

Top quark physics with the ATLAS experiment at the LHC Marino Romano (INFN – Bologna)

On behalf of the ATLAS Collaboration

Top quark ID card

TOP QUARK

Discovery: Tevatron, 1995 (CDF, PRL 74 p. 2626 and D0, PRL 74 p. 2422)

Mass: 173.34 ± 0.76 GeV (Tevatron - LHC combination arXiv:1403.4427)

Charge: +2/3e

Generation: Third

Decays: Wb (~100%)

Top quark physics with the ATLAS experiment at the LHC

Why top quark physics?

- Ø Most massive known fundamental particle
 - Large Yukawa coupling: $Y_t > 0.9$
 - Production time < Lifetime < Hadronization time < Spin decorrelation time:</p>

$$\frac{1}{m_t}$$
 < $\frac{1}{\Gamma_t}$ < $\frac{1}{\Lambda_{\rm QCD}}$ < $\frac{m_t}{\Lambda_{\rm QCD}^2}$

- unique opportunity to study a "bare" quark
- Production and decay rates are strong tests for SM predictions

 \bar{q}

- Ø Background to Higgs and new physics (SUSY,...)
- (In)Direct coupling to new physics in many scenarios

$$q$$
 \overline{q}
 $G_{\mu\nu}$
 \overline{t}
 \overline{q}
 Z'
 \overline{t}
 \overline{t}

Top quark pair production and decays

Top quark production (...not only in pairs!)

LHC is a *top factory*

Top quarks can be measured in a wide range of production modes

This talk will focus on a selection of recent results

Top quark physics with the ATLAS experiment at the LHC

Top pair inclusive cross section

Challenging and interesting new measurement

- Lower production cross section (~1 order of magnitude wrt 13 TeV) + lower recorded integrated luminosity
- Possibility of new PDF constraints thanks to higher $q\bar{q}$ fraction wrt 13 TeV (and higher *x* required)

Cross section measured in the dilepton and lepton+jets channels

- **Dilepton**: *bjet counting method* (simultaneous fit of σ_{tt} and b-jet identification efficiency ε_b)
 - Stat. limited (~7%)
- L+jets: profile likelihood fit of BDT discriminants
 - Syst. limited ($t\bar{t}$ and V+jets modelling, b-tag, JES, lepton efficiency and scale)

arXiv:2207.01354 [hep-ex]

$\sqrt{s} = 5.02 \text{ TeV}, L = 257 \text{ pb}^{-1}$

Lepton+jets, Dilepton

Discrete 2022

Top pair inclusive cross section

arXiv:2207.01354 [hep-ex]

 $\sqrt{s} = 5.02 \text{ TeV}, \ L = 257 \text{ pb}^{-1}$

Lepton+jets, Dilepton

L+jets and dilepton channels combined using the <u>Convino</u> tool. Final uncertainty is <u>3.8%</u>:

 $\sigma_{t\bar{t}} = 67.5 \pm 0.9(\text{stat.}) \pm 2.3(\text{syst.}) \pm 1.1(\text{lumi.}) \pm 0.2(\text{beam}) \text{ pb}$

In excellent agreement with the NNLO QCD prediction (Top++, $m_t = 172.5$ GeV): $\sigma_{t\bar{t}}^{th} = 68.2^{+5.2}_{-5.3}$ pb

Top pair differential cross section

ATLAS-CONF-2022-061

 $\sqrt{s} = 13$ TeV, L = 139 fb⁻¹

Dilepton

Total $\sigma_{t\bar{t}}$ measurements show very good agreement with the SM, but new physics phenomena can still affect the shape of $\frac{d\sigma_{t\bar{t}}}{dx}$

- Single and double differential cross sections measured for 8 lepton kinematic variables in a fiducial phase space
- Analysis technique based on a generalization of the bjet counting technique
- Main uncertainties: luminosity, tW modelling (at high p_T^{lep})

Poor agreement to the data is observed for several MC generators

NLO MC generators predict harder p_T^{lep} spectrum

Reweighing PWG+PY8 to reproduce the NNLO p_T^t prediction leads to a *general* better agreement with the data

Boosted pair differential cross section

Top Quark Production Cross Section Measurements

Status: June 2022

Theory

 $\sqrt{s} = 5$ **TeV**

Data 4.5

Data 0.257 fb⁻¹

Data 20 2 - 20.31

Data 3.2 - 139 fb

tZj

4t

tγ

fid. ℓ

- 4.6 fb

Discrete 2022

Top quark physics with the ATLAS experiment at the LHC

11

Observation of $tq\gamma$

ATLAS-CONF-2022-013

 $\sqrt{s} = 13 \text{ TeV}, L = 139 \text{ fb}^{-1}$

Standard Model *t*-channel single top production in association with a photon

- Very rare process: $\sigma_{tq\gamma}^{SM} \times B(t \to l\nu b) = 406^{+25}_{-32}$ fb
- Sensitive to EW couplings of the top
- Final state with exactly 1 lepton (e/μ) , 1-bjet, 1 photon
 - Profile likelihood fit of a NN discriminant
 - Two signal regions: with/without a forward jet
 - Control regions for $tt\gamma$ and $W\gamma$
- Main uncertainties from tt and $tt\gamma$ background modelling and MC statistics

 $tq\gamma$ observation with measured (expected) significance of 9.1 (6.7) σ

- Parton level: $\sigma_{tq\gamma} \times B(t \to l\nu b) = 580 \pm 19(\text{stat.}) \pm 63(\text{syst.})\text{fb}$
- Particle level: $\sigma_{tq\gamma} \times B(t \to l\nu b) + \sigma_{t(\to l\nu b\gamma)} = 287 \pm 8(\text{stat.}) \pm 31(\text{syst.})\text{fb}$

Discrete 2022

Top quark physics with the ATLAS experiment at the LHC

Evidence of 4t production

Extremely rare process: $\sigma_{4t}^{SM} = 12 \pm 2.4$ fb

- Never observed by ATLAS or CMS yet
- Sensitive to the magnitude and CP properties of the top-Higgs Yukawa coupling

Measurements performed in all leptonic final states

- Same sign dilepton and multi-lepton channels (SSML): EPJC 80 (2020)
- <u>Single lepton and opposite sign dilepton (1LOS) + combination with</u> <u>SSML: JHEP 11 (2021) 118</u>

Final state with high jet and b-jet multiplicities

- 10(8) jets in 1L(2LOS) + 4 b-jets expected in typical 4top events
- Measurement extracted via a profile likelihood fit of a BDT discriminant

JHEP 11 (2021) 118

 $\sqrt{s} = 13 \text{ TeV}, L = 139 \text{ fb}^{-1}$

Evidence of 4t production

Measured cross section for 1LOS: $\sigma_{4t} = 26^{+17}_{-15}$ fb

- Observed (expected) significance: 1.9 (1.0)σ
- Uncertainties dominated by 4-top and tt+HF modelling

Combined cross section for 1LOS+SSML: $\sigma_{4t} = 24^{+7}_{-6}$ fb • Observed (expected) significance: 4.7 (2.6) σ

t→γc

t→γu

t→gc

t→gu

t→Zc

t→Zu

Flavour Changing Neutral Currents (FCNC) forbidden at tree level and suppressed at higher orders in the SM

• FCNC can be enhanced via BSM processes and EFT extensions of the SM

FCNC probed both in top production $(tqg/tqZ/tqH/tq\gamma)$ and decay $(tqZ/tqH/tq\gamma)$

Upper limits are set for branching ratios $B(t \rightarrow q\gamma/H/g/Z)$ and Wilson coefficients

Discrete 2022

Top quark physics with the ATLAS experiment at the LHC

10⁻¹⁶

 10^{-13}

 10^{-10}

10⁻⁷

 10^{-4}

Branching ratio

[4]

[3]

[4]

[5]

[6] [5]

[6]

[7]

[8] [7]

 10^{-1}

ATL-PHYS-PUB-2022-032

Precision on m_t measurement at LHC is constantly improving and reached the level of precision achieved at Tevatron

• signal modeling (b fragmentation and decay, $t\bar{t}$ production)

Outlook

- Top analyses are in full swing thanks to the combined performance of LHC & detectors: a very rich program is under way.
- ATLAS is ready to analyze the data from the newly started Run3

So... stay tuned!

Discrete 2022

Data/Pred.

Summary

A lot of interesting results produced by ATLAS thanks to the combined performance of LHC & detectors

- Presented today only a small selection of recent results
 - Many more can be found in the <u>ATLAS Top Public page</u>*
- O Top strong and electroweak inclusive production has been measured with exceptional precision
- O Differential cross sections measurements test SM $t\bar{t}$ production and complement new physics searches in completely new phase space
- New energy domains and rare top production processes are now accessible thanks to the LHC top quark factory, allowing to set stronger limits to extensions of the SM

*: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/TopPublicResults

Top quark pair inclusive cross section:

summary

Wide range of measurements by ATLAS in different decay channels

Good agreeement of all measurements with SM predictions

Experimental uncertainties already comparable with theoretical ones

Measurements in $e\mu$ and lepton+jets channels are outstanding

Common limitation: uncertainty on integrated luminosity (~2.3%)

Observation of $tq\gamma$

ATLAS-CONF-2022-013

Standard Model *t*-channel single top production in association with a photon

- Very rare process: $\sigma_{tq\gamma}^{SM} \times B(t \to l\nu b) = 406^{+25}_{-32}$ fb
- Sensitive to EW couplings of the top quark (esp. top-γ vertex)
- Final state with exactly 1 lepton (e/μ), 1-bjet, 1 photon
 - Profile likelihood fit of a NN discriminant
 - Two signal regions: with/without a forward jet
 - Two control regions for $tt\gamma$ and $W\gamma$
- Cross section measured in a fiducial phase space at parton and particle level
 - At particle level process made up of two contributions
 - $pp \rightarrow t(\rightarrow bl\nu)q\gamma$ (~80%)
 - $pp \rightarrow t(\rightarrow \gamma b l \nu) q (\sim 20\%)$
- Main uncertainties from tt and $tt\gamma$ background modelling and MC statistics

$tq\gamma$ observation with measured (expected) significance of 9.1 (6.7) σ

- Parton level: $\sigma_{tq\gamma} \times B(t \to l\nu b) = 580 \pm 19(\text{stat.}) \pm 63(\text{syst.})\text{fb}$
- Particle level: $\sigma_{tq\gamma} \times B(t \to l\nu b) + \sigma_{t(\to l\nu b\gamma)} = 287 \pm 8(\text{stat.}) \pm 31(\text{syst.})\text{fb}$

Top quark physics with the ATLAS experiment at the LHC