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Abstract: We consider the production of a heavy quark pair in proton-proton collisions. For
bottom and charm quarks, the final state invariant mass is typically much smaller than the collider
energy (e.g. at the LHC), so that high-energy logarithms may spoil the perturbativity of the theo-
retical prediction at fixed order. The resummation of these logarithms to all orders is thus needed
to obtain reliable predictions. In this work, we extend previous results on high-energy (or small-x)
resummation to differential distributions in rapidity, transverse momentum and invariant mass, and
implement them in the public code HELL.
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1 Introduction

In the era of LHC precision physics, considerable efforts are required to match theoretical prediction
with experimental accuracy. Such an endeavour requires several different inputs, e.g. high-order
predictions for partonic processes, high-quality parton distributions and all-order resummation of
large logarithmic contributions.

In this work, we focus on the latter and specifically on the so-called high-energy logarithms of
the form αns

1
x logk 1

x , k < n, where x is a dimensionless scaling variable that becomes small when
the collider energy s is large. These perturbative terms arise beyond the leading order in both
the partonic cross sections and the DGLAP splitting functions governing PDF evolution (in MS-
like schemes). At the energy scales of many LHC processes, x � 1 and these logarithms spoil the
perturbativity of the fixed-order results. This calls for an all-order resummation of these corrections.

The theoretical framework to perform this high-energy (or small-x) resummation has been
established during the last thirty years starting with the resummation of splitting functions [1–16]
by means of the Balitsky-Fadin-Kuraev-Lipatov (BFKL) equation [17–22] and arriving recently to
PDF determination with resummed theory [23–25].

One of the key steps to achieve a consistent resummed prediction is the resummation of par-
tonic cross sections, which can be carried out to leading logarithmic (LL) precision using the kt
factorization theorem [26–28]. Recently, the resummation technique for partonic cross sections has
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been reformulated and adapted for stable numerical implementation [29–31]. This led to the re-
lease of the High-Energy Large Logarithms (HELL) public code, which aims to provide a systematic
framework for implementing small-x resummation.

So far, only inclusive observables have been considered in HELL. The sensitivity of inclusive
observables to resummation effects is, however, limited. Indeed, the small-x region at parton
level is mixed with the medium- and high-x regions in the convolution that defines the hadron-
level cross section, thereby smoothening out much of the impact of high-energy logarithms (see
e.g. Ref. [31]). Differential distributions, instead, can be more directly sensitive to specific values
of partonic x, thereby enhancing the effect of small-x resummation in some kinematic regions.
Moreover differential distributions are of greater phenomenological interest, as they can be compared
more directly with experimental measurements.

In this work we will focus on invariant mass, rapidity and transverse momentum distribu-
tions. The resummation of small-x logarithms in these differential cross sections was developed in
Refs. [32–34], focussing on Higgs production via gluon fusion. Here, we revisit these results and
extend them to the modern resummation formalism of Refs. [29–31], thereby allowing for a stable
numerical implementation thus opening the door to phenomenological studies.

We apply our findings to heavy flavour pair production, and construct resummed predictions
for distribution in invariant mass, rapidity and transverse momentum of either the heavy-quark
pair or one of the heavy quarks. This process is particularly interesting due to the availability
of measurements from the LHCb experiment for the production of charm and bottom quarks in
the forward region, where one of the incoming partons is certainly at small x and thus the effect
of resummation should be marked. In addition, these data reach values of x down to x ∼ 10−6,
which is a region of proton momentum fractions so far unexplored, as the HERA data is limited
to x & 3 · 10−5 in the perturbative regime. Our results thus provide an important ingredient to
refine the determination of PDFs at small-x, which serves both as a test of QCD in extreme regimes
and as a tool to improve high-energy phenomenology. All our results are available through the new
release of the HELL code.

The structure of this paper is the following. Section 2 is dedicated to presenting the formal-
ism of kt factorization in a proton collider and its use to construct small-x resummed results for
differential distributions in the language of HELL. Then, section 3 is dedicated to the application
of resummation to differential heavy flavour production, parametrising the final state respectively
as the entire quark-antiquark pair or as a single quark. We conclude in section 4, and collect in
the appendices various details on analytical expressions for heavy quark production and aspects of
numerical implementation.

2 Multi-differential small-x resummation in HELL

The resummation of small-x logarithms in physical observables is based on kt factorization [26–
28, 35–37]. The basic observation is that the leading small-x logarithms arise, in a physical gauge,
from kt integration over gluon exchanges in the t channel. Therefore, in the small-x limit, the generic
amplitude squared can be decomposed into contributions that are two-gluon irreducible (2GI) in the
t channel and thus do not contain any logarithmic enhancement. Instead, the small-x logarithms
are produced by the integration over the momenta of the gluons connecting these 2GI block. In
this way the cross section of the process factorizes [26–28] into a process dependent 2GI coefficient,
called off-shell coefficient function, and process independent “unintegrated” PDFs that contain the
traditional collinear PDFs and the sum over all possible process independent 2GI kernels connected
by off-shell gluons. By making explicit the dependence of unintegrated PDF on collinear PDFs and
comparing the result with the standard collinear factorization, one finally obtains an expression for
the LL resummation of small-x logarithms in the collinear partonic coefficient functions.
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The last step of this procedure was traditionally performed in Mellin moment space, which
allows to obtain rather simple analytical expressions. Despite the elegance of this result, it was
soon realized that subleading effects due to the running of the strong coupling are important and
should be included systematically in the resummation procedure to obtain perturbatively stable
results [11, 38]. However, the inclusion of such terms in Mellin space is complicated, and not suitable
for efficient numerical implementations. Recently, an alternative but equivalent formulation of the
resummation was proposed [29], that solves the technical limitations of the original formulation
by working directly in kt space, leading to an efficient numerical implementation. This novel
approach is at the core of the public code HELL, and allowed for a number of phenomenological
applications [30, 31], including the first consistent PDF fits with small-x resummation [23–25].

So far, all HELL applications are for inclusive observables (DIS structure functions [29, 30]
and the total Higgs production cross section [31]). The resummation of differential observables, of
obvious interest for LHC phenomenology, has been considered in the Mellin-space formalism. Specif-
ically, resummed expressions for rapidity distributions [32], transverse momentum distributions [33]
and double differential distributions in both rapidity and transverse momentum [34] are available.
It is the purpose of this section to reformulate these results in the new HELL language, thereby
supplementing them with the running coupling contributions and thus providing a ready-to-use
numerical implementation.

In this work, we focus on processes at hadron-hadron colliders that are gluon-gluon initiated
at lowest order. These include, for instance, Higgs production, jet production, or heavy quark pair
production; the latter will be considered as a practical application in section 3. The reason for this
choice is that the resummation is simpler, because at LL there are no collinear singularities. In
other processes where the lowest order is initiated by (massless) quarks, because small-x logarithms
at LL appear from chains of emissions ending with a gluon, the diagram entering the computation
of the off-shell coefficient function must contain at least a gluon to (massless) quark splitting, thus
producing a collinear singularity. One example is the Drell-Yan process. In such cases, the collinear
singularities must be treated at the resummed level (similarly to what is done in DIS, see Ref. [30]).
A study of the Drell-Yan process where this issue is addressed at differential level is left to future
work [39].

Before moving to the resummation, we establish the notation by presenting the structure of
differential distributions in collinear factorization for a process in proton-proton collisions. We con-
sider a generic final-state momentum q (it can be the momentum of a single particle or the sum
of momenta of different particles) in the collider center-of-mass frame, and we write the distribu-
tion differential in its invariant mass squared Q2 ≡ q2, rapidity Y = 1

2 log q0+q3

q0−q3 and transverse
component squared q2

t = (q1)2 + (q2)2 as

dσ
dQ2dY dq2

t

(
τ,Q2, Y, q2

t
)

= τ
∑
ij

∫ 1

τ

dx
x

∫
dy dCij

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
Lij

(τ
x
, Y − y, µ2

F

)
,

(2.1)

with τ = Q2/s (s is the collider energy squared) and the sum extends over all possible partons i, j
in each proton. In this expression the function

dCij
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
(2.2)

is the parton-level coefficient function, which depends on x = Q2/ŝc (the parton-level analog of τ)
where ŝc is the partonic center-of-mass energy,1 and on y which is the rapidity of q with respect to
the partonic center-of-mass frame, and is related to the proton-level rapidity Y by a longitudinal

1We call it ŝc (c stands for collinear) because we will use ŝ for the energy squared of another system.
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boost. Indeed, Y −y is the rapidity of the partonic center-of-mass frame with respect to the collider
frame, and it is determined by the momentum fractions x̂1, x̂2 of the partons in each proton by
Y −y = 1

2 log x̂1
x̂2
. Note that we have omitted the dependence of αs and of the coefficient function on

the renormalization scale µR, as such dependence is subleading in the small-x limit we are interested
in. Finally, the function

Lij
(
x̄, ȳ, µ2

F

)
= fi

(√
x̄eȳ, µ2

F

)
fj

(√
x̄e−ȳ, µ2

F

)
θ
(

e−2|ȳ| − x̄
)

(2.3)

is the (collinear) parton luminosity, given by the two PDFs with momentum fractions x̂1,2 =√
τ
xe±(Y−y), and including a θ function which is encodes the condition x̂1,2 ≤ 1.
Eq. (2.1) can also be rewritten as an integral over the parton momenta x̂1, x̂2, which represents

the direct extension of the analogous formula in DIS. However, this form is more suitable for further
manipulations. Indeed, it has the form of a Mellin-Fourier convolution, which implies that it can
be diagonalized by taking a Mellin-Fourier transform with respect to τ and Y ,∫ 1

0
dτ τN−1

∫ ∞
−∞

dY eibY dσ
dQ2dY dq2

t
=
∑
ij

dCij
dQ2dydq2

t

(
N,Q2, b, q2

t , αs,
Q2

µ2
F

)
Lij
(
N, b, µ2

F

)
, (2.4)

where

dCij
dQ2dydq2

t

(
N,Q2, b, q2

t , αs,
Q2

µ2
F

)
=
∫ 1

0
dxxN

∫ ∞
−∞

dy eiby dCij
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
Lij
(
N, b, µ2

F

)
=
∫ 1

0
dx̄ x̄N

∫ ∞
−∞

dȳ eibȳLij
(
x̄, ȳ, µ2

F

)
= fi

(
N + i

b

2 , µ
2
F

)
fj

(
N − i b2 , µ

2
F

)
. (2.5)

In the last equality we have used the definition Eq. (2.3) and changed variable from x̄, ȳ to x̂1,2 =√
x̄e±ȳ and used explicitly the θ function to obtain the product of two Mellin transforms

fi(N,µ2
F) =

∫ 1

0
dx̂1,2 x̂

N
1,2fi(x̂1,2, µ

2
F). (2.6)

We further observe that the dependence on the transverse momentum does not affect the structure
of the cross section formula, and thus impacts only the kinematics.

2.1 Extension of kt factorization to differential observables in pp collisions

The works of Refs. [32–34] provide a proof of a resummation formula for differential observable at
LL accuracy with fixed coupling through the so-called ladder-expansion approach. This may seem
somewhat different from the original works [26–28] where the resummation is obtained by proving a
kt factorization and comparing it with the standard collinear factorization formula. In fact, despite
the different languages, the two approaches are based exactly on the same underlying factorization
property and lead to exactly the same result. It is thus natural to imagine that the results of
Refs. [32–34] on differential distributions could be reformulated in terms of the kt factorization
approach.

Indeed, it is not difficult to follow the steps of the derivation of Refs. [32–34] and recognise the
ingredients of kt factorization to construct a factorized formula. Here, rather than repeating such a
derivation, we limit ourselves to formulate the result in kt factorization, showing that it corresponds
to the results of Refs. [32–34] at LL and fixed coupling.

Similarly to the inclusive case, the differential cross section in kt factorization turns out to be
a straightforward extension of the collinear factorization Eq. (2.1) where the partons are replaced
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by off-shell gluons and integration over this offshellness is added. The result reads

dσ
dQ2dY dq2

t
= τ

∫ 1

τ

dz
z

∫
dη
∫ ∞

0
dξ1

∫ ∞
0

dξ2
dC

dQ2dηdq2
t

(z, ξ1, ξ2, Q2, η, q2
t , αs) L

(τ
z
, Y − η, ξ1, ξ2

)
,

(2.7)
where

L (z̄, η̄, ξ1, ξ2) = Fg

(√
z̄eη̄, ξ1

)
Fg

(√
z̄e−η̄, ξ2

)
θ
(
e−2|η̄| − z̄

)
(2.8)

and ξ1,2 = k2
1,2/Q

2 are the offshellness of the gluons normalized to the hard scale Q2, and k1,2 are
the transverse components of the off-shell gluon momenta (for more details on the kinematics, see
App. A). In the expression above dC is the (differential) off-shell coefficient function, representing
the process-dependent hard scattering initiated by off-shell gluons. More precisely, it corresponds to
the last 2GI part (in the t channel) of the amplitude squared of the process, saturating the off-shell
gluon indices with a suitable projector [26–28]. Everything else is collected into the two unintegrated
gluon PDFs Fg, that include the standard collinear PDFs and the chain of emissions from the initial
parton to the last gluon (the ladder in the language of Refs. [32–34]). The integration variables z
and η are the analog of x and y of Eq. (2.1), but referred to the center-of-mass frame of the off-shell
partons. More precisely, we consider as the parton-level center-of-mass frame in kt-factorization
the one obtained if we set the off-shellness equal to zero, so that it is related to the collider frame
by a longitudinal boost. More details are given in App. A.

We now show that Eq. (2.7) is equivalent to the result of Ref. [34].2 First, we take the Mellin-
Fourier transform of this expression with respect to τ and Y ,∫ 1

0
dτ τN−1

∫ ∞
−∞

dY eibY dσ
dQ2dY dq2

t

=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
dC

dQ2dηdq2
t

(N, ξ1, ξ2, Q2, b, q2
t , αs) L (N, b, ξ1, ξ2), (2.9)

with

dC
dQ2dηdq2

t
(N, ξ1, ξ2, Q2, b, q2

t , αs) =
∫ 1

0
dz zN

∫ ∞
−∞

dη eibη dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, η, q2

t , αs)

L (N, b, ξ1, ξ2) =
∫ 1

0
dz̄ z̄N

∫ ∞
−∞

dη̄ eibη̄L (z̄, η̄, ξ1, ξ2)

= Fg

(
N + i

b

2 , ξ1
)
Fg

(
N − i b2 , ξ2

)
, (2.10)

where we have used the definition Eq. (2.8), changed variable from z̄, η̄ to x1,2 =
√
z̄e±η̄ (the

longitudinal proton’s momentum fractions carried by each off-shell gluon) and used the θ function
to obtain the product of two Mellin transforms

Fg(N, ξ) =
∫ 1

0
dx1,2 x

N
1,2Fg(x1,2, ξ). (2.11)

At this point we follow Ref. [26–28] to write the unintegrated PDF as

Fg(N, ξ) = R(N,αs)γ(N,αs)
(
Q2

µ2
F

)γ(N,αs)

ξγ(N,αs)−1fg(N,µ2
F), (2.12)

2Notice that Ref. [34] considers only the double differential distribution in rapidity and transverse momentum,
because it focusses on the Higgs production process, where the invariant mass is clearly fixed to the Higgs mass.
However, the derivation there is general enough to be valid also for invariant mass distributions.
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where γ(N,αs) is the resummed (gluon) anomalous dimension at LL and R(N,αs) is a scheme
dependent factor. Note that we are ignoring quark contributions for simplicity (we will discuss
quarks later in section 2.3). Plugging Eq. (2.12) into Eq. (2.9) we immediately recover the result
of Ref. [34]. Integrating over q2

t we also reproduce the result of Ref. [32].
To reproduce the result of Ref. [33], which is not differential in rapidity, it is simpler to integrate

Eq. (2.7) over Y and then take simply a Mellin transform before using Eq. (2.12). The first step
leads to

dσ
dQ2dq2

t
= τ

∫ 1

τ

dz
z

∫ ∞
0

dξ1
∫ ∞

0
dξ2

dC
dQ2dq2

t
(z, ξ1, ξ2, Q2, q2

t , αs) L
(τ
z
, ξ1, ξ2

)
, (2.13)

with

L (z̄, ξ1, ξ2) =
∫

dη̄Fg(
√
z̄eη̄, ξ1)Fg(

√
z̄e−η̄, ξ2) θ(e−2|η̄| − z̄)

=
∫ 1

z̄

dx2 Fg

(
z̄

x2
, ξ1

)
Fg(x2, ξ2). (2.14)

Because this new rapidity-integrated luminosity has the form of a Mellin convolution, after taking
a Mellin transform of the cross section we get∫ 1

0
dτ τN−1 dσ

dQ2dq2
t

=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
dC

dQ2dq2
t

(N, ξ1, ξ2, Q2, q2
t , αs)Fg(N, ξ1)Fg(N, ξ2), (2.15)

with

dC
dQ2dq2

t
(N, ξ1, ξ2, Q2, q2

t , αs) =
∫ 1

0
dz zN dC

dQ2dq2
t

(z, ξ1, ξ2, Q2, q2
t , αs). (2.16)

Plugging now Eq. (2.12) into Eq. (2.15) we finally obtain the result of Ref. [33].
Because the unintegrated PDF depends on ξ through ξγ−1, the integrals over ξ1,2 take the

form of Mellin transforms. Therefore, the results above can be expressed (up to factors) as the
γ’th Mellin moments with respect to ξ1,2 of the partonic off-shell coefficient functions, usually
called impact factors. These results can be further supplemented with running coupling effects as
described in Refs. [11, 38]. However, as anticipated, adding running coupling effects to the impact
factors is not suitable for numerical implementation. In the next section we will start again from
Eq. (2.7) to construct a resummed expression at differential level in the HELL language, which
makes the inclusion of running coupling effects straightforward and leads to a stable numerical
implementation.

2.2 Small-x resummation of differential distributions in the HELL language

The main advantage of the formulation of small-x resummation of Refs. [29–31] used in the HELL
code is the much simpler and reliable numerical implementation. The reason is twofold. On the one
hand, the inclusion of running coupling effects in the resummation can be done straightforwardly
without approximation and without affecting the numerical performance, as opposed to the impact-
factor approach of Refs. [11, 38] where it leads to a divergent series that has to be treated in an
approximate way. On the other hand, the result can be expressed in terms of the off-shell coefficient
function directly in momentum space, as opposed to the impact-factor formulation where a double
Mellin transform in both z and ξ is required for each initial-state off-shell gluon. If these Mellin
transforms can be computed analytically, the (very minor) price to pay of the HELL formulation is
that the ξ integration has to be performed numerically. However, when the Mellin transform in ξ
cannot be computed analytically, the impact-factor formulation becomes problematic, while in the
HELL approach this does not represent a problem.
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The key step of the HELL approach is to write the unintegrated PDF in terms of the collinear
gluon and quark-singlet PDFs in a way that includes running coupling effects. The generic form of
such an expression, valid at least at LL, is [29–31]

Fg(N, ξ) = U ′
(
N,Q2ξ, µ2

F

)
fg(N,µ2

F) + CF
CA

[
U ′
(
N,Q2ξ, µ2

F

)
− δ(ξ)

]
fq(N,µ2

F), (2.17)

where
U ′
(
N,Q2ξ, µ2

F

)
≡ d

dξU
(
N,Q2ξ, µ2

F

)
(2.18)

and U(N,k2, µ2
F) is the evolution function of the collinear gluon3 from the scale µ2

F to the scale
k2, times the scheme dependent function R(N,αs). In other words, U(N,k2, µ2

F) is the solution of
the DGLAP equation using the small-x LL anomalous dimension, which involves only gluons (they
do not mix with the quarks at LL). Keeping running coupling effects when solving the DGLAP
evolution equation provides the necessary ingredient to include the sought running coupling effects
in the resummation [29–31]. Conversely, evaluating the evolution function at fixed-coupling we get
back Eq. (2.12).

In practice, to simplify the numerical implementation and avoid potential numerical issues, the
evolution function is approximated in a way that reproduces exactly the results of Refs. [11, 38],
namely it is valid at LL and at “leading running coupling” (i.e. leading β0 terms are retained).
Within this approximation it takes the form [30, 31]

U(N,Q2ξ, µ2
F) ' R(N,αs)Dhigher-twist

(
Q2

µ2
F

ξ

)
UABF

(
N,

Q2

µ2
F

ξ

)
, (2.19)

where

Dhigher-twist(ξ) =


1 ξ ≥ 1
1− (−αsβ0 log ξ)1+ 1

αsβ0 ξ0 < ξ < 1
0 ξ ≤ ξ0, ξ0 = exp −1

αsβ0
,

(2.20)

is a damping function at small ξ, designed to keep unaffected the perturbative expansion of the
evolution function while ensuring that it vanishes at the Landau pole ξ0 as it would do at LL with
full running coupling [30], and

UABF(N, ξ) =
(

1 + r(N,αs) log ξ
) γ(N,αs)
r(N,αs)

, r(N,αs) = α2
sβ0

d
dαs

log[γ(N,αs)], (2.21)

is the approximated evolution function. The anomalous dimension γ appearing above is in principle
the LL anomalous dimension. However, it is convenient to include subleading contributions in it
that simply produce subleading effects in the resummation but make the result consistent with the
resummation in DGLAP evolution. As this discussion is not central for the present work, we refer
the Reader to Ref. [31] for further detail. In the numerical implementation, we will ignore the
scheme factor R(N,αs). The reason is that we use to perform small-x resummation in the so-called
Q0MS scheme [28, 36, 40, 41] where by definition R(N,αs) = 1. This scheme differs from the usual
MS scheme at relative order α3

s (at LL), and therefore it can be safely used in conjunction with MS
fixed-order computations up to NNLO.

3It is worth noting that the quark part of (2.17) uses the same evolutor of the gluon part. This is justified as, in
the x → 0 limit, the leading splitting functions, Pgg and Pgq , are identical up to a factor CF

CA
. The subtraction of

the δ(ξ) in the quark part, that represents the no-splitting event in which the parton remains collinear, is required
as the first splitting of the quark into a gluon must be present, and so that contribution must start at order αs.
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Let us focus for simplicity on the gluon contribution only, thus neglecting the quark term in
Eq. (2.17). Plugging Eq. (2.17) into Eq. (2.9) we get∫ 1

0
dτ τN−1

∫ ∞
−∞

dY eibY dσ
dQ2dY dq2

t
=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
dC

dQ2dηdq2
t

(N, ξ1, ξ2, Q2, b, q2
t , αs)

× U ′
(
N + i

b

2 , Q
2ξ1, µ

2
F

)
fg

(
N + i

b

2 , µ
2
F

)
× U ′

(
N − i b2 , Q

2ξ2, µ
2
F

)
fg

(
N − i b2 , µ

2
F

)
. (2.22)

Comparing this expression with the gluon-gluon channel of the collinear factorization expression
Eq. (2.4) and Eq. (2.5) we find the identification

dCgg
dQ2dydq2

t

(
N,Q2, b, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
dC

dQ2dηdq2
t

(N, ξ1, ξ2, Q2, b, q2
t , αs)

× U ′
(
N + i

b

2 , Q
2ξ1, µ

2
F

)
U ′
(
N − i b2 , Q

2ξ2, µ
2
F

)
. (2.23)

So far this is not dissimilar to the approach of older works; in particular, if one replaces U ′ with the
LL fixed-coupling expression from Eq. (2.12) one recognises the definition of the impact fator. Here
instead, we keep a more generic expression for U ′ and further manipulate the result. Indeed, we
notice that the N, b dependence of the right-hand side of Eq. (2.23) has the same form of the right-
hand side of Eq. (2.4) or Eq. (2.9). We thus recognise Eq. (2.23) as the Mellin-Fourier transform
of

dCgg
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

× U ′
(√

x

z
eη̄, Q2ξ1, µ

2
F

)
U ′
(√

x

z
e−η̄, Q2ξ2, µ

2
F

)
, (2.24)

which is expressed as a 4-dimensional integral (to be performed numerically in general) over simple
quantities, namely the differential off-shell coefficient function and the evolution factors in physical
momentum space. This result is very convenient from a numerical point of view. The two additional
integrations over z and η are much simpler to compute than the inverse Mellin-Fourier transform
over N and b of Eq. (2.23), especially in HELL, because the anomalous dimension appearing in the
definition of U ′ is available in HELL only for values of N along a specific inversion contour, which
would not be sufficient here due to the ±ib imaginary shift. Instead, because the evolution function
U is universal (process independent), it is computed once and for all in HELL directly in momentum
space, and it can be easily used in an expression like Eq. (2.24). Moreover, as already mentioned,
with respect to the impact-factor formulation this result easily incorporates the running coupling
contributions through the use of the proper evolution function U , Eq. (2.19).

We want to emphasize a difference with respect to previous formulations of resummation in the
HELL language. In previous works, because the N dependence of the off-shell coefficient function is
subleading, we used to set N = 0 in it before computing the inverse Mellin transform. The main
motivation was that the analytical expressions obtained in this way were simpler, and in some cases
it is not possible to compute the Mellin transform of the off-shell coefficient function analytically
for generic N , but it is possible for N = 0. In our case, this approach would correspond to setting
N = 0 in the off-shell coefficient function in Eq. (2.23) before computing the inverse Mellin-Fourier
transform. However, when dealing with differential distribution we are often not able to compute
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analytically the Mellin transform of the off-shell coefficient function, not even in N = 0. So there
would be no advantage in setting N = 0 in it. Conversely, there would be disadvantages. Indeed,
some physical kinematic constraints would be approximated if computed in N = 0. One of the
consequences is that the endpoint of the rapidity distribution, which is a physical property of the
process determined by its kinematics, would be wrong when setting N = 0. This is not dissimilar
to what has been found in Ref. [30] in the case of DIS, where quark mass effects on kinematic
constraints were lost when setting N = 0, requiring a restoration of the constraints by hand. Here,
we thus decide that it is much better (and simpler) to keep the subleading N dependence, thereby
preserving physical kinematic constraints, without paying any price from the numerical point of
view.

2.3 All partonic channels

In the resummed expression Eq. (2.24) the key ingredient is (the ξ-derivative of) the evolution
function in x space,4 computed in HELL as the inverse Mellin transform of Eq. (2.19). We observe
that such inverse Mellin transform is a distribution. Indeed, expanding U(N,Q2ξ, µ2

F) in powers
of αs the zeroth order term is just 1, whose inverse Mellin is δ(1 − x). Since this is the only
distributional contribution in U , we find it more convenient to write it explicitly,

U(N,Q2ξ, µ2
F) = 1 + Ureg(N,Q2ξ, µ2

F) ⇔ U(x,Q2ξ, µ2
F) = δ(1− x) + Ureg(x,Q2ξ, µ2

F),
(2.25)

where Ureg is an ordinary function. Computing the ξ-derivative appearing in Eq. (2.17) is not
entirely trivial. To do so we first introduce explicitly a factor θ(ξ) in the definition of the evolution
function, U(N,Q2ξ, µ2

F) = θ(ξ)
[
1 + Ureg(N,Q2ξ, µ2

F)
]
, which is conceptually harmless as certainly

the scale Q2ξ = k2 has to be positive. When deriving we get

U ′(N,Q2ξ, µ2
F) = δ(ξ) + δ(ξ)Ureg(N, 0, µ2

F) + θ(ξ)U ′reg(N,Q2ξ, µ2
F)

= δ(ξ)− δ(ξ)
∫ µ2

F
Q2

0
dξ′ U ′reg(N,Q2ξ′, µ2

F) + θ(ξ)U ′reg(N,Q2ξ, µ2
F)

= δ(ξ) +
[
U ′reg(N,Q2ξ, µ2

F)
]
+ (2.26)

where in the second step we have used the fact that Ureg(N,µ2
F, µ

2
F) = 0 and in the last step we

have defined the plus distribution according to

∫ ∞
0

dξ f(ξ)[g(ξ)]+ =
∫ µ2

F
Q2

0
dξ [f(ξ)− f(0)]g(ξ) +

∫ ∞
µ2

F
Q2

dξ f(ξ)g(ξ). (2.27)

The δ(ξ) term appearing as the derivative of the zeroth order of the evolution has a precise physical
meaning: it represents the undisturbed gluon, that does not emit and thus it remains on-shell (ξ =
0). This indeed corresponds to the term subtracted in the quark contribution to the unintegrated
PDF, Eq. (2.17).

We now observe that the introduction of the plus distribution is not really necessary, because
the contribution Ureg(N, 0, µ2

F) appearing in the first line of Eq. (2.26) is finite. More precisely,
because U(N, 0, µ2

F) = 0 by construction, Eq. (2.19), we have Ureg(N, 0, µ2
F) = −1, corresponding in

x-space to
Ureg(x, 0, µ2

F) = −δ(1− x). (2.28)
4As we are running out of letters, we are now using x for the generic first argument of the evolution function in

momentum space, not to be confused with the variable x = Q2/ŝc which is the argument of the collinear coefficient
function.
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If this is the case, the first two terms in the first line of Eq. (2.26) would cancel, thus leaving the
simpler result U ′(N,Q2ξ, µ2

F) = U ′reg(N,Q2ξ, µ2
F) which is what we would have obtained if we hadn’t

introduced the θ function. This implies that the nice physical distinction between the no-emission
contribution δ(ξ) and the at-least-one-emission contribution U ′reg(N,Q2ξ, µ2

F) gets lost. This is
clearly undesirable, and may hint at a problem in the construction of the evolution function.

To understand and overcome this problem, we observe that the ξ → 0 limit of U ′reg, Eq. (2.28),
is localised at large x. But the evolution function at large x is not expected to be accurate, as it
is constructed to resum logarithmic contributions at small x. Therefore, we can (and we do) damp
the function Ureg(x,Q2ξ, µ2

F) (and thus its ξ-derivative) at large x, with a damping function of the
form (1− x)a (we use a = 2 in the code). After damping, the evolution function satisfies

Ureg(x = 1, Q2ξ, µ2
F) = 0, (2.29)

for any value of ξ, including ξ = 0. In this way, we obtain Ureg(x, 0, µ2
F) = 0 and thus Ureg(N, 0, µ2

F) =
0, implying that the second term in the first line of Eq. (2.26) vanishes, thus giving

U ′(N,Q2ξ, µ2
F) = δ(ξ)+U ′reg(N,Q2ξ, µ2

F) ⇔ U ′(x,Q2ξ, µ2
F) = δ(ξ)δ(1−x)+U ′reg(x,Q2ξ, µ2

F).
(2.30)

In other words, because of the large-x damping, the plus distribution is ineffective. For completeness,
we have verified that the numerical integral of U ′reg(x,Q2ξ, µ2

F) from zero to µ2
F/Q

2 gives indeed
zero for all values of x.

Let us now come back to the resummed coefficient function. According to Eq. (2.30), the
unintegrated PDF Eq. (2.17) can be rewritten as

Fg(N, ξ) =
[
U ′reg

(
N,Q2ξ, µ2

F

)
+ δ(ξ)

]
fg(N,µ2

F) + CF
CA

U ′reg
(
N,Q2ξ, µ2

F

)
fq(N,µ2

F). (2.31)

Physically, the δ(ξ) contribution in the equation above represents the (on-shell) gluon that does not
emit, thus producing no logs: this is the fixed-order contribution, and it reproduces the on-shell
result. The other term, U ′reg, is the term containing at least one emission, and thus at least one
small-x log.

Starting from Eq. (2.31) and proceeding as in the previous section, keeping also the quark
contributions this time, we obtain the following expressions

dCgg
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

×
[
U ′reg

(√
x

z
eη̄, Q2ξ1, µ

2
F

)
+ δ(ξ1)δ

(
1−

√
x

z
eη̄
)]

×
[
U ′reg

(√
x

z
e−η̄, Q2ξ2, µ

2
F

)
+ δ(ξ2)δ

(
1−

√
x

z
e−η̄
)]
, (2.32a)

dCqg
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
= CF
CA

∫ ∞
0

dξ1
∫ ∞

0
dξ2

∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

× U ′reg

(√
x

z
eη̄, Q2ξ1, µ

2
F

)
×
[
U ′reg

(√
x

z
e−η̄, Q2ξ2, µ

2
F

)
+ δ(ξ2)δ

(
1−

√
x

z
e−η̄
)]
, (2.32b)
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dCgq
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
= CF
CA

∫ ∞
0

dξ1
∫ ∞

0
dξ2

∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

×
[
U ′reg

(√
x

z
eη̄, Q2ξ1, µ

2
F

)
+ δ(ξ1)δ

(
1−

√
x

z
eη̄
)]

× U ′reg

(√
x

z
e−η̄, Q2ξ2, µ

2
F

)
, (2.32c)

dCqq
dQ2dydq2

t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
(
CF
CA

)2 ∫ ∞
0

dξ1
∫ ∞

0
dξ2

∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

× U ′reg

(√
x

z
eη̄, Q2ξ1, µ

2
F

)
U ′reg

(√
x

z
e−η̄, Q2ξ2, µ

2
F

)
. (2.32d)

These results can be written in a more compact form as

dCgg
dQ2dydq2

t
= dCreg

dQ2dydq2
t

+ dCaux +

dQ2dydq2
t

+ dCaux−

dQ2dydq2
t

+ dC
dQ2dηdq2

t
(x, 0, 0, Q2, y, q2

t , αs), (2.33a)

dCqg
dQ2dydq2

t
= CF
CA

[
dCreg

dQ2dydq2
t

+ dCaux +

dQ2dydq2
t

]
, (2.33b)

dCgq
dQ2dydq2

t
= CF
CA

[
dCreg

dQ2dydq2
t

+ dCaux−

dQ2dydq2
t

]
, (2.33c)

dCqq
dQ2dydq2

t
=
(
CF
CA

)2 dCreg

dQ2dydq2
t

(2.33d)

having defined

dCreg

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

× U ′reg

(√
x

z
eη̄, Q2ξ1, µ

2
F

)
U ′reg

(√
x

z
e−η̄, Q2ξ2, µ

2
F

)
(2.34)

and

dCaux±

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ
∫ 1

x

dz
z

dC
dQ2dηdq2

t

(
z, ξ, 0, Q2, y ± 1

2 log z
x
, q2

t , αs

)
× U ′reg

(x
z
,Q2ξ, µ2

F

)
, (2.35)

where in the last equation we have used the symmetry ξ1 ↔ ξ2 of the off-shell coefficient. So in
conclusion the resummed expressions for all channels are written in terms of a “regular” resummed
coefficient and two simpler “auxiliary” functions,5 each defined in terms of integrals over ordinary
functions (and thus easy to implement numerically). The gg coefficient function also depends on
the on-shell limit of the off-shell coefficient; however, whenever the resummed result is matched to
a fixed-order computation, this contribution will be subtracted and thus in practical applications
it will never be needed.

5The name “auxiliary” follows the nomenclature introduced in Ref. [31], extended to differential distributions.
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We observe that the auxiliary functions are obtained by putting on shell one of the incoming
gluons. Therefore, they represent a contribution in which resummation, obtained from kt factoriza-
tion, acts on a single initial state parton, while the other obeys the standard collinear factorization.
This resembles the hybrid factorization discussed in Refs. [42–47] and used to describe forward
production. We believe that our auxiliary contribution does indeed represent the same resummed
contributions obtained from the hybrid factorization. However, there may be some differences due
to the different approaches to resummation, that we aim at investigating in a future work.

2.4 Matching to fixed order

The resummed result Eq. (2.32) contains only the small-x logarithms. For phenomenological appli-
cations, it has to be matched with a fixed-order computation. To do this, we need to compute its
expansion in powers of αs up to some order, subtract it and replace it with the exact fixed-order
result at the same order.

Computing the αs expansion of the resummed result is in principle straightforward, but it
needs some care in practice as we shall now see. Note that the αs dependence comes fully from the
integrand of Eq. (2.32), and specifically from the evolution function U ′reg, as the off-shell coefficient
function is needed only at the lowest non-trivial order to achieve LL accuracy. To construct the
expansion of U ′reg, let us consider the expansion of Ureg first. Because of Eqs. (2.19) and (2.21), it
is clear that such an expansion contains powers of log ξ. The first couple of orders take the form
(in both the MS and Q0MS schemes)

Ureg(N,Q2ξ, µ2
F) = αs(µ2

F)γ0(N) log Q
2ξ

µ2
F

+ α2
s(µ2

F)
[
γ1(N) log Q

2ξ

µ2
F

+ 1
2γ0(N)(γ0(N)− β0) log2 Q

2ξ

µ2
F

]
+O(α3

s), (2.36)

having assumed the expansion γ(N,αs) = αsγ0 + α2
sγ1 + O(α3

s) for the resummed anomalous
dimension (see Refs. [31, 48] for explicit expressions). After computing the derivative with respect
to ξ, terms of the form logk ξ/ξ appear. Such terms are not integrable in the ξ → 0 limit, and thus
require a regularization procedure.

To do so, we recall that the actual form of the derivative of the evolution function has a plus
distribution around U ′reg, Eq. (2.26). The plus distribution does not play a role at resummed level
because to all orders U ′reg(N, 0, µ2

F) = 0, but this is not true order by order. The order by order
expansion of the evolution function diverges at ξ = 0, and so the plus distribution becomes essential.

With a slight abuse of notation,6 starting from Eq. (2.36), we can write the first couple of orders
of the expansion of U ′reg,

U ′reg(N,Q2ξ, µ2
F) = αs(µ2

F)γ0(N)
(

1
ξ

)
+

+ α2
s(µ2

F)

γ1(N)
(

1
ξ

)
+

+ γ0(N)(γ0(N)− β0)

 log Q2ξ
µ2

F

ξ


+

+O(α3
s), (2.37)

or, in x space,

U ′reg(x,Q2ξ, µ2
F) = αs(µ2

F)P0(x)
(

1
ξ

)
+

+ α2
s(µ2

F)

P1(x)
(

1
ξ

)
+

+ (P00(x)− β0P0(x))

 log Q2ξ
µ2

F

ξ


+

+O(α3
s), (2.38)

6The most correct way of writing these results is to keep the plus distribution around U ′reg everywhere.
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having defined P00(x) as the Mellin convolution of two P0’s, and having used the expansion
P (x, αs) = αsP0(x) + α2

sP1(x) + O(α3
s) which is the inverse Mellin transform of the resummed

anomalous dimension γ(N,αs).
Plugging these expansions into Eq. (2.34) and Eq. (2.35) we finally obtain the sought pertur-

bative expansion of the resummed result. In particular, we find up to relative O(α2
s)

dCreg

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ1

∫ ∞
0

dξ2
∫ 1

x

dz
z

∫ 1
2 log z

x

− 1
2 log z

x

dη̄

× dC
dQ2dηdq2

t
(z, ξ1, ξ2, Q2, y − η̄, q2

t , αs)

×

[
α2
s(µ2

F)
(

1
ξ1

)
+

(
1
ξ2

)
+
P0

(√
x

z
eη̄
)
P0

(√
x

z
e−η̄
)

+O(α3
s)
]
(2.39)

dCaux±

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
∫ ∞

0
dξ
∫ 1

x

dz
z

dC
dQ2dηdq2

t

(
z, ξ, 0, Q2, y ± 1

2 log z
x
, q2

t , αs

)
×
{
αs(µ2

F)P0

(x
z

)(1
ξ

)
+

+ α2
s(µ2

F)

P1

(x
z

)(1
ξ

)
+

+
(
P00

(x
z

)
− β0P0

(x
z

)) log Q2ξ
µ2

F

ξ


+


+O(α3

s)
}

(2.40)

out of which we can construct the expansion of each coefficient function through Eq. (2.33).
We note in conclusion that this procedure is not dissimilar to what was used in previous works,

see e.g. Ref. [31], where the expansion was obtained by expanding the impact factor. However, the
derivation obtained here is more “direct”, and the result is written in a form that is immediately
usable to compute the expansion numerically, without the need to compute analytically the impact
factor.

3 Heavy-quark pair production

Having described the general formalism for the small-x resummation of differential distributions in
HELL, we now focus on a specific process: heavy-quark pair production in proton-proton collisions.
This process is relevant because at the LHC, and in particular at LHCb, it is measured in the
forward region where one parton is at small x, and it can thus provide important constraints on the
PDFs (the gluon in particular) in a region of x that is so far unexplored. Moreover, NLO results
for this process are available [49, 50], and NNLO corrections have also been computed recently [51],
making this process suitable for precision studies.

The process can be schematized as

p(P1) + p(P2)→ Q(p) + Q̄(p̄) +X, (3.1)

where the two incoming protons have light-cone momenta P1,2 with (P1 + P2)2 = s, the outgoing
heavy quarks have mass m and momenta p, p̄ with p2 = p̄2 = m2, and X represents any additional
radiation together with the remnants of the protons. For simplicity, we consider the final state
to be given by the heavy quarks themselves, thus ignoring their hadronization and eventual decay
into lighter hadrons.7 These effects should not affect the impact of resummation, as they factorize

7This simplification does not raise concerns about infrared safety, as the mass of the heavy quarks acts as an
infrared regulator for the final state.

– 13 –

https://www.roma1.infn.it/~bonvini/hell/


(at least at LL) with respect to the hard scattering process. A full phenomenological study of the
process including these effects is beyond the scope of this paper and is left to future work. Rather,
the scope of this section is to demonstrate the application of the framework introduced in this
paper.

The resummation of high-energy logarithms in heavy quark pair production has been considered
in the literature, both at the level of the total cross section [27, 52] and for some differential
observables [45, 46, 53–55]. To perform small-x resummation of differential distributions in our
approach, we need to compute the coefficient function of the partonic subprocess where two off-
shell gluons produce the final state. At lowest order, as appropriate for LL resummation, the process
is

g∗(k1) + g∗(k2)→ Q(p) + Q̄(p̄), (3.2)

where the off-shell gluon momenta are parametrized as8

k1 = x1P1 + k1, (3.3a)
k2 = x2P2 + k2. (3.3b)

In this way, the off-shellness of the gluons is given by a transverse component with respect to the
beam axis. The longitudinal momentum fractions x1,2 correspond to the first argument of the
unintegrated PDFs, and their ratio is related to the longitudinal boost of the partonic reference
frame used to compute the coefficient function by Y − η = 1

2 log x1
x2
. Note that this frame is not

in general the partonic center-of-mass frame due to the presence of a transverse component in
the gluon momenta, but it reduces to it in the limit where the gluons are on shell. Additional
information on the kinematics is given in Appendix A.

In order to compute the actual off-shell coefficient function, we need to decide which is the
vector q with respect to which we want to be differential. There are two natural choices: either q is
one of the two heavy quark momenta p or p̄, or it is the sum of the two momenta, thus representing
the momentum of the pair. We now present results for either choice in turn.

3.1 Results differential in the single heavy-quark

In this section we consider the final state to be one of the heavy quarks, and thus focus on the
differential distribution in the components of the momentum q = p. The details of the computation
of the partonic off-shell coefficient function are given in App. A.1.

We start by presenting the resummed result at parton level, computed according to Eqs. (2.33).
We consider the resummed coefficient functions for bottom pair production, with mb = 4.6 GeV,
double differential in (partonic) rapidity y and transverse momentum pt of the bottom quark.9 In
Fig. 1, we show such distribution as a function of y and for fixed pt = 2 GeV, which is a value
accessible at LHCb for the production of b-hadrons. In the left panel, we plot separately the regular
Eq. (2.34) and auxiliary Eq. (2.35) contributions out of which the various channels can be built
according to Eqs. (2.33), while, in the right panel, we combine them according to those equations
to construct the coefficient functions for the gg, gq, qg and qq channels. We observe that the shapes
of these functions are quite peculiar, mostly due to the peak of the auxiliary contribution at large
rapidity. However, we stress that these are parton-level results, and they are not expected to behave

8Here we are using a slightly inconsistent notation. Indeed, we assume that the bold vectors k1,2 are 2-dimensional
Euclidean vectors in the transverse plane. However, when they are summed to 4-dimensional Minkowski vectors, we
mean them to be the 4-vector with the same spatial components. The confusion may only arise when they appear
in a scalar product, because the two interpretations would differ by a sign. In these cases, we always consider them
as 2-vectors.

9As we consider the bottom quarks to be on shell, the invariant mass distribution is a delta function and therefore
for this process the triple differential distribution is of no interest.
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Figure 1. The auxiliary Eq. (2.35) and regular Eq. (2.34) functions as a function of partonic rapidity y
for single quark production of mass m = 4.6 GeV at pt = 2 GeV and x = 10−5 (left plot). The resummed
coefficient functions at parton level for each partonic channel constructed according to Eq. (2.33) for the
same kinematics (right plot).

smoothly. In fact, due to the all-order nature of these contributions, it is natural that they present
some new features missing in the fixed order.

To appreciate the effect of the resummed contributions on physical cross sections, we present
the differential distributions after convolution with the PDFs in Fig. 2, considering for definiteness
bottom pair production at LHC 13 TeV. We use the NNPDF31sx [23] PDF set that has been
obtained in the context of a study on the inclusion of small-x resummation in PDF fits. The
advantage of this set is that it provides PDFs consistently obtained with and without the inclusion
of small-x resummation. In the following, we will use the same fixed-order PDFs to compute both
the fixed-order and the resummed result, in order to emphasise the effect of resummation in the
perturbative coefficient. Also, we provide resummed results obtained with the resummed PDFs, to
see how much the resummation in PDFs impacts the cross section. However, performing a thorough
phenomenological study is beyond the scope of this paper and is left to future work.

The plots of Fig. 2 show the double differential distribution in rapidity Y and transverse mo-
mentum pt at various orders (upper plots) and their ratio to the LO (lower plots), as a function of Y
and for fixed pt = 2 GeV. In the left plots, we use the same (fixed-order) PDFs for both fixed-order
results and resummed results. We show the LO cross section in dashed orange and the NLO one in
dashed blue. The latter, obtained from POWHEG-box [56–58], is about twice as large as the LO
result, which is partly due to the large value of αs at this low scale.10 In solid we plot the LO+LL
(orange) and NLO+LL (blue) results. We observe that resummation is a positive correction at LO,
of about 50% at central rapidity and decreasing towards the rapidity endpoints. At NLO, the cor-
rection of resummation is still positive, but smaller in size, showing that the perturbative expansion
converges better when resummation is included. Overall, the NLO+LL result is approximately a
140% correction over the LO across the whole rapidity range except towards the endpoints, where
it goes down a bit following the analogous behaviour of the NLO. When the resummed LO+LL
and NLO+LL results are computed with resummed PDFs (right plots), the impact of resummation
becomes much larger, as a consequence of the fact that the resummed gluon is larger than the
fixed-order one at small x [23–25]. In particular, the NLO+LL curve has a large K-factor at large
rapidities, where the contribution from the gluon at small x is dominant. This shows that this
observable is very sensitive to the PDFs at small x, and it thus represents an important process to
give additional constraints to PDF fits, in agreement with the findings of Refs. [59–61].

10We use µR = µF = mb, which is not the standard choice in POWHEG and probably not the best choice in terms
of stability of the perturbative expansion, but it allows a simple matching with the resummed contribution.
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Figure 2. The double differential distribution in rapidity and transverse momentum of the bottom quark,
plotted as a function of the rapidity for pt = 2 GeV, for bottom pair production at LHC 13 TeV. The
left plots are obtained using NNPDF31sx at fixed order, while in the right plot the resummed result is
computed with the resummed PDFs from the same family. The uncertainty band represents an estimate of
NLL corrections.

It is interesting to understand how the various contributions add up to form the resummed
result. First of all, we stress that the LO cross section is made of two contributions, one in the
gg channel and one in the qq̄ channel. The second one, however, is very small, so the LO curve
is almost entirely given by its gg contribution. As far as the resummed result is concerned, we
not only distinguish between channels but also between the regular and auxiliary contributions, as
given in Eqs. (2.33). The breakdown of the individual resummed contributions to be added to the
LO is shown in Fig. 3 (left). We observe that the dominant contributions are those coming from
the auxiliary part, both in the gg channel and in the qg + gq channel. The regular contributions
are smaller and localised in a region of central rapidity. Also, we note a clear hierarchy in the
contributions by the various channels, with the gg dominating over the qg + gq, and the qq being
very small. We also stress that the qg + gq channel is symmetric because we plot them together,
but each individual contribution, qg and gq, is obviously asymmetric (see Fig. 1). The right plot
of Fig. 3 shows the analogous breakdown for the resummed contribution to be added to the NLO
to construct the NLO+LL result. The difference here is only in the auxiliary contributions, as the
regular contribution starts at relative O(α2

s) and is thus unaffected when subtracting the expansion
at O(αs). Because of this subtraction, the auxiliary contributions become comparable with the
regular ones at mid rapidities, but they still dominate in the forward region, as expected.

In order to understand the stability of the resummed result, we now discuss its uncertainties.
Because our resummed results are accurate at LL only, the first uncertainty we consider is the one
coming from the unknown subleading logarithmic contributions. In previous HELL works [29–31, 48]
such uncertainty is studied by varying subleading ingredients in the construction of the resummed
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Figure 3. Breakdown of the individual contributions to the resummed result from the gg, gq + qg and qq
channels separating the regular and auxiliary parts. The left plot focuses on the resummed contribution to
be matched to the LO, while the right plot focuses on the resummed contribution to be matched to NLO.
The results in these plots are obtained using NNPDF31sx with resummation.

anomalous dimension entering the evolution function Eq. (2.19) in two different ways,11 and by
varying the form of the evolution function itself by replacing r(N,αs), Eq. (2.21) with αsβ0. The
effect of these three independent ways of varying subleading logarithms in the resummed result
is then added in quadrature to form a representative uncertainty for the final result. We adopt
this procedure here, and we show the resulting uncertainty as a band in Fig. 2. While this way of
computing the uncertainties may possibly underestimate the actual size of NLL contributions, it is
clear from the plot that the difference between LO+LL and NLO+LL cannot be due to subleading
logarithms only, as it is much larger than their uncertainty. Therefore, at this scale and value of
pt, contributions that are subleading power at small x are important. This can be seen also by
looking at the difference between additive matching (our default) and multiplicative matching,12

shown as a dotted line in the plot. The difference between these two curves, being related to the
ratio between the exact NLO and its small-x approximation, also includes the effect of subleading
power contributions, and it is indeed outside the uncertainty band from subleading logarithms.

In Fig. 4 we also show the scale uncertainty band of our results. In the left plot, we consider
only the factorization scale variation by a canonical factor of 2 up and down, while in the right plot
we construct the envelope of the customary 7-point variation of µF and µR. Because the rapidity
distribution is symmetric, in each plot we show the fixed-order result for negative rapidity and the
resummed result for positive rapidity, for a better visualisation of the bands. As far as µF variation
is concerned, we note a clear reduction of the uncertainty after the inclusion of the resummation,
demonstrating the perturbative stabilisation that small-x resummation allows to achieve. However,
the uncertainty of the resummed result becomes comparable to the one of the fixed order once µR

variations are also taken into account. This is not surprising, for two reasons. The first one is
that the value of αs varies significantly as µR changes because the scale of the process is low (for
the same reason, the NLO uncertainty is larger than the LO one). The other reason is that at LL
there are no logarithms of µR in the resummed result to compensate for the change in αs, as µR

dependence in the resummation starts at NLL. To see a reduction of the 7-point uncertainty band
11One variation is given by a modified way of implementing the resummation of subleading running coupling

contributions in the anomalous dimension [30]. The other variation makes use of what we called LL′ anomalous
dimension introduced in Ref. [29] in place of the full NLL one, which gives by far the largest contribution to the
uncertainty (see also Ref. [31]).

12We recall that additive matching means that the resummed contribution is added to the fixed order subtracting
the doubly counted contributions (corresponding to the expansion of the resummed result up to the order at which
the fixed order is computed), while in the multiplicative matching the fixed order is multiplied by the resummed
result divided by its expansion.

– 17 –



0

1x107

2x107

3x107

4x107

5x107

6x107

-6 -4 -2 0 2 4 6

m = 4.6 GeV
pt = 2 GeV

μF scale variation

Q
2
dσ
/d
Y/
dp

t2
[p
b]

Y

LO
NLO
LO+LL with FO PDFs
NLO+LL with FO PDFs

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

0

1x107

2x107

3x107

4x107

5x107

6x107

-6 -4 -2 0 2 4 6

m = 4.6 GeV
pt = 2 GeV

7pt scale variation

Q
2
dσ
/d
Y/
dp

t2
[p
b]

Y

LO
NLO
LO+LL with FO PDFs
NLO+LL with FO PDFs

Heavy quark pair production at LHC 13 TeV, using NNPDF31sx

Figure 4. Scale uncertainty for the double differential distribution in rapidity and transverse momentum of
the bottom quark, plotted as a function of the rapidity for pt = 2 GeV, for bottom pair production at LHC
13 TeV. The left plot shows factorization scale uncertainty only, while the right plot shows the standard
7-point uncertainty envelope.
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Figure 5. The double differential distribution in rapidity and transverse momentum of the bottom quark,
plotted as a function of pt for central rapidity Y = 0, for bottom pair production at LHC 13 TeV.

the resummation should be performed at the currently unknown NLL order.
To conclude the section, we now consider the same double differential rapidity distribution

but as a function of pt at fixed central rapidity Y = 0. This is shown with fixed-order PDFs
in Fig. 5. We observe that going towards large transverse momentum two effects are manifest:
the NLO correction grows, and the impact of resummation on the LO gets larger while matching
resummation to NLO gives a smaller correction. This suggests that the large NLO contribution
at large pt is dominated by small-x logarithms, and once these are resummed the perturbative
convergence improves significantly. As the resummation has no direct dependence on the transverse
momentum other than in kinematic constraints, this is just a consequence of the kinematics. In
particular, we suspect that the smaller available phase space at large pt makes contributions from
the low-x region dominant also at central rapidity (at large rapidity this is expected at any pt). We
plan to investigate this effect further in future phenomenological studies.

– 18 –



 0

 5000

 10000

 15000

 20000

 25000

 30000

-6 -4 -2  0  2  4  6

Q
4
 d
σ
/d
Y
/d
Q
2
/d
q
t2

  
[p
b
]

Y

NLO
LO+LL with FO PDFs
NLO+LL with FO PDFs
NLO+LL with FO PDFs (multiplicative matching)

Heavy quark pair production, Q = 20 GeV, qt = 50 GeV, at LHC 13 TeV, using NNPDF31sx

 0

 5000

 10000

 15000

 20000

 25000

 30000

-6 -4 -2  0  2  4  6

Q
4
 d
σ
/d
Y
/d
Q
2
/d
q
t2

  
[p
b
]

Y

NLO
LO+LL with Res PDFs
NLO+LL with Res PDFs
NLO+LL with Res PDFs (multiplicative matching)

Heavy quark pair production, Q = 20 GeV, qt = 50 GeV, at LHC 13 TeV, using NNPDF31sx

Figure 6. The triple differential distribution in invariant mass, rapidity and transverse momentum of the
bottom pair, plotted as a function of the rapidity for Q = 20 GeV and pt = 50 GeV, for bottom pair
production at LHC 13 TeV. The left plots are obtained using NNPDF31sx at fixed order, while in the right
plot the resummed result is computed with the resummed PDFs from the same family. The uncertainty
band represents an estimate for the NLL corrections.

3.2 Results differential in the heavy-quark pair

In this section we consider the final state to be the heavy-quark pair, and so focus on the differential
distribution in the components of the momentum q = p + p̄ which is the sum of the momenta of
the two heavy quarks. For instance, this choice is appropriate for describing the measurement of a
bound state of the heavy quarks, e.g. the J/ψ for cc̄ pairs or the Υ for bb̄ pairs or heavier resonances.
The details of the computation of the partonic off-shell coefficient function are given in App. A.2.
Because at the lowest order the process is effectively a 2 to 1 process, the differential coefficient
function contains delta functions, Eq. (A.48). This implies that the computation of some of the
integrals defining the resummed collinear coefficient functions, as described in section 2.3, can be
carried out analytically, partly simplifying the numerical implementation. Explicit expressions are
presented in App. B.

Note that these simplifications pose some problems in presenting the results. Indeed, for in-
stance, for the triple differential distribution the regular coefficient function Eq. (2.34) is an actual
function, while the auxiliary coefficient Eq. (2.35) is a distribution, making a visual comparison
at parton level impossible. This problem can be overcome by showing the cross section at hadron
level only, after integration with the PDFs. For definiteness, we consider bottom pair production
at LHC 13 TeV, with bottom mass mb = 4.6 GeV, as done in the previous section. Similarly, we
use the same NNPDF31sx [23] PDF set considered before.

In Fig. 6 we show the triple differential distribution, plotted as a function of the rapidity Y of
the pair and at fixed invariant mass Q = 20 GeV and fixed transverse momentum qt = 50 GeV. In
this case, the LO curve is not present, as it is proportional to δ(q2

t ), and so it is zero for any non-zero
value of the transverse momentum. Consequently, we cannot show a ratio plot. We observe that the
NLO (blue dashed curve) is smaller than the LL curve (solid orange), which is effectively a LO+LL
result. After matching with the NLO, the resummed NLO+LL curve (solid blue) represents a small
positive correction to the NLO result, pointing toward the still larger LL prediction. This suggests
that the inclusion of resummation tends to predict a higher cross section than at NLO, and possibly
leads to a better convergence of the perturbative expansion. As we did for Fig. 2, we show on the
left the resummed result computed with the same fixed-order PDFs used for the NLO, while we
show on the right panel the resummed contribution computed using the resummed PDFs. In this
case, the difference between the two options is very mild, probably due to the larger value of τ and
the larger invariant mass, showing that this observable is not particularly powerful in constraining
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Figure 7. Breakdown of the individual contributions to the resummed triple differential distribution in
invariant mass, rapidity and transverse momentum of the bottom pair from the gg, gq+ qg and qq channels
separating the regular and auxiliary parts. The left plot focuses on the resummed contribution to be
matched to the LO, while the right plot focuses on the resummed contribution to be matched to NLO. The
results in these plots are obtained using NNPDF31sx with resummation at LHC 13 TeV, as a function of
the rapidity, for invariant mass Q = 20 GeV and for transverse momentum qt = 50 GeV.
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Figure 8. Scale uncertainty for the triple differential distribution in rapidity and transverse momentum of
the bottom quark pair, plotted as a function of the rapidity for pt = 50 GeV, for bottom pair production
at LHC 13 TeV. The left plot shows factorization scale uncertainty only, while the right plot shows the
standard 7-point uncertainty envelope.

the PDFs at small x.
Similarly to Fig. 3, we also show the breakdown of the individual contributions to the cross

section in Fig. 7. When matching to LO (left plots) we note a pattern similar to what was observed
for the single-quark distributions in the previous section. Namely, the auxiliary term dominates
over the regular contribution, and the gg channel is larger than the qg + gq, in turn larger than
the qq channel. The resummed contribution is positive, consistent with the fact that this pure
LL distribution is effectively a LO+LL result. When subtracting the O(αs) expansion to match
the resummation to NLO (right plots) we find a smaller contribution from resummation. Again,
we note that the auxiliary contributions are now comparable in size with the regular ones at mid
rapidities, but they keep giving a much larger contribution at large rapidities.

We conclude the section by briefly commenting on the uncertainties. In Fig. 6 the resummed
curves are supplemented with an uncertainty band computed as discussed in the previous section
to estimate the impact of subleading logarithmic contributions. This uncertainty is relatively larger
than in the case of single-quark kinematics, but still it cannot account for the full difference between
LO+LL and NLO+LL, which thus gets significant contributions from non-small-x effects. The use
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of multiplicative matching at NLO+LL, probing some subleading power contributions, differs from
the additive matching by an amount that is comparable with the uncertainty band from subleading
logarithms. Moving to scale variations, we show in Fig. 8 µF variations on the left plot and a full
7-point variation on the right plot. Considerations similar to what we have done for the single-
quark kinematics apply. We limit ourselves to observe that in both plots there is a visible reduction
moving from LO+LL to NLO+LL, again hinting at a stabilisation of the perturbative expansion
once resummation is included.

Further studies of different distributions and different kinematic configurations, relevant for
phenomenological applications, are beyond the scope of this more theoretical paper and are left to
future work.

4 Conclusions

In this paper we have extended the HELL formalism for the small-x resummation of physical ob-
servables to differential distributions at LL. We have obtained resummed formulae for differential
partonic coefficient functions which are valid for any process that is gluon-gluon initiated at LO.
The application of the formalism to other kinds of processes requires the treatment of collinear
subtractions to all orders at small x, whose extension at differential level is left to future work [39].

With respect to previous implementations of small-x resummation, we no longer perform an
approximation, valid at LL, where the off-shell coefficient function was computed at N = 0 in Mellin
space. This approximation simplifies the resummation of inclusive cross sections where such Mellin
transform could be computed analytically. Here, because in general we are not able to compute this
Mellin transform analytically at differential level, adopting such approximation would not lead to
any simplification. Rather, it would break the kinematic limits of the observables, which is clearly
undesirable.

We have considered heavy-quark pair production at proton-proton colliders as a representative
application of our results. We have resummed distributions differential both in the momentum of a
single heavy quark and in the sum of the momenta of both heavy quarks (momentum of the pair).
The selection of numerical results presented serves as a demonstration that the methodology works
and that it can be used for phenomenology. They also show that the impact of small-x resummation
for these observables is significant, as we expect from the low-x values that heavy quark pair
production can reach at LHC. However, the results presented in this work do not represent a full
phenomenological study, that would also require the description of the hadronisation of the heavy
quarks in order to compare with the data. Such a phenomenological study, with the goal to include
the process in a PDF fit to improve the PDF quality at low x, is left to future work.

The new version of the HELL code, that implements the resummation of heavy quark pair
production at differential level, is available at the url

www.roma1.infn.it/∼bonvini/hell

The preparation of tables for quick interpolation, needed for phenomenological applications, requires
some time and leads to a large amount of data, because of the dependence on many kinematic
variables. Therefore, rather than providing general tables within the code (as previously done
for DIS and Higgs), we only provide scripts for the generation of such tables, which can then be
produced and used directly by the user focussing only on the kinematics of interest.
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A The off-shell coefficient function

In this Appendix we give all the details for the computation of the off-shell coefficient function for
heavy quark pair production at proton-proton colliders. The partonic process at the lowest order,
relevant for LL resummation, is

g∗(k1) + g∗(k2)→ Q(p) + Q̄(p̄). (A.1)

where Q and Q̄ are the two heavy quarks of mass m. We parametrize the momenta as

k1 = x1P1 + k1 (A.2a)
k2 = x2P2 + k2 (A.2b)
p = z1x1P1 + z2x2P2 + p (A.2c)
p̄ = (1− z1)x1P1 + (1− z2)x2P2 + k1 + k2 − p, (A.2d)

where, in the collider center-of-mass frame, the protons momenta are

P1 =
√
s

2 (1, 0, 0, 1), P2 =
√
s

2 (1, 0, 0,−1). (A.3)

In these definitions we have already used momentum conservation, and we have made a choice of
reference frame. There are 7 initial-state parameters (s, x1, x2,k1,k2) and 4 final-state parameters
(z1, z2,p). Note however that using the on-shell condition for the final-state quarks we can constrain
one of the final-state parameters. Indeed, there are two on-shell conditions,

m2 = p2 = z1z2x1x2s− |p|2 (A.4a)
m2 = p̄2 = (1− z1)(1− z2)x1x2s− |k1 + k2 − p|2, (A.4b)

setting the squared momenta p2 and p̄2 to the same mass m2. Therefore, only three of the four
final state parameters are independent.

The partonic off-shell coefficient function is computed in the “partonic” reference frame, that
corresponds to the partonic center-of-mass frame if the two gluons were on shell, namely if k1 =
k2 = 0. In other words, the partonic frame is related to the collider frame by a longitudinal boost
of rapidity

η̄ = 1
2 log x1

x2
. (A.5)

In this frame, the partonic coefficient can only depend on x1, x2 and s through the product x1x2s.
Moreover, because we assume unpolarized protons, an overall azimutal angle is irrelevant. Thus
the coefficient can only depend on 4 out of the 7 initial-state parameters. We choose them to be

z ≡ Q2

x1x2s
(A.6a)

ξ1 ≡
|k1|2

Q2 (A.6b)

ξ2 ≡
|k2|2

Q2 (A.6c)

ϕ ≡ angle between k1 and k2. (A.6d)

Here, Q2 is “the hard scale”, whose value depends on the final state we want to look at. We set
Q2 = q2, where q is the final state momentum with respect to which we want to be differential. In
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particular, if we want to study the kinematics of the heavy-quark pair, then q = p + p̄ and Q2 is
the squared invariant mass of the pair, while for the single heavy quark then q = p and Q2 = m2

is the mass squared of the quark itself.
Before discussing each of these cases in turn, we note that x1x2s is not ŝ = (k1 + k2)2 =

x1x2s−|k1+k2|2, because of the transverse component of the gluons; we may call it the “longitudinal
part” of ŝ (meaning the contribution to ŝ due to the longitudinal part of the gluon momenta). The
full partonic center-of-mass energy ŝ can be written as

ŝ = Q2
[

1
z
− ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

]
(A.7)

in terms of the new variables, which reduces to the usual expression ŝ = Q2/z when the gluons are
on shell.

A.1 Kinematics for the single quark

Here we consider the differential distribution in the kinematics of one of the final-state heavy quarks.
For definiteness, we consider the heavy quark of momentum p, but since the process is symmetric
the results will equally apply also to the antiquark with momentum p̄. We introduce the variables

Q2 ≡ p2 = z1z2x1x2s− |p|2 = m2 (A.8a)

η ≡ 1
2 log p

0 + p3

p0 − p3 − η̄ = 1
2 log z1

z2
(A.8b)

p̂2
t ≡

p2

Q2 = p2

m2 (A.8c)

ϑ = angle between p and k1 + k2. (A.8d)

Because Q2 = m2 is fixed, the most differential distribution we are interested in is (p2
t = p̂2

tQ
2)

dC
dη dp2

t
(z, ξ1, ξ2,m2, η, p̂2

t ), (A.9)

which is integrated over ϑ and averaged over ϕ. Note that from now on we are omitting the
argument αs from the off-shell distribution as we are interested in the lowest order result only.

Let us consider the phase space. The two-body phase space is given by

dφ2(k1 + k2; p, p̄) = θ(ŝ− 4m2) d4p

(2π)3
d4p̄

(2π)3 δ
(
p2 −m2)δ(p̄2 −m2)(2π)4

δ(4)(k1 + k2 − p− p̄)θ(p0)θ(p̄0)

= θ(ŝ− 4m2) d4p

4π2 δ
(
p2 −m2)δ((k1 + k2 − p)2 −m2)θ(p0)θ(k0

1 + k0
2 − p0) (A.10)

with ŝ = (k1 +k2)2. We need to express this phase space in terms of the new variables. The variable
ŝ is given in Eq. (A.7), the integration element can be written as

d4p = Q2

4 dQ2 dη dp̂2
t dϑ, (A.11)

and the antiquark momentum squared is

p̄2 = (k1 + k2 − p)2

= (1− z1)(1− z2)x1x2s− |k1 + k2 − p|2

= Q2
[
1 + 1

z
−
√

1 + p̂2
t

z
(eη + e−η)− ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ
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+ 2
√(

ξ1 + ξ2 + 2
√
ξ1ξ2 cosϕ

)
p̂2

t cosϑ
]
, (A.12)

where we have used the inverse relations

z1 =
√
z(1 + p̂2

t )eη, z2 =
√
z(1 + p̂2

t )e−η. (A.13)

The conditions imposed by the two theta functions in the energies translate easily into conditions
on z1 and z2 that depend on x1 and x2, namely z1x1 + z2x2 ≥ 0 and (1− z1)x1 + (1− z2)x2 ≥ 0.
From the on-shell conditions Eq. (A.4) we also know that z1z2x1x2 ≥ 0 and (1−z1)(1−z2)x1x2 ≥ 0.
Because x1 and x2 are positive, it follows that z1 and z2 satisfy the conditions 0 ≤ z1,2 ≤ 1, that
translate into

z(1 + p̂2
t ) ≤ e−2|η|. (A.14)

After the trivial integration over Q2, the phase space can thus be recast as

dφ2 = θ

(
1
z
− ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ− 4

)
θ

(
1
z
− (1 + p̂2

t )e2|η|
)

1
16π2 dη dp̂2

t dϑ (A.15)

× δ

(
1
z
−
√

1 + p̂2
t

z
(eη + e−η)− ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ+ 2

√(
ξ1 + ξ2 + 2

√
ξ1ξ2 cosϕ

)
p̂2

t cosϑ
)
.

To simplify the notation, we introduce the function

ξ(ξ1, ξ2, ϕ) = ξ1 + ξ2 + 2
√
ξ1ξ2 cosϕ = |k1 + k2|2, (A.16)

and simply write ξ without arguments for short. Putting everything together we have

Q2 dC
dη dp2

t
(z, ξ1, ξ2,m2, η, p̂2

t ) = σ0
1
2

∫ 2π

0

dϕ
2π

∫ dφ2

dη dp̂2
t
|M|2 (A.17)

= σ0

32π2

∫ 2π

0

dϕ
2π θ

(
1
z
− ξ − 4

)
θ

(
1
z
− (1 + p̂2

t )e2|η|
)∫ 2π

0
dϑ |M|2

× δ

(
1
z
−
√

1 + p̂2
t

z
(eη + e−η)− ξ + 2

√
ξp̂2

t cosϑ
)
,

where in the first line 1/2 is the flux factor, σ0 = 16π2α2
s/Q

2 and the 1/2π comes from the average
over ϕ. The matrix element squared |M|2 is given in Appendix A.3.

It is most convenient to use the δ function to integrate over ϑ, as all other variables appear at
least quadratically. The fact that | cosϑ| ≤ 1 produces the constraint∣∣∣∣∣1z −

√
1 + p̂2

t
z

(eη + e−η)− ξ

∣∣∣∣∣ ≤ 2
√
ξp̂2

t . (A.18)

We then get

Q2 dC
dη dp2

t
(z, ξ1, ξ2,m2, η, p̂2

t ) = σ0

32π2

∫ 2π

0

dϕ
2π θ

(
1
z
− ξ − 4

)
θ

(
1
z
− (1 + p̂2

t )e2|η|
)

× θ

(
2
√
ξp̂2

t −

∣∣∣∣∣1z −
√

1 + p̂2
t

z
(eη + e−η)− ξ

∣∣∣∣∣
)

×
|M|2

ϑ=ϑ̄ + |M|2
ϑ=2π−ϑ̄√

4ξp̂2
t −

(
1
z −

√
1+p̂2

t
z (eη + e−η)− ξ

)2
, (A.19)
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ϑ̄ = cos−1 ξ −
1
z +

√
1+p̂2

t
z (eη + e−η)

2
√
ξp̂2

t
, 0 ≤ ϑ ≤ π. (A.20)

The theta functions in Eq. (A.19) may prove troublesome from a numerical point of view. Indeed,
if used as “if” conditions that set the integrand to zero when the theta functions are zero, the
numerical integration may become inaccurate. It is much more convenient to translate them into
integration limits of some variable. To do so, we define

X = 1√
z
≥ 1 (A.21)

so that the constraint imposed by the three theta functions become

X ≥
√

4 + ξ, (A.22a)

X ≥
√

1 + p̂2
te
|η|, (A.22b)

− 2
√
ξp̂t ≤ −X2 + 2BX + ξ ≤ 2

√
ξp̂t, B ≡

√
1 + p̂2

t cosh η ≥ 1. (A.22c)

Focussing on ξ, we may write

ξ ≤ X2 − 4, (A.23a)

ξ + 2p̂t
√
ξ + 2BX −X2 ≥ 0, (A.23b)

ξ − 2p̂t
√
ξ + 2BX −X2 ≤ 0. (A.23c)

The functions ξ ± 2p̂t
√
ξ + 2BX − X2 represent two parabolae in

√
ξ with centers (minima) in√

ξ = ∓p̂t, at which they both equal −p̂2
t + 2BX −X2. If this value is positive, there is no solution

to the system, so we have the condition

p̂2
t − 2BX +X2 ≥ 0 (A.24)

that represents an equation for the other variables to be taken into account later, together with
Eq. (A.22b). Under this condition, the solution of the inequalities Eq. (A.23b), (A.23c) is the region
between the two right solution of the second inequality and the largest between the right solution
of the first and the left solution of the second, which are identical but have opposite sign. Thus we
get ∣∣∣∣p̂t −

√
p̂2

t − 2BX +X2
∣∣∣∣ ≤√ξ ≤ p̂t +

√
p̂2

t − 2BX +X2. (A.25)

The other condition Eq. (A.23a) is always automatically satisfied. Indeed, we can prove that√
X2 − 4 ≥ p̂t +

√
p̂2

t − 2BX +X2 (A.26)

for all meaningful values of X (namely values for which the square roots are real). Indeed this
condition can be manipulated to

(B2 − p̂2
t )X2 − 4BX + 4(1 + p̂2

t ) ≥ 0, (A.27)

which is always satisfied because the minimum of the quadratic function, located at X = 2B/(B2−
p̂2

t ), is always non-negative. Indeed the minimum is proportional to B2−1−p̂2
t which is non-negative

because B2 ≥ 1 + p̂2
t . Therefore, Eq. (A.25) is the complete condition on ξ.

We now focus on the other variables, that must satisfy the inequalities Eq. (A.22b) and (A.24).
Let us focus on Eq. (A.24), solving it for X. The parabola X2 − 2BX + p̂2

t has a minimum in
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X = B where it equals p̂2
t − B2. This is always negative, as by construction B2 ≥ 1 + p̂2

t > p̂2
t .

Therefore, there are two separate solutions, X ≥ B+
√
B2 − p̂2

t and X ≤ B−
√
B2 − p̂2

t . However,
since we always have √

1 + p̂2
te
|η| ≥ B, (A.28)

the second solution is not compatible with Eq. (A.22b), and it is therefore forbidden. We are thus
left with the condition

X ≥ B +
√
B2 − p̂2

t ≥ B + 1 ≥ 2, (A.29)

together with Eq. (A.22b). We can show that Eq. (A.22b) is always compatible with Eq. (A.29).
Indeed the inequality

B +
√
B2 − p̂2

t ≥
√

1 + p̂2
te
|η| (A.30)

holds because we can manipulate it into√
B2 − p̂2

t ≥
√

1 + p̂2
t

(
e|η| − cosh η

)
=
√

1 + p̂2
t sinh |η| (A.31)

and then, squaring both sides (which are both positive) and rearranging,

(1 + p̂2
t )
(
cosh2 |η| − sinh2 |η|

)
− p̂2

t ≥ 0 ⇒ 1 + p̂2
t − p̂2

t ≥ 0 (A.32)

which is clearly true. In conclusion, X satisfies only the inequality Eq. (A.29) which automatically
encodes all the others.

It is useful to mention also the conditions on the kinematic limits of the on-shell resummed
coefficient, as well as on the integration variables defining the resummed result. From Eq. (2.34),
recalling that the first argument of the evolution function is a momentum fraction and is thus
smaller than 1, we obtain the condition x/z ≤ e−2|η̄|. Similarly, from Eq. (A.14) we also have
z(1 + p̂2

t ) ≤ e−2|η|. From the product of the two inequalities, we obtain the condition

A2 ≡ x(1 + p̂2
t ) ≤ e−2|η|−2|η̄| ≤ e−2|η+η̄| = e−2|y|. (A.33)

The condition A ≤ e−|y|, with A ≡
√
x(1 + p̂2

t ), represents a constraint on the arguments of the
on-shell coefficient function. However, this is not the most stringent one. Indeed, looking at the
first inequality, we can derive the integration range of η̄, which is given by

Aey − xp̂2
t

1−Ae−y ≤ e
2η̄ ≤ 1−Aey

Ae−y − xp̂2
t
. (A.34)

For this range to be non-trivial, the upper limit must be larger than the lower limit, leading to the
condition

e|y| ≤ 1 + xp̂2
t

2A +
√

(1 + xp̂2
t )2

4A2 − 1 (A.35)

which is smaller than 1/A in the region where the square root exists, given by the condition
p̂2

t ≤
1−2
√
x

x or, equivalently,

x ≤

(√
1 + p̂2

t − 1
p̂2

t

)2

≤ 1
4 . (A.36)

To conclude, we recall that the matrix element squared that we will present in appendix A.3
must be expressed in terms of the variables defined here. To achieve this, we need to express z1, z2
in terms of p̂t, η through Eq. (A.13), and to write the product k2 ·p appearing in Eqs. (A.67c) and
(A.67d) as

k2 · p
Q2 =

√
ξ2p̂2

t cos(ϑ+ ϕ′), (A.37)
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where ϕ′ is the angle of k1 + k2 with respect to k2, which can be computed from the cartesian
representation (aligning the x axis along k2)

q =
(
|q| cosϕ′
|q| sinϕ′

)
=
(
|k2|+ |k1| cosϕ
|k1| sinϕ

)
(A.38)

leading to

sinϕ′ =
√
ξ1 sinϕ√
q̂2
t

cosϕ′ =
√
ξ2 +

√
ξ1 cosϕ√
q̂2
t

, (A.39)

which gives the result

ϕ′ =


cos−1

(√
ξ2+
√
ξ1 cosϕ√
q̂2

t

)
if sinϕ ≥ 0

2π − cos−1
(√

ξ2+
√
ξ1 cosϕ√
q̂2

t

)
if sinϕ < 0.

(A.40)

A.2 Kinematics for the pair

We now consider the heavy-quark pair as a fictitious intermediate state, with momentum

q ≡ p+ p̄

≡ α1x1P1 + α2x2P2 + q (generic parametrization)
= k1 + k2 (momentum conservation)
= x1P1 + x2P2 + k1 + k2, (A.41)

where by momentum conservation α1 = α2 = 1 and q = k1 + k2. For this intermediate state, we
introduce the variables13

Q2 ≡ q2 = α1α2x1x2s− |q|2 = x1x2s− |k1 + k2|2 = (k1 + k2)2 ≡ ŝ (A.42a)

η ≡ 1
2 log q

0 + q3

q0 − q3 − η̄ = 1
2 log α1

α2
= 0 (rapidity of q in the partonic frame) (A.42b)

q̂2
t ≡

q2

Q2 = |k1 + k2|2

Q2 (A.42c)

ψ ≡ angle between q and k1 + k2 = 0. (A.42d)

Our goal is to compute the parton-level off-shell coefficient function (q2
t = q̂2

tQ
2)

dC
dQ2 dη dq2

t
(z, ξ1, ξ2, Q2, η, q̂2

t ), (A.43)

which is integrated over ψ and averaged over ϕ.
Let us consider the phase space. The two-body phase space of the two final state heavy quarks

can be factorized into the phase space of the pair and its “decay” as

dφ2(k1 + k2; p, p̄) = θ(ŝ− 4m2)
∫ ŝ

4m2

dq2

2π dφ1(k1 + k2; q) dφ2(q; p, p̄) (A.44)

where

dφ1(k1 + k2; q) = d4q

(2π)3 δ
(
q2 − ŝ

)
(2π)4

δ(4)(k1 + k2 − q)

13Note that we are using the same names Q2 and η that we used for the single quark kinematics, now referring to
another momentum.
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= 2π d4q δ
(
q2 − ŝ

)
δ(4)(k1 + k2 − q), (A.45)

with ŝ = (k1 + k2)2 the invariant mass of the pair, and

dφ2(q; p, p̄) = d4p

(2π)3
d4p̄

(2π)3 δ
(
p2 −m2)δ(p̄2 −m2)(2π)4

δ(4)(q − p− p̄)θ(p0)θ(p̄0). (A.46)

The full phase space Eq. (A.44) can be simplified using the delta function of the one-body phase
space to perform the q2 integral, giving

dφ2(k1 + k2; p, p̄) = θ(ŝ− 4m2) d4q δ(4)(k1 + k2 − q) dφ2(q; p, p̄)
= θ(ŝ− 4m2) dQ2 dη dq̂2

t dψ dφ2(q; p, p̄)

× δ
(
Q2 − ŝ

)
δ(η) δ

(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
δ(ψ)

= θ(Q2 − 4m2) dQ2 dη dq̂2
t dψ dφ2(q; p, p̄)

× 1
Q2 δ

(
1 + q̂2

t −
1
z

)
δ(η) δ

(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
δ(ψ), (A.47)

where we have rewritten d4q, the delta function and ŝ in terms of the new variables.
The two-body phase space can be used to integrate the matrix element and remove the “in-

ternal” degrees of freedom of the pair, while the one-body phase space can be used to obtain the
desired differential observable. Thus, we immediately find the relation

Q4 dC
dQ2 dη dq2

t dϕ (z, ξ1, ξ2, Q2, η, q̂2
t , ϕ) = dC

dϕ (z, ξ1, ξ2, Q2, ϕ)

× δ
(

1 + q̂2
t −

1
z

)
δ(η) δ

(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
,

(A.48)

where we had to include also the explicit dependence on ϕ as it appears in the delta function. This
result expresses the fully differential distribution in terms of the distribution differential only in the
angle ϕ between k1 and k2, and it will be used in App. B to construct simplified explicit expressions
for the resummed contributions.

The key object that we need is thus

dC
dϕ (z, ξ1, ξ2, Q2, ϕ) = θ(Q2 − 4m2)1

2
1

2πσ0

∫
dψ δ(ψ)

∫
dφ2(q; p, p̄) |M|2, (A.49)

where σ0 = 16π2α2
s/Q

2, the factor 1/2 is the flux factor and the 1/2π comes from the ϕ average. The
matrix element squared |M|2 is given in Appendix A.3. Note that because of the delta functions
in Eq. (A.48) not all the variables of Eq. (A.49) are independent. In particular one can write
1/z = 1 + ξ1 + ξ2 + 2

√
ξ1ξ2 cosϕ and use it to fix one of them in terms of the others.

We now focus on the computation of dC /dϕ. We observe that the two-body phase space
Eq. (A.46) contains two delta functions corresponding to the mass shell condition of the heavy
quarks. We write them in terms of the new variables, and get

0 = p2 −m2 = z1z2
Q2

z
− |p|2 −m2 (A.50a)

0 = p̄2 −m2 = (1− z1)(1− z2)Q
2

z
− |q− p|2 −m2

= (1− z1 − z2)Q
2

z
− |q|2 + 2q · p, (A.50b)
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where in the last step we have used the first on-shell condition. The second condition contains a
scalar product, and thus an angle, which is not ideal as this appears in the argument of the delta
function. In order to get rid of the scalar product, we use the first condition to fix z2, through the
equation

z2 = z
|p|2 +m2

z1Q2 (A.51)

so that the second condition becomes

0 = p̄2 −m2 = (1− z1)Q
2

z
− |p|

2 +m2

z1
− |q|2 + 2q · p, (A.52)

We can now get rid of the scalar product by introducing a new vector ∆ defined by

p = z1q + ∆ (A.53)

so that

0 = p̄2 −m2 = (1− z1)Q
2

z
− |z1q + ∆|2 +m2

z1
− |q|2 + 2z1|q|2 + 2q ·∆

= (1− z1)
(
Q2

z
− |q|2

)
− |∆|

2 +m2

z1

= (1− z1)Q2 − |∆|
2 +m2

z1
, (A.54)

that only depends on squared vectors (in the last step we have used 1 + q̂2
t = 1

z ). This can be now
used to fix

|∆|2 = z1(1− z1)Q2 −m2. (A.55)

The two-body phase space can thus be rewritten as

dφ2(q; p, p̄) = d4p

(2π)3
d4p̄

(2π)3 δ
(
p2 −m2)δ(p̄2 −m2)(2π)4

δ(4)(q − p− p̄)θ(p0)θ(p̄0)

= d4p

4π2 δ
(
p2 −m2)δ((q − p)2 −m2)θ(p0)θ(q0 − p0)

= Q2

8π2z
δ

(
z1z2

Q2

z
− |p|2 −m2

)
δ

(
(1− z1 − z2)Q

2

z
− |q|2 + 2q · p

)
dz1 dz2 d2p

× θ(z1)θ(z2)θ(1− z1)θ(1− z2)

= 1
8π2 δ

(
(1− z1)Q2 − |∆|

2 +m2

z1

)
θ(z1)θ(1− z1)dz1

z1
d2∆

= 1
16π2 θ

(
z1(1− z1)Q2 −m2)dz1 dω

= 1
16π2 θ

(√
1
4 −

m2

Q2 −
∣∣∣∣12 − z1

∣∣∣∣
)

dz1 dω

= 1
16π2

√
1
4 −

m2

Q2 sin β dβ dω (A.56)

where ω is the azimuthal angle of ∆ with respect to k1 + k2. Note that the condition Q2 > 4m2,
needed to satisfy the theta function, is always verified in Eq. (A.49). If we wish to compute the z1
integral numerically, it is convenient to change variable as

z1 = 1
2 −

√
1
4 −

m2

Q2 cosβ, β ∈ [0, π] (A.57)
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which we used to obtain the last line of Eq. (A.56). Interestingly, in terms of these variables |∆|2
becomes

|∆|2 = Q2 − 4m2

4 sin2 β ⇒ |∆| = 1
2
√
Q2 − 4m2 sin β, (A.58)

where we do not need to include an absolute value, as in the allowed range sin β is always positive.
The form of the phase space Eq. (A.56) is very convenient from a numerical point of view. To

be able to perform all integrations, we also need to express the matrix element squared appearing
in Eq. (A.49) in terms of the variables β (or z1) and ω. We start by rewriting

z2 = z
|z1q + ∆|2 +m2

z1Q2

= z
z2

1 |q|2 + |∆|2 + 2z1q ·∆ +m2

z1Q2

= z

[
1− z1(1− q̂2

t ) + 2
√
q̂2
t
√
z1(1− z1)−m2/Q2 cos(ω − ψ)

]
= z

[
1− (1− q̂2

t )
(

1
2 −

√
1
4 −

m2

Q2 cosβ
)

+
√
q̂2
t
√

1− 4m2/Q2 sin β cos(ω − ψ)
]

(A.59)

where ψ = 0 for our choice of variables, Eq. (A.42). Finally, we will see in appendix A.3 that the
matrix element depends on the scalar product k2 · p through the variables T Eq. (A.67c) and U

Eq. (A.67d). We can write

k2 · p
Q2 = k2 · (z1q + ∆)

Q2

= z1(k2
2 + k2 · k1) + k2 ·∆

Q2

= z1ξ2 + z1
√
ξ1ξ2 cosϕ+

√
ξ2

√
1
4 −

m2

Q2 sin β cosω′, (A.60)

where ω′ is the angle between ∆ and k2. It is given by ω′ = ω + ϕ′, where ϕ′ is the angle of
q = k1 + k2 with respect to k2, given in Eq. (A.40). For the on-shell limit ξ2 → 0 it is also useful
to write

p̂2
t ≡

p2

Q2 = z2
1ξ1 + |∆|

2

Q2 + 2z1
√
ξ1
|∆|
Q

cosω (A.61)

in terms of the new phase-space variables. In the fully on-shell limit the result simplifies further

p̂2
t = |∆|

2

Q2 = z1(1− z1)− m2

Q2 . (A.62)

A.3 Matrix element

In this Appendix we report the matrix element squared for heavy quark pair production from two
off-shell gluons. This has been computed in Refs. [27, 52]. Here, we rewrite that result in terms of
the variables that we have defined above.

The matrix element is separated into an abelian and a non-abelian parts as

|M|2 = 1
2CA
|M|2ab + 1

4CF
|M|2nab (A.63)

with

|M|2ab = 1
z2

[
1
TU
− 1
ξ1ξ2

(
1 + z2(1− z1)

zT
+ z1(1− z2)

zU

)2
]

(A.64)
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and

|M|2nab = 1
z2

[
− 1
TU

+ 2z
S

+ (T − U)(z1 − z2)
STU

+ 2
ξ1ξ2

(
1
2 + z2(1− z1)

zT
− ∆
S

)(
1
2 + z1(1− z2)

zU
+ ∆
S

)]
, (A.65)

where
∆ = z1(1− z2)

z
− z2(1− z1)

z
+ ξ1z2 − ξ2z1 + z2 − z1

2z + p · (k2 − k1)
Q2 (A.66)

and

S = ŝ

Q2 = (k1 + k2)2

Q2 = 1
z
− ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ (A.67a)

T = t−m2

Q2 = (p− k1)2 −m2

Q2 = 2k1 · p
Q2 − ξ1 −

z2

z
(A.67b)

= (p̄− k2)2 −m2

Q2 = −2k2 · p
Q2 + ξ2 + 2

√
ξ1ξ2 cosϕ− 1− z1

z
(A.67c)

U = u−m2

Q2 = (p− k2)2 −m2

Q2 = 2k2 · p
Q2 − ξ2 −

z1

z
(A.67d)

= (p̄− k1)2 −m2

Q2 = −2k1 · p
Q2 + ξ1 + 2

√
ξ1ξ2 cosϕ− 1− z2

z
. (A.67e)

Note that in the case of the pair kinematics, where q = p+ p̄, we have ŝ = Q2 and thus S = 1. We
can use the expressions of T and U to rewrite

p · (k2 − k1)
Q2 = 1

2

[
U − T + ξ2 − ξ1 + z1 − z2

z

]
(A.68)

so that ∆ simplifies to

∆ = z1 − z2

z
+ ξ1z2 − ξ2z1 + U + ξ2 − T − ξ1

2 . (A.69)

We also recall the relation
ŝ+ t+ u = 2m2 − |k1|2 − |k2|2, (A.70)

namely
S + T + U + ξ1 + ξ2 = 0. (A.71)

Thus, one can always express one of these variables in terms of the other four.
Note that the matrix element squared is symmetric under the simultaneous exchange

k1 ↔ k2, z1 ↔ z2. (A.72)

This implies that, in the pair kinematics, after integrating over the two z1 and z2 variables (which
appear symmetrically in the phase space) the off-shell coefficient is symmetric under the exchange
of the two gluon virtualities. Similarly, in the single-quark kinematics, the off-shell coefficient is
symmetric under the exchange of the two gluon virtualities and a sign change in the rapidity η.

A.4 On-shell limit

The resummation discussed in sect. 2.3 requires also the coefficient function with just one gluon
off-shell. This result can be obtained by simply taking the partial on-shell limit, say k2 → 0, of the
fully off-shell result. Here we perform this limit at the level of the matrix element squared. We will
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also compute the fully on-shell limit, needed for the fixed-order expansion, which also serves as a
cross check.

When taking the on-shell limit, one must be careful in the choice of the parameters used to write
the matrix element. Previously, we have used the most convenient variables to obtain a compact
form, but some of them are not independent of the others. When taking an on-shell limit, any such
relation must be made explicit.

We commented at the beginning of this appendix that the off-shell coefficient depends on
7 independent variables, 4 initial-state ones and 3 final-state ones. Since the matrix element is
dimensionless, we shall conveniently choose a set of dimensionless variables. Thus, for the initial
state we use the variables z, ξ1, ξ2, ϕ defined in Eq. (A.6), while for the final state we could consider
any three variables out of ϑ, p̂t, z1, z2, namely

ϑ, p̂t, z1 or ϑ, p̂t, z2 or ϑ, z1, z2 or p̂t, z1, z2. (A.73)

The relation between these four variables is given by the equation

p̂t =
z1+z2−1

z + ξ1 + ξ2 + 2
√
ξ1ξ2 cosϕ

2
√
ξ1 + ξ2 + 2

√
ξ1ξ2 cosϕ cosϑ

, (A.74)

which descends from the on-shell condition p2 = p̄2 (= m2). All these choices are acceptable
provided they are kept throughout the computation of the on-shell limit. Once the on-shell limit
k2 → 0 is taken, we must also compute the average over ϕ (as it is no longer well defined), so that the
remaining variables upon which the matrix element can be expressed are just 5, e.g. z, ξ1, ϑ, z1, z2 or
z, ξ1, p̂t, z1, z2. If we also want to compute the fully on-shell limit k1,2 → 0, the azimutal angle of p
becomes arbitrary, and the result depends on just 3 independent variables, z, p̂t, z1 or z, p̂t, z2 (not
z, z1, z2 because they are no longer independent in the on-shell case). Therefore, it is convenient to
have p̂t in our variable set, so we discard the third set of Eq. (A.73). The most convenient set is
probably the last, p̂t, z1, z2, so we go for it.

When looking at the matrix element squared, Eqs. (A.64) and (A.65), it is clear that there is
a potential singularity in the on-shell limit due to the presence of a factor 1/ξ2. This is harmless if
the terms in rounded brackets are of order

√
ξ2. To prove this, we first expand S, T, U at small ξ2.

From the representations of Eqs. (A.67a), (A.67c) and (A.67d) we get immediately

S = 1
z
− ξ1 − 2

√
ξ1ξ2 cosϕ+O(ξ2) (A.75a)

T = −1− z1

z
+ 2
√
ξ1ξ2 cosϕ− 2

√
p̂2

t ξ2 cos(ϑ′ − ϕ) +O(ξ2) (A.75b)

U = −z1

z
+ 2
√
p̂2

t ξ2 cos(ϑ′ − ϕ) +O(ξ2), (A.75c)

where ϑ′ is the angle of p with respect to k1, which coincides with ϑ in the on-shell limit k2 → 0.
Let us start from the abelian part of the matrix element, Eq. (A.64). Expanding the rounded

brakets at small ξ2, we find

1 + z2(1− z1)
zT

+ z1(1− z2)
zU

=

= 1− z2

1− z
1−z1

(
2
√
ξ1ξ2 cosϕ− 2

√
ξ2p̂2

t cos(ϑ′ − ϕ)
) − 1− z2

1− z
z1

2
√
ξ2p̂2

t cos(ϑ′ − ϕ)
+O(ξ2)

= −2z
√
ξ2

[
z2

1− z1

√
ξ1 cosϕ+

(
1− z2

z1
− z2

1− z1

)√
p̂2

t cos(ϑ′ − ϕ)
]

+O(ξ2), (A.76)
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which is indeed of order
√
ξ2. Averaging over ϕ, the abelian part of the matrix element squared

becomes

|M|2ab
k2→0=

∫ 2π

0

dϕ
2π

1
z2

[
1
TU
− 4z2

ξ1

(
z2

1− z1

√
ξ1 cosϕ+

(
1− z2

z1
− z2

1− z1

)√
p̂2

t cos(ϑ′ − ϕ)
)2
]

= 1
z1(1− z1) −

2
ξ1

[(
z2

1− z1

)2
ξ1 +

(
1− z2

z1
− z2

1− z1

)2
p̂2

t

+ z2

1− z1

(
1− z2

z1
− z2

1− z1

)
2
√
ξ1p̂2

t cosϑ
]
, (A.77)

where we have replaced ϑ′ with ϑ as they now coincide. Note that we are using more variables than
needed. Indeed, using Eq. (A.74) we can rewrite cosϑ in terms of other variables. In particular, in
the ξ2 → 0 limit it is easy to obtain from Eq. (A.74) the relation

2
√
ξ1p̂2

t cosϑ = z1 + z2 − 1
z

+ ξ1, (A.78)

from which we finally find

|M|2ab
k2→0= 1− 2z2(1− z2)

z1(1− z1) − 2
ξ1

(
1− z1 − z2

z1(1− z1)

)2[
p̂2

t −
z1z2

z

]
. (A.79)

For the non-abelian part, Eq. (A.65), let us start by expanding ∆, Eq. (A.69), to order
√
ξ2:

∆ =
(
ξ1 −

1
z

)(
z2 −

1
2

)
+
√
ξ2

(
2
√
p̂2

t cos(ϑ′ − ϕ)−
√
ξ1 cosϕ

)
+O(ξ2). (A.80)

The rounded brakets of Eq. (A.65) become

1
2 + z2(1− z1)

zT
− ∆
S

=

= 2z
√
ξ2

[(
z2

1− zξ1
− z2

1− z1

)√
ξ1 cosϕ−

(
1

1− zξ1
− z2

1− z1

)√
p̂2

t cos(ϑ′ − ϕ)
]

+O(ξ2)

1
2 + z1(1− z2)

zU
+ ∆
S

=

= 2z
√
ξ2

[
− z2

1− zξ1

√
ξ1 cosϕ+

(
1

1− zξ1
− 1− z2

z1

)√
p̂2

t cos(ϑ′ − ϕ)
]

+O(ξ2), (A.81)

so that we can finally find the partial on-shell limit of the non-abelian part of the matrix element,

|M|2nab
k2→0=

∫ 2π

0

dϕ
2π

{
− 1
z2TU

+ 2
zS

+ (T − U)(z1 − z2)
z2STU

+ 8
ξ1

[(
z2

1− zξ1
− z2

1− z1

)√
ξ1 cosϕ−

(
1

1− zξ1
− z2

1− z1

)√
p̂2

t cos(ϑ′ − ϕ)
]

×
[
− z2

1− zξ1

√
ξ1 cosϕ+

(
1

1− zξ1
− 1− z2

z1

)√
p̂2

t cos(ϑ′ − ϕ)
]}

= − 1
z1(1− z1) + 2

1− zξ1
+ (1− 2z1)(z2 − z1)
z1(1− z1)(1− zξ1)

+ 4
ξ1(1− zξ1)2

[
(z1 − zξ1)z2

2
1− z1

ξ1 −
(

1− z2(1− zξ1)
1− z1

)(
1− (1− z2)(1− zξ1)

z1

)
p̂2

t

+
{(

1− 1− zξ1
1− z1

)(
1− (1− z2)(1− zξ1)

z1

)
+ 1− z2(1− zξ1)

1− z1

}
z2

√
ξ1p̂2

t cosϑ
]
.

(A.82)
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Using again Eq. (A.78) we finally get

|M|2nab = − 1
z1(1− z1) + 2

1− zξ1
+ (1− 2z1)(z2 − z1)
z1(1− z1)(1− zξ1)

+ 2z2

(1− zξ1)2

[
2(z1 − zξ1)z2

1− z1
+
(

1− 1− zξ1
1− z1

)(
1− (1− z2)(1− zξ1)

z1

)
+ 1− z2(1− zξ1)

1− z1

]
+ 2
ξ1(1− zξ1)2

[
− 2
(

1− z2(1− zξ1)
1− z1

)(
1− (1− z2)(1− zξ1)

z1

)
p̂2

t

+
{(

1− 1− zξ1
1− z1

)(
1− (1− z2)(1− zξ1)

z1

)
+ 1− z2(1− zξ1)

1− z1

}
z2
z1 + z2 − 1

z

]
.

(A.83)

We can now further take the limit k1 → 0 to obtain the fully on-shell result. This is useful as
a cross-check as it must coincide with the on-shell computation, see e.g. [62]. In the on-shell limit,
z, z1 and z2 are no longer independent, as one can see from Eq. (A.78). Moreover, the angle ϑ
becomes arbitrary (the reference vector k1 does not exist anymore), so an average over ϑ must be
taken. From Eq. (A.78) we can write

z2 = 1− z1 + 2z
√
p̂2

t ξ1 cosϑ+O(ξ1) (A.84)

from which we find

|M|2ab
k1,2→0

= 1
z1(1− z1)

[
1 + 4zp̂2

t

(
1− zp̂2

t
z1(1− z1)

)]
− 2 (A.85)

|M|2nab
k1,2→0

= 4z1(1− z1)− 2− 8zp̂2
t

(
1− zp̂2

t
z1(1− z1)

)
, (A.86)

where we can also write p̂2
t = z1(1−z1)

z − m2

Q2 . We have verified that this result is in agreement with
on-shell computations [62]. For completeness, we also report the on-shell matrix element for the qq̄
channel:

|M|2qq̄ = CF
CA

(
1− 2zp̂2

t
)
. (A.87)

B Simplifications in the resummation formulae for pair kinematics

When considering pair kinematics we fix q ≡ p + p̄. Because of momentum conservation, we also
have q = k1 + k2. Therefore, each component of q is fixed in terms of the initial state variables.
It follows that the off-shell coefficient function factorizes as in Eq. (A.48), that we report here for
convenience

Q4 dC
dQ2 dη dq2

t dϕ (z, ξ1, ξ2, Q2, η, q2
t , ϕ) = dC

dϕ (z, ξ1, ξ2, Q2, ϕ)

× δ
(

1 + q̂2
t −

1
z

)
δ(η)δ

(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
, (B.1)

where the differential coefficient is given in terms of a more integrated one times three delta func-
tions. These delta functions can be used to compute the integrations in the resummation formulae
of sect. 2.3. In this appendix, we exploit this to present simplified resummed expressions, that we
have implemented in the numerical code HELL.

From Eq. (B.1) we can obtain immediately the triple differential off-shell coefficient function
by integrating in ϕ using the last delta function

Q4 dC
dQ2 dη dq2

t
(z, ξ1, ξ2, Q2, η, q2

t ) =
θ

(
1−

∣∣∣∣ q̂2
t−ξ1−ξ2

2
√
ξ1ξ2

∣∣∣∣)√
4ξ1ξ2 − (q̂2

t − ξ1 − ξ2)2
δ

(
1 + q̂2

t −
1
z

)
δ(η)
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×
[

dC
dϕ
(
z, ξ1, ξ2, Q

2, ϕ̄
)

+ dC
dϕ
(
z, ξ1, ξ2, Q

2, 2π − ϕ̄
)]

(B.2)

ϕ̄ = cos−1 q̂
2
t − ξ1 − ξ2

2
√
ξ1ξ2

, 0 ≤ ϕ̄ ≤ π, (B.3)

where the ϕ-differential distribution is evaluated at specific values of ϕ. Note however that inte-
grating over ϕ immediately is not always the best strategy. For instance, when we take the partial
on-shell limit ξ2 → 0 we obtain

Q4 dC
dQ2 dη dq2

t dϕ (z, ξ1, 0, Q2, η, q2
t , ϕ) = dC

dϕ (z, ξ1, 0, Q2, ϕ)δ
(

1 + q̂2
t −

1
z

)
δ(η)δ

(
q̂2
t − ξ1

)
, (B.4)

where the delta functions do not depend on ϕ anymore, thus making its integration trivial

Q4 dC
dQ2 dη dq2

t
(z, ξ1, 0, Q2, η, q2

t ) = C(z, ξ1, 0, Q2)δ
(

1 + q̂2
t −

1
z

)
δ(η)δ

(
q̂2
t − ξ1

)
. (B.5)

This result is needed for the auxiliary function Eq. (2.35), and also for the subtraction of the plus
distributions in the perturbative expansion of the resummed result, see sect. 2.4.

We can now use these results in the resummation formulae, using the delta functions to perform
integrations explicitly when possible. As far as the auxiliary function Eq. (2.35) is concerned, we
can start from Eq. (B.5) and use the δ

(
q̂2
t − ξ1

)
to compute the ξ1 integration. The result is

Q4 dCaux±

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
= 1

1 + q̂2
t
C

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)
U ′reg

(
x(1 + q̂2

t ), q2
t , µ

2
F

)
× δ
(
y ± 1

2 log 1
x(1 + q̂2

t )

)
, (B.6)

which does not contain any further integration. Note the presence of a delta function in the result,
which can be used in the cross section to integrate over parton distributions. The fixed-order
expansion of Eq. (B.6) is given according to Eq. (2.40) by

Q4 dCaux±

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
= 1

1 + q̂2
t
C

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)
δ

(
y ± 1

2 log 1
x(1 + q̂2

t )

)
×
{
αs(µ2

F)P0
(
x(1 + q̂2

t )
)( 1

q̂2
t

)
+

+ α2
s(µ2

F)
[
P1
(
x(1 + q̂2

t )
)( 1

q̂2
t

)
+

+
(
P00
(
x(1 + q̂2

t )
)
− β0P0

(
x(1 + q̂2

t )
)) log q2

t
µ2

F

q̂2
t


+

]

+O(α3
s)
}
. (B.7)

We observe that, for this auxiliary function, the expansion is a distribution in q2
t . This is not an

issue: the triple differential distribution is interesting only for non-zero values of q2
t , and indeed

any measurement will require a q2
t grater than some resolution cutoff. Should one be interested

in integrating over q2
t down to zero, either to compute the integrated distribution or to obtain a

binned version of the q2
t distribution, one has simply to take care of using the plus distribution in

the integration.
We now move to the regular function Eq. (2.34). We get

Q4 dCreg

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
= 1

1 + q̂2
t

∫ ∞
0

dξ1
∫ ∞

0
dξ2

∫ 2π

0
dϕ dC

dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
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× U ′reg

(√
x(1 + q̂2

t )ey, Q2ξ1, µ
2
F

)
U ′reg

(√
x(1 + q̂2

t )e−y, Q2ξ2, µ
2
F

)
× δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
θ

(
e−2|y|

x
− 1− q̂2

t

)
(B.8)

=
θ
(
e−2|y|

x − 1− q̂2
t

)
1 + q̂2

t

∫ ∞
0

dξ1
∫ ∞

0
dξ2

θ

(
1−

∣∣∣∣ q̂2
t−ξ1−ξ2

2
√
ξ1ξ2

∣∣∣∣)√
4ξ1ξ2 − (q̂2

t − ξ1 − ξ2)2

× U ′reg

(√
x(1 + q̂2

t )ey, Q2ξ1, µ
2
F

)
U ′reg

(√
x(1 + q̂2

t )e−y, Q2ξ2, µ
2
F

)
×
[

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ̄

)
+ dC

dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, 2π − ϕ̄
)]
,

(B.9)

where we have used Eq. (B.1) in the first step and Eq. (B.2) in the second step. Note that the theta
function inside the integration can be recast in the (physically obvious) constraint(√

ξ1 −
√
ξ2

)2
≤ q̂2

t ≤
(√

ξ1 +
√
ξ2

)2
. (B.10)

The integration over ξ1,2 shall be performed numerically. The fixed-order expansion of Eq. (B.9)
can be computed according to Eq. (2.39). To this end, it is better to start from Eq. (B.8), to obtain

Q4 dCreg

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
= 1

1 + q̂2
t

∫ ∞
0

dξ1
∫ ∞

0
dξ2

∫ 2π

0
dϕ dC

dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
×

[
α2
s(µ2

F)
(

1
ξ1

)
+

(
1
ξ2

)
+
P0

(√
x(1 + q̂2

t )ey
)
P0

(√
x(1 + q̂2

t )e−y
)

+O(α3
s)
]

× δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
θ

(
e−2|y|

x
− 1− q̂2

t

)
(B.11)

= 1
1 + q̂2

t
θ

(
e−2|y|

x
− 1− q̂2

t

)
×
[
α2
s(µ2

F)P0

(√
x(1 + q̂2

t )ey
)
P0

(√
x(1 + q̂2

t )e−y
)

+O(α3
s)
] ∫ 2π

0
dϕ I (B.12)

having defined

I =
∫ ∞

0

dξ1
ξ1

∫ ∞
0

dξ2
ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
− dC

dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2, ϕ

)
δ
(
q̂2
t − ξ1

)
θ(1− ξ2)

− dC
dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q2, ϕ

)
δ
(
q̂2
t − ξ2

)
θ(1− ξ1)

+ dC
dϕ

(
1

1 + q̂2
t
, 0, 0, Q2, ϕ

)
δ
(
q̂2
t
)
θ(1− ξ1)θ(1− ξ2)

]
(B.13)

This result is not immediately usable as delta functions still appear explicitly, and the cancellation
of singularities in ξ1, ξ2 = 0 requires integrating over these delta functions in a proper order.

To do so, we make some observations. First, when ξ1 or ξ2 is zero, the coefficient does no longer
depend on ϕ in principle. However, when considering the limit ξ1,2 → 0, a dependence on ϕ remains.
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So, for later convenience, we keep the last argument having in mind a limit procedure. Second, the
last term is proportional to δ(q̂2

t ), which is zero everywhere in the q̂2
t distribution, except for a single

point. This point is interesting only for computing the cumulative distribution between q̂2
t = 0 and

some given value, but in this case it is more convenient to consider the integrated distribution and
subtract from it the integral from that value to infinity. Therefore, for our purposes, we can assume
q̂2
t > 0 and ignore the last line. Finally, we observe that the integrand is symmetric for the exchange
ξ1 ↔ ξ2, as a consequence of the analogous symmetry of the function dC /dϕ.

We can separate the integration region into 4 subregions, divided by the lines ξ1 = 1 and ξ2 = 1.
As a result we can write

I = I1 + I2 + I3 + I4 (B.14)

I1 =
∫ 1

0

dξ1
ξ1

∫ 1

0

dξ2
ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
− dC

dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2

)
δ
(
q̂2
t − ξ1

)
− dC

dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q2

)
δ
(
q̂2
t − ξ2

)]
(B.15)

I2 =
∫ 1

0

dξ1
ξ1

∫ ∞
1

dξ2
ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
− dC

dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q2

)
δ
(
q̂2
t − ξ2

)]
(B.16)

I3 =
∫ ∞

1

dξ1
ξ1

∫ 1

0

dξ2
ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
− dC

dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2

)
δ
(
q̂2
t − ξ1

)]
(B.17)

I4 =
∫ ∞

1

dξ1
ξ1

∫ ∞
1

dξ2
ξ2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
. (B.18)

The ξ1 ↔ ξ2 symmetry implies I2 = I3, and further allows us to write I1

I1 = 2
∫ 1

0

dξ1
ξ1

∫ 1

ξ1

dξ2
ξ2

[
dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ2, Q

2, ϕ

)
δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
− dC

dϕ

(
1

1 + q̂2
t
, ξ1, 0, Q2

)
δ
(
q̂2
t − ξ1

)
− dC

dϕ

(
1

1 + q̂2
t
, 0, ξ2, Q2

)
δ
(
q̂2
t − ξ2

)]
. (B.19)

as an integral over a triangle. In this way, only one subtraction is needed to make the integral finite;
the other one is a finite integrable contribution.

As these integrals have to be further integrated in ϕ, one would be tempted to perform this
integration first, before proceeding to ξ1,2 integration. This seems advantageous because the “full”
delta function can be easily solved for ϕ (this is what we have already done before) and the sub-
traction terms are ϕ-independent and thus the integral is trivial. However, proceeding in this way
may potentially lead to numerical instabilities. Consider for instance I2, where the subtraction is
needed to regulate the ξ1 integral in ξ1 = 0. After integrating analytically over ϕ, the remaining ξ2
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integration shall be done analytically (using the delta function) for the subtraction term, but nu-
merically (as we have already used the delta function) for the first term. The cancellation between
the two terms is then realised after a numerical integration, which may be dangerous. To make the
cancellation smoother, it is much safer to use the delta functions to fix the same variable (ξ2) in
the first term and in the subtraction term. The same holds for the I1 integral, in the representation
Eq. (B.19).

To do so, we need to solve the delta function for ξ2. The zeros of the argument are given by√
ξ±2 = −

√
ξ1 cosϕ±

√
q̂2
t − ξ1(1− cos2 ϕ). (B.20)

It is then convenient to change integration variable to
√
ξ2. We get, for a generic function F (ξ2),∫

dξ2 F (ξ2) δ
(
q̂2
t − ξ1 − ξ2 − 2

√
ξ1ξ2 cosϕ

)
=
θ
(
q̂2
t − ξ1(1− cos2 ϕ)

)√
q̂2
t − ξ1(1− cos2 ϕ)

[√
ξ+
2 F (ξ+

2 ) +
√
ξ−2 F (ξ−2 )

]
(B.21)

where the denominator comes from the derivative of the argument of the delta function. According
to this result we can find

I1 = 2
∫ 1

0

dξ1
ξ1

[
θ
(
q̂2
t − ξ1(1− cos2 ϕ)

)√
q̂2
t − ξ1(1− cos2 ϕ)

(
1√
ξ+
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q

2, ϕ

)
θ

(
1−

√
ξ+
2

)
θ

(√
ξ+
2 −

√
ξ1

)

+ 1√
ξ−2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q

2, ϕ

)
θ

(
1−

√
ξ−2

)
θ

(√
ξ−2 −

√
ξ1

))

− 1
q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q
2
)
θ
(
1− q̂2

t
)
θ
(
q̂2
t − ξ1

)]

+ 2
q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)

log q̂2
t θ
(
1− q̂2

t
)

(B.22)

I2 =
∫ 1

0

dξ1
ξ1

[
θ
(
q̂2
t − ξ1(1− cos2 ϕ)

)√
q̂2
t − ξ1(1− cos2 ϕ)

(
1√
ξ+
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q

2, ϕ

)
θ

(√
ξ+
2 − 1

)

+ 1√
ξ−2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q

2, ϕ

)
θ

(√
ξ−2 − 1

))

− 1
q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q
2
)
θ
(
q̂2
t − 1

)]
. (B.23)

It is easy to check that the explicit integrals in ξ1 are finite as ξ1 → 0. Indeed in this limit√
ξ±2 → ±

√
q̂2
t , so the ξ−2 contributions die due to the theta functions, and the ξ+

2 contributions
become identical to the subtraction terms, thus making the square bracket vanishing in the limit.

The last integral, I4, can be performed similarly to I1. However, because here there are no
subtraction terms, it is possible to use the delta function for any variable, and in this case it may
be convenient to do it for ϕ.

Note that I can be simplified as

I = I1 + 2I2 + I4

= 2
∫ 1

0

dξ1
ξ1

[
θ
(
q̂2
t − ξ1(1− cos2 ϕ)

)√
q̂2
t − ξ1(1− cos2 ϕ)

(
1√
ξ+
2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q

2, ϕ

)
θ

(√
ξ+
2 −

√
ξ1

)
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+ 1√
ξ−2

dC
dϕ

(
1

1 + q̂2
t
, ξ1, ξ

−
2 , Q

2, ϕ

)
θ

(√
ξ−2 −

√
ξ1

))

− 1
q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q
2
)
θ
(
q̂2
t − ξ1

)]

+ 2
q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, q̂2

t , 0, Q2
)

log q̂2
t θ
(
1− q̂2

t
)

+ I4. (B.24)

Note also that the inequality
√
ξ−2 >

√
ξ1 required by the theta function in the second line implies

− cosϕ > 1 +

√
q̂2
t
ξ1
− 1 + cos2 ϕ (B.25)

which is clearly impossible, so the result simplifies further

I = 2
∫ 1

0

dξ1
ξ1

[
θ
(
q̂2
t − ξ1(1− cos2 ϕ)

)√
q̂2
t − ξ1(1− cos2 ϕ)

1√
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1
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− 1
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1
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t
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θ
(
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+ 2
q̂2
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(
1

1 + q̂2
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, q̂2

t , 0, Q2
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log q̂2
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(
1− q̂2

t
)

+ I4, (B.26)

where we have also traded the
√
ξ+
2 >

√
ξ1 condition for a simpler condition on ξ1. The second

theta function is more stringent than the first one, so the first one can be dropped. The result
above can thus be written as

I = 2
∫ q̂2

t
2(1+cosϕ)

0

dξ1
ξ1

[
1√

q̂2
t − ξ1(1− cos2 ϕ)

1√
ξ+
2

dC
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(
1

1 + q̂2
t
, ξ1, ξ

+
2 , Q

2, ϕ

)
− 1
q̂2
t
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dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q
2
)]

+ 2
q̂2
t

dC
dϕ

(
1

1 + q̂2
t
, 0, q̂2

t , Q
2
)

log q̂2
t

2(1 + cosϕ) + I4. (B.27)

The integral I4, having no subtraction in it, can be computed as in Eq. (B.9), using the delta
function to fix ϕ.

Of course we can use the approach of using the delta function to integrate over ξ2 also for the
resummed result. In this case we find
Q4 dCreg

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)

=
θ
(
e−2|y|
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t

)
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t

∫ ∞
ξ0

dξ1
∫ 2π

0
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q̂2
t − ξ1(1− cos2 ϕ)

)√
q̂2
t − ξ1(1− cos2 ϕ)
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(√
x(1 + q̂2

t )ey, Q2ξ1, µ
2
F

)
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[√
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2 U
′
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(√
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2 , µ

2
F
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)
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√
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)
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1

1 + q̂2
t
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−
2 , Q
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ξ−2 −

√
ξ0
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(B.28)

In fact, it is convenient to partition the integration region along the diagonal ξ1 = ξ2, to get

Q4 dCreg

dQ2dydq2
t

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

)
=
θ
(
e−2|y|

x − 1− q̂2
t

)
1 + q̂2

t

∫ 2π

0
dϕ
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×
[
I+

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

, ϕ

)
+ I−

(
x,Q2, y, q2

t , αs,
Q2

µ2
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)]
(B.29)

I+

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

, ϕ

)
=
∫ q̂2

t
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√
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1
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(B.30)

I−

(
x,Q2, y, q2

t , αs,
Q2

µ2
F

, ϕ

)
= I+

(
x,Q2,−y, q2

t , αs,
Q2

µ2
F

,−ϕ
)
. (B.31)
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