[(
z2

1 − zξ1
− z2

1 − z1

)√
ξ1 cos ϕ

−
(

1

1 − zξ1
− z2

1 − z1

)√
p̂2

t cos(ϑ ′ − ϕ)

] [
− z2

1 − zξ1

√
ξ1 cos ϕ +

(
1

1 − zξ1
− 1 − z2

z1

)
×
√
p̂2

t cos(ϑ ′ − ϕ)

]}

= − 1

z1(1 − z1)
+ 2

1 − zξ1
+ (1 − 2z1)(z2 − z1)

z1(1 − z1)(1 − zξ1)
+ 4

ξ1(1 − zξ1)2

[
(z1 − zξ1)z2

2

1 − z1
ξ1 −

(
1 − z2(1 − zξ1)

1 − z1

)

×
(

1 − (1 − z2)(1 − zξ1)

z1

)
p̂2

t +
{(

1 − 1 − zξ1

1 − z1

)(
1 − (1 − z2)(1 − zξ1)

z1

)
+1 − z2(1 − zξ1)

1 − z1

}
z2

√
ξ1 p̂2

t cos ϑ

]
.

(A.82)

Using again Eq. (A.78) we finally get

|M|2nab = − 1

z1(1 − z1)
+ 2

1 − zξ1
+ (1 − 2z1)(z2 − z1)

z1(1 − z1)(1 − zξ1)
+ 2z2

(1 − zξ1)2

[
2
(z1 − zξ1)z2

1 − z1
+
(

1 − 1 − zξ1

1 − z1

)

×
(

1 − (1 − z2)(1 − zξ1)

z1

)
+ 1 − z2(1 − zξ1)

1 − z1

]
+ 2

ξ1(1 − zξ1)2

[
− 2

(
1 − z2(1 − zξ1)

1 − z1

)

×
(

1 − (1 − z2)(1 − zξ1)

z1

)
p̂2

t +
{(

1 − 1 − zξ1

1 − z1

)(
1 − (1 − z2)(1 − zξ1)

z1

)

+1 − z2(1 − zξ1)

1 − z1

}
z2

z1 + z2 − 1

z

]
. (A.83)

We can now further take the limit k1 → 0 to obtain the
fully on-shell result. This is useful as a cross-check as it must
coincide with the on-shell computation, see e.g. [62]. In the
on-shell limit, z, z1 and z2 are no longer independent, as one
can see from Eq. (A.78). Moreover, the angle ϑ becomes
arbitrary (the reference vector k1 does not exist anymore), so
an average over ϑ must be taken. From Eq. (A.78) we can
write

z2 = 1 − z1 + 2z
√
p̂2

t ξ1 cos ϑ + O(ξ1) (A.84)

from which we find

|M|2ab
k1,2→0= 1

z1(1 − z1)

×
[

1 + 4z p̂2
t

(
1 − z p̂2

t

z1(1 − z1)

)]
− 2 (A.85)

|M|2nab
k1,2→0= 4z1(1 − z1) − 2 − 8z p̂2

t

(
1 − z p̂2

t

z1(1 − z1)

)
,

(A.86)

where we can also write p̂2
t = z1(1−z1)

z −m2

Q2 . We have verified
that this result is in agreement with on-shell computations
[62]. For completeness, we also report the on-shell matrix
element for the qq̄ channel:

|M|2qq̄ = CF

CA

(
1 − 2z p̂2

t

)
. (A.87)

Appendix B: Simplifications in the resummation formu-
lae for pair kinematics

When considering pair kinematics we fix q ≡ p+ p̄. Because
of momentum conservation, we also have q = k1+k2. There-
fore, each component of q is fixed in terms of the initial state
variables. It follows that the off-shell coefficient function fac-
torizes as in Eq. (A.48), that we report here for convenience

Q4 dC
dQ2 dη dq2

t dϕ
(z, ξ1, ξ2, Q2, η, q2

t , ϕ)

= dC
dϕ

(z, ξ1, ξ2, Q2, ϕ)δ

(
1 + q̂2

t − 1

z

)
δ(η)

× δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

, (B.1)

where the differential coefficient is given in terms of a more
integrated one times three delta functions. These delta func-
tions can be used to compute the integrations in the resumma-
tion formulae of Sect. 2.3. In this appendix, we exploit this
to present simplified resummed expressions, that we have
implemented in the numerical code HELL.

From Eq. (B.1) we can obtain immediately the triple dif-
ferential off-shell coefficient function by integrating in ϕ

using the last delta function
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Q4 dC
dQ2 dη dq2

t
(z, ξ1, ξ2, Q

2, η, q2
t )

=
θ
(

1 − | q̂2
t −ξ1−ξ2

2
√

ξ1ξ2
|
)

√
4ξ1ξ2 − (q̂2

t − ξ1 − ξ2)2
δ

(
1 + q̂2

t − 1

z

)
δ(η)

×
[

dC
dϕ

(
z, ξ1, ξ2, Q

2, ϕ̄
)

+dC
dϕ

(
z, ξ1, ξ2, Q

2, 2π − ϕ̄
)]

(B.2)

ϕ̄ = cos−1 q̂2
t − ξ1 − ξ2

2
√

ξ1ξ2
, 0 ≤ ϕ̄ ≤ π, (B.3)

where the ϕ-differential distribution is evaluated at specific
values of ϕ. Note however that integrating over ϕ immedi-
ately is not always the best strategy. For instance, when we
take the partial on-shell limit ξ2 → 0 we obtain

Q4 dC
dQ2 dη dq2

t dϕ
(z, ξ1, 0, Q2, η, q2

t , ϕ) = dC
dϕ

(z, ξ1, 0, Q2, ϕ)

× δ

(
1 + q̂2

t − 1

z

)
δ(η)δ

(
q̂2

t − ξ1

)
, (B.4)

where the delta functions do not depend on ϕ anymore, thus
making its integration trivial

Q4 dC
dQ2 dη dq2

t
(z, ξ1, 0, Q2, η, q2

t )

= C(z, ξ1, 0, Q2)δ

(
1 + q̂2

t − 1

z

)
δ(η)δ

(
q̂2

t − ξ1

)
.

(B.5)

This result is needed for the auxiliary function Eq. (2.35),
and also for the subtraction of the plus distributions in the
perturbative expansion of the resummed result, see Sect. 2.4.

We can now use these results in the resummation for-
mulae, using the delta functions to perform integrations
explicitly when possible. As far as the auxiliary function
Eq. (2.35) is concerned, we can start from Eq. (B.5) and
use the δ

(
q̂2

t − ξ1
)

to compute the ξ1 integration. The result
is

Q4 dCaux ±
dQ2dydq2

t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
= 1

1 + q̂2
t

× C
(

1

1 + q̂2
t
, q̂2

t , 0, Q2
)
U ′

reg

(
x(1 + q̂2

t ), q2
t , μ2

F

)

× δ

(
y ± 1

2
log

1

x(1 + q̂2
t )

)
, (B.6)

which does not contain any further integration. Note the pres-
ence of a delta function in the result, which can be used in the
cross section to integrate over parton distributions. The fixed-
order expansion of Eq. (B.6) is given according to Eq. (2.40)
by

Q4 dCaux ±
dQ2dydq2

t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
= 1

1 + q̂2
t
C
(

1

1 + q̂2
t
, q̂2

t , 0, Q2
)

δ

(
y ± 1

2
log

1

x(1 + q̂2
t )

)

⎧
⎪⎨

⎪⎩
αs(μ

2
F)P0

(
x(1 + q̂2

t )
)( 1

q̂2
t

)

+
+ α2

s (μ
2
F)

⎡

⎢
⎣P1

(
x(1 + q̂2

t )
)( 1

q̂2
t

)

+

+
(
P00

(
x(1 + q̂2

t )
)

− β0P0

(
x(1 + q̂2

t )
) )

⎛

⎜
⎝

log q2
t

μ2
F

q̂2
t

⎞

⎟
⎠

+

⎤

⎥
⎦+ O(α3

s )

⎫
⎪⎬

⎪⎭
. (B.7)

We observe that, for this auxiliary function, the expansion is
a distribution in q2

t . This is not an issue: the triple differential
distribution is interesting only for non-zero values of q2

t , and
indeed any measurement will require a q2

t grater than some
resolution cutoff. Should one be interested in integrating over
q2

t down to zero, either to compute the integrated distribu-
tion or to obtain a binned version of the q2

t distribution, one
has simply to take care of using the plus distribution in the
integration.
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We now move to the regular function Eq. (2.34). We get

Q4 dCreg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
= 1

1 + q̂2
t

∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 2π

0
dϕ

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)

×U ′
reg

(√
x(1 + q̂2

t )ey, Q2ξ1, μ
2
F

)
U ′

reg

(√
x(1 + q̂2

t )e−y, Q2ξ2, μ
2
F

)
δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

× θ

(
e−2|y|

x
− 1 − q̂2

t

)
(B.8)

=
θ
(
e−2|y|
x − 1 − q̂2

t

)

1 + q̂2
t

∫ ∞

0
dξ1

∫ ∞

0
dξ2

θ
(

1 − | q̂2
t −ξ1−ξ2

2
√

ξ1ξ2
|
)

√
4ξ1ξ2 − (q̂2

t − ξ1 − ξ2)2
U ′

reg

(√
x(1 + q̂2

t )ey, Q2ξ1, μ
2
F

)

×U ′
reg

(√
x(1 + q̂2

t )e−y, Q2ξ2, μ
2
F

)[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ̄

)
+ dC

dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, 2π − ϕ̄

)]
, (B.9)

where we have used Eq. (B.1) in the first step and Eq. (B.2) in
the second step. Note that the theta function inside the inte-
gration can be recast in the (physically obvious) constraint
(√

ξ1 −√
ξ2

)2 ≤ q̂2
t ≤

(√
ξ1 +√

ξ2

)2
. (B.10)

The integration over ξ1,2 shall be performed numerically. The
fixed-order expansion of Eq. (B.9) can be computed accord-
ing to Eq. (2.39). To this end, it is better to start from Eq. (B.8),
to obtain

Q4 dCreg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
= 1

1 + q̂2
t

∫ ∞

0
dξ1

∫ ∞

0
dξ2

∫ 2π

0
dϕ

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)

×
[
α2
s (μ

2
F)

(
1

ξ1

)

+

(
1

ξ2

)

+
P0

(√
x(1 + q̂2

t )ey
)
P0

(√
x(1 + q̂2

t )e−y
)

+ O(α3
s )

]

×δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

θ

(
e−2|y|

x
− 1 − q̂2

t

)
(B.11)

= 1

1 + q̂2
t
θ

(
e−2|y|

x
− 1 − q̂2

t

)[
α2
s (μ

2
F)P0

(√
x(1 + q̂2

t )ey
)

P0

(√
x(1 + q̂2

t )e−y
)

+ O(α3
s )

] ∫ 2π

0
dϕ I (B.12)

having defined

I =
∫ ∞

0

dξ1

ξ1

∫ ∞
0

dξ2

ξ2

[
dC
dϕ

(
1

1 + q̂2
t

, ξ1, ξ2, Q2, ϕ

)

× δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

− dC
dϕ

(
1

1 + q̂2
t

, ξ1, 0, Q2, ϕ

)

δ
(
q̂2

t − ξ1

)
θ(1 − ξ2)

− dC
dϕ

(
1

1 + q̂2
t

, 0, ξ2, Q2, ϕ

)

δ
(
q̂2

t − ξ2

)
θ(1 − ξ1)

+ dC
dϕ

(
1

1 + q̂2
t

, 0, 0, Q2, ϕ

)

δ
(
q̂2

t

)
θ(1 − ξ1)θ(1 − ξ2)

]

(B.13)

This result is not immediately usable as delta functions still
appear explicitly, and the cancellation of singularities in
ξ1, ξ2 = 0 requires integrating over these delta functions
in a proper order.

To do so, we make some observations. First, when ξ1 or
ξ2 is zero, the coefficient does no longer depend on ϕ in
principle. However, when considering the limit ξ1,2 → 0, a
dependence on ϕ remains. So, for later convenience, we keep
the last argument having in mind a limit procedure. Second,

the last term is proportional to δ(q̂2
t ), which is zero every-

where in the q̂2
t distribution, except for a single point. This

point is interesting only for computing the cumulative dis-
tribution between q̂2

t = 0 and some given value, but in this
case it is more convenient to consider the integrated distri-
bution and subtract from it the integral from that value to
infinity. Therefore, for our purposes, we can assume q̂2

t > 0
and ignore the last line. Finally, we observe that the integrand
is symmetric for the exchange ξ1 ↔ ξ2, as a consequence of
the analogous symmetry of the function dC/dϕ.

We can separate the integration region into 4 subregions,
divided by the lines ξ1 = 1 and ξ2 = 1. As a result we can
write
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I = I1 + I2 + I3 + I4 (B.14)

I1 =
∫ 1

0

dξ1

ξ1

∫ 1

0

dξ2

ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

− dC
dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2

)
δ
(
q̂2

t − ξ1

)
− dC

dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q

2
)

δ
(
q̂2

t − ξ2

) ]
(B.15)

I2 =
∫ 1

0

dξ1

ξ1

∫ ∞

1

dξ2

ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

− dC
dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q

2
)

δ
(
q̂2

t − ξ2

) ]
(B.16)

I3 =
∫ ∞

1

dξ1

ξ1

∫ 1

0

dξ2

ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

− dC
dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2

)
δ
(
q̂2

t − ξ1

) ]
(B.17)

I4 =
∫ ∞

1

dξ1

ξ1

∫ ∞

1

dξ2

ξ2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

. (B.18)

The ξ1 ↔ ξ2 symmetry implies I2 = I3, and further allows
us to write I1

I1 = 2
∫ 1

0

dξ1

ξ1

∫ 1

ξ1

dξ2

ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)

× δ
(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

− dC
dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2

)
δ
(
q̂2

t − ξ1

)

− dC
dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q

2
)

δ
(
q̂2

t − ξ2

) ]
. (B.19)

as an integral over a triangle. In this way, only one subtraction
is needed to make the integral finite; the other one is a finite
integrable contribution.

As these integrals have to be further integrated in ϕ, one
would be tempted to perform this integration first, before pro-
ceeding to ξ1,2 integration. This seems advantageous because
the “full” delta function can be easily solved for ϕ (this is
what we have already done before) and the subtraction terms
are ϕ-independent and thus the integral is trivial. However,
proceeding in this way may potentially lead to numerical
instabilities. Consider for instance I2, where the subtraction
is needed to regulate the ξ1 integral in ξ1 = 0. After integrat-
ing analytically over ϕ, the remaining ξ2 integration shall be
done analytically (using the delta function) for the subtraction

term, but numerically (as we have already used the delta
function) for the first term. The cancellation between the two
terms is then realised after a numerical integration, which
may be dangerous. To make the cancellation smoother, it is
much safer to use the delta functions to fix the same variable
(ξ2) in the first term and in the subtraction term. The same
holds for the I1 integral, in the representation Eq. (B.19).

To do so, we need to solve the delta function for ξ2. The
zeros of the argument are given by
√

ξ±
2 = −√ξ1 cos ϕ ±

√
q̂2

t − ξ1(1 − cos2 ϕ). (B.20)

It is then convenient to change integration variable to
√

ξ2.
We get, for a generic function F(ξ2),

∫
dξ2 F(ξ2) δ

(
q̂2

t − ξ1 − ξ2 − 2
√

ξ1ξ2 cos ϕ
)

= θ
(
q̂2

t − ξ1(1 − cos2 ϕ)
)

√
q̂2

t − ξ1(1 − cos2 ϕ)

[√
ξ+

2 F(ξ+
2 ) +

√
ξ−

2 F(ξ−
2 )

]

(B.21)

where the denominator comes from the derivative of the argu-
ment of the delta function. According to this result we can
find
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I1 = 2
∫ 1

0

dξ1

ξ1

[
θ
(
q̂2

t − ξ1(1 − cos2 ϕ)
)

√
q̂2

t − ξ1(1 − cos2 ϕ)

(
1

√
ξ+

2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)

× θ

(
1 −

√
ξ+

2

)
θ

(√
ξ+

2 −√
ξ1

)
+ 1
√

ξ−
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q2, ϕ

)

× θ

(
1 −

√
ξ−

2

)
θ

(√
ξ−

2 −√
ξ1

))
− 1

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q2
)

× θ
(

1 − q̂2
t

)
θ
(
q̂2

t − ξ1

) ]
+ 2

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)

log q̂2
t θ
(

1 − q̂2
t

)
(B.22)

I2 =
∫ 1

0

dξ1

ξ1

[
θ
(
q̂2

t − ξ1(1 − cos2 ϕ)
)

√
q̂2

t − ξ1(1 − cos2 ϕ)

(
1

√
ξ+

2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)
θ

(√
ξ+

2 − 1

)

+ 1
√

ξ−
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q2, ϕ

)
θ

(√
ξ−

2 − 1

))
− 1

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q2
)

θ
(
q̂2

t − 1
) ]

. (B.23)

It is easy to check that the explicit integrals in ξ1 are finite

as ξ1 → 0. Indeed in this limit
√

ξ±
2 → ±

√
q̂2

t , so the

ξ−
2 contributions die due to the theta functions, and the ξ+

2
contributions become identical to the subtraction terms, thus
making the square bracket vanishing in the limit.

The last integral, I4, can be performed similarly to I1.
However, because here there are no subtraction terms, it is
possible to use the delta function for any variable, and in this
case it may be convenient to do it for ϕ.

Note that I can be simplified as

I = I1 + 2I2 + I4

= 2
∫ 1

0

dξ1

ξ1

[
θ
(
q̂2

t − ξ1(1 − cos2 ϕ)
)

√
q̂2

t − ξ1(1 − cos2 ϕ)

×
(

1
√

ξ+
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)
θ

(√
ξ+

2 −√
ξ1

)

+ 1
√

ξ−
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q2, ϕ

)
θ

(√
ξ−

2 −√
ξ1

))

− 1

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q2
)

θ
(
q̂2

t − ξ1

) ]

+ 2

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)

log q̂2
t θ
(

1 − q̂2
t

)
+ I4.

(B.24)

Note also that the inequality
√

ξ−
2 >

√
ξ1 required by the

theta function in the second line implies

− cos ϕ > 1 +
√
q̂2

t

ξ1
− 1 + cos2 ϕ (B.25)

which is clearly impossible, so the result simplifies further

I = 2
∫ 1

0

dξ1

ξ1

[
θ
(
q̂2

t − ξ1(1 − cos2 ϕ)
)

√
q̂2

t − ξ1(1 − cos2 ϕ)

1
√

ξ+
2

× dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)
θ

(
q̂2

t

2(1 + cos ϕ)
− ξ1

)

− 1

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q2
)

θ
(
q̂2

t − ξ1

) ]

+ 2

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)

log q̂2
t θ
(

1 − q̂2
t

)
+ I4,

(B.26)

where we have also traded the
√

ξ+
2 >

√
ξ1 condition for a

simpler condition on ξ1. The second theta function is more
stringent than the first one, so the first one can be dropped.
The result above can thus be written as

I = 2
∫ q̂2

t
2(1+cos ϕ)

0

dξ1

ξ1

[
1

√
q̂2

t − ξ1(1 − cos2 ϕ)

1
√

ξ+
2

× dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)

− 1

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q2
)]

+ 2

q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q2
)

log
q̂2

t

2(1 + cos ϕ)
+ I4.

(B.27)
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The integral I4, having no subtraction in it, can be computed
as in Eq. (B.9), using the delta function to fix ϕ.

Of course we can use the approach of using the delta func-
tion to integrate over ξ2 also for the resummed result. In this
case we find

Q4 dCreg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=

θ
(
e−2|y|
x − 1 − q̂2

t

)

1 + q̂2
t

∫ ∞

ξ0

dξ1

×
∫ 2π

0
dϕ

θ
(
q̂2

t − ξ1(1 − cos2 ϕ)
)

√
q̂2

t − ξ1(1 − cos2 ϕ)

U ′
reg

(√
x(1 + q̂2

t )ey, Q2ξ1, μ
2
F

)

×
[√

ξ+
2 U ′

reg

(√
x(1 + q̂2

t )e−y, Q2ξ+
2 , μ2

F

)
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)
θ

(√
ξ+

2 −√
ξ0

)

+
√

ξ−
2 U ′

reg

(√
x(1 + q̂2

t )e−y, Q2ξ−
2 , μ2

F

)
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q2, ϕ

)
θ

(√
ξ−

2 −√
ξ0

)]
(B.28)

In fact, it is convenient to partition the integration region
along the diagonal ξ1 = ξ2, to get

Q4 dCreg

dQ2dydq2
t

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

)
=

θ
(
e−2|y|
x − 1 − q̂2

t

)

1 + q̂2
t

∫ 2π

0
dϕ

×
[
I+
(
x, Q2, y, q2

t , αs,
Q2

μ2
F

, ϕ

)
+I−

(
x, Q2, y, q2

t , αs,
Q2

μ2
F

, ϕ

)]
(B.29)

I+
(
x, Q2, y, q2

t , αs,
Q2

μ2
F

, ϕ

)
=
∫ q̂2

t
2(1+cos ϕ)

ξ0

dξ1

√
ξ+

2

q̂2
t − ξ1(1 − cos2 ϕ)

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q2, ϕ

)

×U ′
reg

(√
x(1 + q̂2

t )ey, Q2ξ1, μ
2
F

)

×U ′
reg

(√
x(1 + q̂2

t )e−y, Q2ξ+
2 , μ2

F

)
(B.30)

I−
(
x, Q2, y, q2

t , αs,
Q2

μ2
F

, ϕ

)
= I+

(
x, Q2,−y, q2

t , αs,
Q2

μ2
F

,−ϕ

)
. (B.31)

123



  267 Page 32 of 33 Eur. Phys. J. C           (2023) 83:267 

References

1. G. Salam, A Resummation of large subleading corrections at small
x. JHEP 9807, 019 (1998). https://doi.org/10.1088/1126-6708/
1998/07/019. arXiv:hep-ph/9806482

2. M. Ciafaloni, D. Colferai, G. Salam, Renormalization group
improved small x equation. Phys. Rev. D60, 114036 (1999). https://
doi.org/10.1103/PhysRevD.60.114036. arXiv:hep-ph/9905566

3. M. Ciafaloni, D. Colferai, G.P. Salam, A.M. Stasto, The
Gluon splitting function at moderately small x. Phys. Lett. B
587, 87 (2004). https://doi.org/10.1016/j.physletb.2004.02.054.
arXiv:hep-ph/0311325

4. M. Ciafaloni, D. Colferai, G. Salam, A. Stasto, Renormaliza-
tion group improved small x Green’s function. Phys. Rev. D
68, 114003 (2003). https://doi.org/10.1103/PhysRevD.68.114003.
arXiv:hep-ph/0307188

5. M. Ciafaloni, D. Colferai, G. Salam, A. Stasto, A Matrix formula-
tion for small-x singlet evolution. JHEP 0708, 046 (2007). https://
doi.org/10.1088/1126-6708/2007/08/046. arXiv:0707.1453

6. R.D. Ball, S. Forte, Summation of leading logarithms at small
x. Phys. Lett. B 351, 313 (1995). https://doi.org/10.1016/
0370-2693(95)00395-2. arXiv:hep-ph/9501231

7. R.D. Ball, S. Forte, Asymptotically free partons at high-
energy. Phys. Lett. B 405, 317 (1997). https://doi.org/10.1016/
S0370-2693(97)00625-4. arXiv:hep-ph/9703417

8. G. Altarelli, R.D. Ball, S. Forte, Factorization and resum-
mation of small x scaling violations with running cou-
pling. Nucl. Phys. B 621, 359 (2002). https://doi.org/10.1016/
S0550-3213(01)00563-6. arXiv:hep-ph/0109178

9. G. Altarelli, R.D. Ball, S. Forte, An Anomalous dimension for
small x evolution. Nucl. Phys. B 674, 459 (2003). https://doi.org/
10.1016/j.nuclphysb.2003.09.040. arXiv:hep-ph/0306156

10. G. Altarelli, R.D. Ball, S. Forte, Perturbatively stable resummed
small x evolution kernels. Nucl. Phys. B 742, 1 (2006). https://doi.
org/10.1016/j.nuclphysb.2006.01.046. arXiv:hep-ph/0512237

11. G. Altarelli, R.D. Ball, S. Forte, Small x resummation with quarks:
deep-inelastic scattering. Nucl. Phys. B 799, 199 (2008). https://
doi.org/10.1016/j.nuclphysb.2008.03.003. arXiv:0802.0032

12. R.S. Thorne, Explicit calculation of the running coupling BFKL
anomalous dimension. Phys. Lett. B 474, 372 (2000). https://doi.
org/10.1016/S0370-2693(00)00019-8. arXiv:hep-ph/9912284

13. R.S. Thorne, NLO BFKL equation, running coupling and renor-
malization. Phys. Rev. Scales D60, 054031 (1999). https://doi.org/
10.1103/PhysRevD.60.054031. arXiv:hep-ph/9901331

14. R.S. Thorne, The running coupling BFKL anomalous dimensions
and splitting functions. Phys. Rev. D 64, 074005 (2001). https://
doi.org/10.1103/PhysRevD.64.074005. arXiv:hep-ph/0103210

15. C.D. White, R.S. Thorne, A global fit to scattering data with NLL
BFKL resummations. Phys. Rev. D 75, 034005 (2007). https://doi.
org/10.1103/PhysRevD.75.034005. arXiv:hep-ph/0611204

16. I.Z. Rothstein, I.W. Stewart, An effective field theory for forward
scattering and factorization violation. arXiv:1601.04695

17. L.N. Lipatov, Reggeization of the vector meson and the vacuum
singularity in nonabelian gauge theories. Sov. J. Nucl. Phys. 23,
338 (1976)

18. V.S. Fadin, E. Kuraev, L. Lipatov, On the Pomeranchuk singularity
in asymptotically free theories. Phys. Lett. B 60, 50 (1975). https://
doi.org/10.1016/0370-2693(75)90524-9

19. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Multi-Reggeon processes
in the Yang-Mills theory. Sov. Phys. JETP 44, 443 (1976)

20. E.A. Kuraev, L.N. Lipatov, V.S. Fadin, The Pomeranchuk singular-
ity in nonabelian gauge theories. Sov. Phys. JETP 45, 199 (1977)

21. I.I. Balitsky, L.N. Lipatov, The Pomeranchuk singularity in quan-
tum chromodynamics. Sov. J. Nucl. Phys. 28, 822 (1978)

22. V.S. Fadin, L. Lipatov, BFKL pomeron in the next-to-leading
approximation. Phys. Lett. B 429, 127 (1998). https://doi.org/10.
1016/S0370-2693(98)00473-0. arXiv:hep-ph/9802290

23. R.D. Ball, V. Bertone, M. Bonvini, S. Marzani, J. Rojo, L. Rottoli,
Parton distributions with small-x resummation: evidence for BFKL
dynamics in HERA data. Eur. Phys. J. C 78, 321 (2018). https://
doi.org/10.1140/epjc/s10052-018-5774-4. arXiv:1710.05935

24. xFitter Developers’ Team collaboration, H. Abdolmaleki et al.,
Impact of low-x resummation on QCD analysis of HERA data.
Eur. Phys. J. C 78, 621 (2018). https://doi.org/10.1140/epjc/
s10052-018-6090-8. arXiv:1802.00064

25. M. Bonvini, F. Giuli, A new simple PDF parametrization: improved
description of the HERA data. Eur. Phys. J. Plus 134, 531 (2019).
https://doi.org/10.1140/epjp/i2019-12872-x. arXiv:1902.11125

26. S. Catani, M. Ciafaloni, F. Hautmann, Gluon contributions to small-
x heavy flavor production. Phys. Lett. B 242, 97 (1990). https://
doi.org/10.1016/0370-2693(90)91601-7

27. S. Catani, M. Ciafaloni, F. Hautmann, High energy factorization
and small-x heavy flavour production. Nucl. Phys. B 366, 135
(1991)

28. S. Catani, F. Hautmann, High-energy factorization and small x
deep inelastic scattering beyond leading order. Nucl. Phys. B
427, 475 (1994). https://doi.org/10.1016/0550-3213(94)90636-X.
arXiv:hep-ph/9405388

29. M. Bonvini, S. Marzani, T. Peraro, Small-x resummation from
HELL. Eur. Phys. J. C 76, 597 (2016). https://doi.org/10.1140/
epjc/s10052-016-4445-6. arXiv:1607.02153

30. M. Bonvini, S. Marzani, C. Muselli, Towards parton dis-
tribution functions with small-x resummation: HELL 2.0.
JHEP 12, 117 (2017). https://doi.org/10.1007/JHEP12(2017)117.
arXiv:1708.07510

31. M. Bonvini, Small-x phenomenology at the LHC and beyond:
HELL 3.0 and the case of the Higgs cross section. Eur. Phys. J. C
78, 834 (2018). https://doi.org/10.1140/epjc/s10052-018-6315-x.
arXiv:1805.08785

32. F. Caola, S. Forte, S. Marzani, Small x resummation of rapid-
ity distributions: the case of Higgs production. Nucl. Phys. B
846, 167 (2011). https://doi.org/10.1016/j.nuclphysb.2011.01.001.
arXiv:1010.2743

33. S. Forte, C. Muselli, High energy resummation of trans-
verse momentum distributions: Higgs in gluon fusion. JHEP
03, 122 (2016). https://doi.org/10.1007/JHEP03(2016)122.
arXiv:1511.05561

34. C. Muselli, Double differential high energy resummation.
arXiv:1710.09376

35. J.C. Collins, R.K. Ellis, Heavy quark production in very high energy
hadron collisions. Nucl. Phys. B 360, 3 (1991)

36. S. Catani, M. Ciafaloni, F. Hautmann, High-energy factorization
in QCD and minimal subtraction scheme. Phys. Lett. B 307, 147
(1993). https://doi.org/10.1016/0370-2693(93)90204-U

37. S. Catani, F. Hautmann, Quark anomalous dimensions at small
x. Phys. Lett. B 315, 157 (1993). https://doi.org/10.1016/
0370-2693(93)90174-G

38. R.D. Ball, Resummation of hadroproduction cross-sections at high
energy. Nucl. Phys. B 796, 137 (2008). https://doi.org/10.1016/j.
nuclphysb.2007.12.014. arXiv:0708.1277

39. M. Bonvini, R. Gauld, T. Giani, S. Marzani, Drell-Yan at small x
(In preparation)

40. M. Ciafaloni, D. Colferai, Dimensional regularisation and factori-
sation schemes in the BFKL equation at subleading level. JHEP
09, 069 (2005). https://doi.org/10.1088/1126-6708/2005/09/069.
arXiv:hep-ph/0507106

41. S. Marzani, R.D. Ball, P. Falgari, S. Forte, BFKL at next-to-next-
to-leading order. Nucl. Phys. B 783, 143 (2007). https://doi.org/10.
1016/j.nuclphysb.2007.05.024. arXiv:0704.2404

123

https://doi.org/10.1088/1126-6708/1998/07/019
https://doi.org/10.1088/1126-6708/1998/07/019
http://arxiv.org/abs/hep-ph/9806482
https://doi.org/10.1103/PhysRevD.60.114036
https://doi.org/10.1103/PhysRevD.60.114036
http://arxiv.org/abs/hep-ph/9905566
https://doi.org/10.1016/j.physletb.2004.02.054
http://arxiv.org/abs/hep-ph/0311325
https://doi.org/10.1103/PhysRevD.68.114003
http://arxiv.org/abs/hep-ph/0307188
https://doi.org/10.1088/1126-6708/2007/08/046
https://doi.org/10.1088/1126-6708/2007/08/046
http://arxiv.org/abs/0707.1453
https://doi.org/10.1016/0370-2693(95)00395-2
https://doi.org/10.1016/0370-2693(95)00395-2
http://arxiv.org/abs/hep-ph/9501231
https://doi.org/10.1016/S0370-2693(97)00625-4
https://doi.org/10.1016/S0370-2693(97)00625-4
http://arxiv.org/abs/hep-ph/9703417
https://doi.org/10.1016/S0550-3213(01)00563-6
https://doi.org/10.1016/S0550-3213(01)00563-6
http://arxiv.org/abs/hep-ph/0109178
https://doi.org/10.1016/j.nuclphysb.2003.09.040
https://doi.org/10.1016/j.nuclphysb.2003.09.040
http://arxiv.org/abs/hep-ph/0306156
https://doi.org/10.1016/j.nuclphysb.2006.01.046
https://doi.org/10.1016/j.nuclphysb.2006.01.046
http://arxiv.org/abs/hep-ph/0512237
https://doi.org/10.1016/j.nuclphysb.2008.03.003
https://doi.org/10.1016/j.nuclphysb.2008.03.003
http://arxiv.org/abs/0802.0032
https://doi.org/10.1016/S0370-2693(00)00019-8
https://doi.org/10.1016/S0370-2693(00)00019-8
http://arxiv.org/abs/hep-ph/9912284
https://doi.org/10.1103/PhysRevD.60.054031
https://doi.org/10.1103/PhysRevD.60.054031
http://arxiv.org/abs/hep-ph/9901331
https://doi.org/10.1103/PhysRevD.64.074005
https://doi.org/10.1103/PhysRevD.64.074005
http://arxiv.org/abs/hep-ph/0103210
https://doi.org/10.1103/PhysRevD.75.034005
https://doi.org/10.1103/PhysRevD.75.034005
http://arxiv.org/abs/hep-ph/0611204
http://arxiv.org/abs/1601.04695
https://doi.org/10.1016/0370-2693(75)90524-9
https://doi.org/10.1016/0370-2693(75)90524-9
https://doi.org/10.1016/S0370-2693(98)00473-0
https://doi.org/10.1016/S0370-2693(98)00473-0
http://arxiv.org/abs/hep-ph/9802290
https://doi.org/10.1140/epjc/s10052-018-5774-4
https://doi.org/10.1140/epjc/s10052-018-5774-4
http://arxiv.org/abs/1710.05935
https://doi.org/10.1140/epjc/s10052-018-6090-8
https://doi.org/10.1140/epjc/s10052-018-6090-8
http://arxiv.org/abs/1802.00064
https://doi.org/10.1140/epjp/i2019-12872-x
http://arxiv.org/abs/1902.11125
https://doi.org/10.1016/0370-2693(90)91601-7
https://doi.org/10.1016/0370-2693(90)91601-7
https://doi.org/10.1016/0550-3213(94)90636-X
http://arxiv.org/abs/hep-ph/9405388
https://doi.org/10.1140/epjc/s10052-016-4445-6
https://doi.org/10.1140/epjc/s10052-016-4445-6
http://arxiv.org/abs/1607.02153
https://doi.org/10.1007/JHEP12(2017)117
http://arxiv.org/abs/1708.07510
https://doi.org/10.1140/epjc/s10052-018-6315-x
http://arxiv.org/abs/1805.08785
https://doi.org/10.1016/j.nuclphysb.2011.01.001
http://arxiv.org/abs/1010.2743
https://doi.org/10.1007/JHEP03(2016)122
http://arxiv.org/abs/1511.05561
http://arxiv.org/abs/1710.09376
https://doi.org/10.1016/0370-2693(93)90204-U
https://doi.org/10.1016/0370-2693(93)90174-G
https://doi.org/10.1016/0370-2693(93)90174-G
https://doi.org/10.1016/j.nuclphysb.2007.12.014
https://doi.org/10.1016/j.nuclphysb.2007.12.014
http://arxiv.org/abs/0708.1277
https://doi.org/10.1088/1126-6708/2005/09/069
http://arxiv.org/abs/hep-ph/0507106
https://doi.org/10.1016/j.nuclphysb.2007.05.024
https://doi.org/10.1016/j.nuclphysb.2007.05.024
http://arxiv.org/abs/0704.2404


Eur. Phys. J. C           (2023) 83:267 Page 33 of 33   267 

42. M. Deak, F. Hautmann, H. Jung, K. Kutak, Forward jet production
at the large hadron collider. JHEP 09, 121 (2009). https://doi.org/
10.1088/1126-6708/2009/09/121. arXiv:0908.0538

43. M. Deak, F. Hautmann, H. Jung, K. Kutak, Forward jets and energy
flow in hadronic collisions. Eur. Phys. J. C 72, 1982 (2012). https://
doi.org/10.1140/epjc/s10052-012-1982-5. arXiv:1112.6354

44. F.G. Celiberto, D.Y. Ivanov, M.M.A. Mohammed, A. Papa, High-
energy resummed distributions for the inclusive Higgs-plus-jet pro-
duction at the LHC. Eur. Phys. J. C 81, 293 (2021). https://doi.org/
10.1140/epjc/s10052-021-09063-2. arXiv:2008.00501

45. F.G. Celiberto, High-energy emissions of light mesons plus heavy
flavor at the LHC and the forward physics facility. Phys. Rev.
D 105, 114008 (2022). https://doi.org/10.1103/PhysRevD.105.
114008. arXiv:2204.06497

46. F.G. Celiberto, M. Fucilla, Diffractive semi-hard production of a
J/ψ or a ϒ from single-parton fragmentation plus a jet in hybrid
factorization. Eur. Phys. J. C 82, 929 (2022). https://doi.org/10.
1140/epjc/s10052-022-10818-8. arXiv:2202.12227

47. A. van Hameren, L. Motyka, G. Ziarko, Hybrid kT -factorization
and impact factors at NLO. JHEP 11, 103 (2022). https://doi.org/
10.1007/JHEP11(2022)103. arXiv:2205.09585

48. M. Bonvini, S. Marzani, Four-loop splitting functions at small x .
JHEP 06, 145 (2018). https://doi.org/10.1007/JHEP06(2018)145.
arXiv:1805.06460

49. P. Nason, S. Dawson, R.K. Ellis, The total cross-section for the
production of heavy quarks in hadronic collisions. Nucl. Phys. B
303, 607 (1988). https://doi.org/10.1016/0550-3213(88)90422-1

50. S. Frixione, P. Nason, G. Ridolfi, A positive-weight next-to-
leading-order Monte Carlo for heavy flavour hadroproduction.
JHEP 09, 126 (2007). https://doi.org/10.1088/1126-6708/2007/
09/126. arXiv:0707.3088

51. S. Catani, S. Devoto, M. Grazzini, S. Kallweit, J. Mazzitelli,
Bottom-quark production at hadron colliders: fully differential pre-
dictions in NNLO QCD. JHEP 03, 029 (2021). https://doi.org/10.
1007/JHEP03(2021)029. arXiv:2010.11906

52. R. Ball, R.K. Ellis, Heavy quark production at high-energy.
JHEP 0105, 053 (2001). https://doi.org/10.1088/1126-6708/2001/
05/053. arXiv:hep-ph/0101199

53. S.P. Baranov, tHighlights from the kT factorization approach on the
quarkonium production puzzles. Phys. Rev. D 66, 114003 (2002).
https://doi.org/10.1103/PhysRevD.66.114003

54. B.A. Kniehl, D.V. Vasin, V.A. Saleev, Charmonium production
at high energy in the kT -factorization approach. Phys. Rev. D
73, 074022 (2006). https://doi.org/10.1103/PhysRevD.73.074022.
arXiv:hep-ph/0602179

55. A.D. Bolognino, F.G. Celiberto, M. Fucilla, D.Y. Ivanov, A.
Papa, High-energy resummation in heavy-quark pair hadroproduc-
tion. Eur. Phys. J. C 79, 939 (2019). https://doi.org/10.1140/epjc/
s10052-019-7392-1. arXiv:1909.03068

56. P. Nason, A new method for combining NLO QCD with shower
Monte Carlo algorithms. JHEP 11, 040 (2004). https://doi.org/10.
1088/1126-6708/2004/11/040. arXiv:hep-ph/0409146

57. S. Frixione, P. Nason, C. Oleari, Matching NLO QCD computations
with Parton Shower simulations: the POWHEG method. JHEP
11, 070 (2007). https://doi.org/10.1088/1126-6708/2007/11/070.
arXiv:0709.2092

58. S. Alioli, P. Nason, C. Oleari, E. Re, A general framework for
implementing NLO calculations in shower Monte Carlo programs:
the POWHEG BOX. JHEP 06, 043 (2010). https://doi.org/10.1007/
JHEP06(2010)043. arXiv:1002.2581

59. PROSA collaboration, O. Zenaiev et al., Impact of heavy-flavour
production cross sections measured by the LHCb experiment
on parton distribution functions at low x. Eur. Phys. J. C
75, 396 (2015). https://doi.org/10.1140/epjc/s10052-015-3618-z.
arXiv:1503.04581

60. R. Gauld, J. Rojo, L. Rottoli, J. Talbert, Charm production in the
forward region: constraints on the small-x gluon and backgrounds
for neutrino astronomy. JHEP 11, 009 (2015). https://doi.org/10.
1007/JHEP11(2015)009. arXiv:1506.08025

61. R. Gauld, J. Rojo, Precision determination of the small-x
gluon from charm production at LHCb. Phys. Rev. Lett. 118,
072001 (2017). https://doi.org/10.1103/PhysRevLett.118.072001.
arXiv:1610.09373

62. Particle Data Group collaboration, R.L. Workman et al., Review
of particle physics. PTEP 2022, 083C01 (2022). https://doi.org/10.
1093/ptep/ptac097

123

https://doi.org/10.1088/1126-6708/2009/09/121
https://doi.org/10.1088/1126-6708/2009/09/121
http://arxiv.org/abs/0908.0538
https://doi.org/10.1140/epjc/s10052-012-1982-5
https://doi.org/10.1140/epjc/s10052-012-1982-5
http://arxiv.org/abs/1112.6354
https://doi.org/10.1140/epjc/s10052-021-09063-2
https://doi.org/10.1140/epjc/s10052-021-09063-2
http://arxiv.org/abs/2008.00501
https://doi.org/10.1103/PhysRevD.105.114008
https://doi.org/10.1103/PhysRevD.105.114008
http://arxiv.org/abs/2204.06497
https://doi.org/10.1140/epjc/s10052-022-10818-8
https://doi.org/10.1140/epjc/s10052-022-10818-8
http://arxiv.org/abs/2202.12227
https://doi.org/10.1007/JHEP11(2022)103
https://doi.org/10.1007/JHEP11(2022)103
http://arxiv.org/abs/2205.09585
https://doi.org/10.1007/JHEP06(2018)145
http://arxiv.org/abs/1805.06460
https://doi.org/10.1016/0550-3213(88)90422-1
https://doi.org/10.1088/1126-6708/2007/09/126
https://doi.org/10.1088/1126-6708/2007/09/126
http://arxiv.org/abs/0707.3088
https://doi.org/10.1007/JHEP03(2021)029
https://doi.org/10.1007/JHEP03(2021)029
http://arxiv.org/abs/2010.11906
https://doi.org/10.1088/1126-6708/2001/05/053
https://doi.org/10.1088/1126-6708/2001/05/053
http://arxiv.org/abs/hep-ph/0101199
https://doi.org/10.1103/PhysRevD.66.114003
https://doi.org/10.1103/PhysRevD.73.074022
http://arxiv.org/abs/hep-ph/0602179
https://doi.org/10.1140/epjc/s10052-019-7392-1
https://doi.org/10.1140/epjc/s10052-019-7392-1
http://arxiv.org/abs/1909.03068
https://doi.org/10.1088/1126-6708/2004/11/040
https://doi.org/10.1088/1126-6708/2004/11/040
http://arxiv.org/abs/hep-ph/0409146
https://doi.org/10.1088/1126-6708/2007/11/070
http://arxiv.org/abs/0709.2092
https://doi.org/10.1007/JHEP06(2010)043
https://doi.org/10.1007/JHEP06(2010)043
http://arxiv.org/abs/1002.2581
https://doi.org/10.1140/epjc/s10052-015-3618-z
http://arxiv.org/abs/1503.04581
https://doi.org/10.1007/JHEP11(2015)009
https://doi.org/10.1007/JHEP11(2015)009
http://arxiv.org/abs/1506.08025
https://doi.org/10.1103/PhysRevLett.118.072001
http://arxiv.org/abs/1610.09373
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1093/ptep/ptac097

	Differential heavy quark pair production at small x
	Abstract 
	1 Introduction
	2 Multi-differential small-x resummation in HELL
	2.1 Extension of kt factorization to differential observables in pp collisions
	2.2 Small-x resummation of differential distributions in the HELL language
	2.3 All partonic channels
	2.4 Matching to fixed order

	3 Heavy-quark pair production
	3.1 Results differential in the single heavy-quark
	3.2 Results differential in the heavy-quark pair

	4 Conclusions
	Acknowledgements
	Appendix A: The off-shell coefficient function
	A.1 Kinematics for the single quark
	A.2 Kinematics for the pair
	A.3 Matrix element
	A.4 On-shell limit

	Appendix B: Simplifications in the resummation formulae for pair kinematics
	References


