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Abstract: We present the analytic expressions for the two-loop form factors for the production

or decay of pseudo-scalar quarkonia, in a scheme where the quarks are produced at threshold.

We consider the two-loop amplitude for the process γγ ↔ 1S
[1]
0 , that was previously known only

numerically, as well as for the processes gg ↔ 1S
[1]
0 , γg ↔ 1S

[8]
0 and gg ↔ 1S

[8]
0 , which have not

been computed before. The two-loop corrections to gg ↔ 1S
[1]
0 are the last missing ingredients

for a full NNLO calculation of ηQ hadro-production. We discuss how the singularity structure of

the amplitudes is affected by the threshold kinematics, which in particular introduces Coulomb

singularities. In this context, we first show how the usual structure of the infrared singularities

degenerates at threshold kinematics, and then extract the anomalous dimensions governing the

Coulomb singularities for colour-singlet and octet channels, the latter being presented here for the

first time. We give high-precision numerical results for the hard functions, which can be used for

phenomenological studies of ηQ production and decay at NNLO.
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1 Introduction

The high-luminosity program of the Large Hadron Collider (LHC), which will take place during the

second part of this decade, will enable us to study the fundamental interactions among particles at

an unprecedented level of precision and to measure a large number of physical observables at the

percent level. A lot of effort has to be put into improving theoretical predictions to reach this level

of precision in order to make the most of the LHC physics program.

The production and decay of quarkonium bound states play an important role within the context

of this program. Indeed, quarkonium physics can be used as a probe to study several aspects of

QCD, such as the interplay between the perturbative and non-perturbative regimes of QCD [1–5]

or the analysis of the gluon Parton Distribution Function (PDF) of the proton [6–10]. Specifically,

charmonium production can be used to set constraints on the PDFs at energy scales on the order

of the charm quark mass. Quarkonium physics also provides a way to test the convergence of the
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perturbative expansion in QCD, since the strong coupling αs is not so small at the relevant energy

scales (see for instance refs. [10, 11]).

In this paper we focus on the production and decay of a pseudo-scalar quarkonium state ηQ,

which is a bound state of a quark-antiquark pair QQ, where the massive quark Q can be either a c or

b quark. The state-of-the-art for this process are next-to-leading order (NLO) QCD corrections [12–

15]. An interesting feature of NLO corrections to pseudo-scalar quarkonium hadro-production is

the appearance of negative cross sections, whose origin can be traced back to an over-subtraction

of the initial-state collinear divergences inside the PDFs in the MS-scheme [10]. While it is possible

to devise a prescription of how to avoid the appearance of negative cross sections at NLO [10, 16],

most likely only a complete next-to-next-to-leading order (NNLO) computation can provide reliable

phenomenological predictions for this process. The NNLO corrections require the knowledge of the

two-loop contributions for the production of a quarkonium state, which are currently unavailable

in the literature.

One of the main goals of this paper is to close this gap and to present for the first time the

two-loop QCD corrections to the amplitudes for both colour-singlet and colour-octet configurations,

in the channels γγ, γg and gg. More precisely, we will consider the processes γγ ↔ 1S
[1]
0 , gg ↔

1S
[1]
0 , γg ↔ 1S

[8]
0 and gg ↔ 1S

[8]
0 . The computation is carried out within the framework of Non-

Relativistic QCD (NRQCD) [17], where the production mechanism of the quarkonium state assumes

the factorisation into a perturbative part, which describes the high-energy physics of the process,

and a non-perturbative part, which takes into account the low-energy physics. While the two-loop

corrections to the decay of the colour-singlet state into two photons have already been calculated

numerically [18, 19], the corrections to the other three processes have not been calculated before and

are presented here for the first time.1 Moreover, the two-loop QCD corrections to the colour-singlet

configuration in the gg channel are the last missing ingredients for a full NNLO computation for

pseudo-scalar quarkonium hadro-production.

The computation of these processes is performed by decomposing the amplitudes into form

factors. Using Integration-By-Parts (IBP) identities [21, 22], the form factors can be written in

terms of a basis of scalar Feynman integrals, the so-called master integrals. The evaluation of the set

of master integrals required for these amplitudes was discussed in ref. [23], where we provided both

analytic results and high-precision numerical evaluations. Here we simply note that these integrals

involve multiple polylogarithms (MPLs) [24] but also elliptic multiple polylogarithms (eMPLs) [25–

27] (and the related iterated integrals of Eisenstein series [28, 29]). While MPLs are well understood

and their analytic manipulation and numerical evaluation is under good control, the same is not

true for their elliptic generalisation. In particular, the high-precision numerical evaluations of the

integrals involving elliptic functions are not obtained from their analytic representations, but rather

by numerically solving the differential equations they satisfy with tools such as AMFlow [30–32] and

diffexp [33].

The paper is structured as follows. In section 2 we present the general setup of the computation

and we discuss the decomposition of the amplitudes in terms of form factors. Section 3 is dedicated

to the description of the general structure of the bare form factors and the UV renormalisation

procedure. In section 4 we analyse the IR pole structure, including the Coulomb singularities.

Finally, in section 5 we present our results for the finite remainder of the form factors for the

different processes. Our conclusions and outlook are given in section 6.

1The hadronic decay width of ηQ has been computed up to NNLO in pure numerical form in ref. [20] using the

optical theorem and transforming phase-space integrations into loop integrals. The results for the two-loop virtual

contributions have, however, not been given, so the results presented in that reference cannot be used for NNLO

pseudo-scalar quarkonium hadro-production.
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2 Computational setup

Within the framework of NRQCD [17], the production of a quarkonium state can be factorised

into a perturbative part that describes the production of a heavy-quark pair QQ at a hard scale

µ ∼ mQ, and a non-perturbative part that describes the hadronisation of the QQ pair to the bound

state Q at a much lower scale µΛ < mQ. This factorisation can be expressed at the partonic level

as

dσ̂ab(Q+ {k}) =
∑

n

dσ̂ab
(
QQ[n] + {k}

)
〈On

Q〉 , (2.1)

where a and b are the initial-state particles, and dσ̂ab
(
QQ[n] + {k}

)
describes the short-distance

production of aQQ pair in a given quantum configuration n with additional partons in the final state

represented by {k}. The quantum configuration n of the QQ state can be expressed in spectroscopic

notation as 2S+1L
[1,8]
J , where S is the total spin of the QQ pair, L is the orbital angular momentum

and J is the total angular momentum. The superscript [1, 8] indicates that the QQ pair is in either

a colour-singlet or colour-octet state. The hadronisation of the QQ[n] state into the quarkonium

state Q is encoded in the non-perturbative Long-Distance Matrix Element (LDME) 〈On
Q〉.

While the sum in the factorisation formula eq. (2.1) proceeds over all quantum configurations

n, in this paper only a few contributions will be relevant. Indeed, the factorisation formula admits

an expansion in both the strong coupling αs and the relative velocity v between the QQ pair in

the rest frame of the quarkonium. We consider only pseudo-scalar S-wave states in both colour-

singlet and colour-octet configurations, 1S
[1,8]
0 . More specifically, the colour-singlet state 1S

[1]
0 is the

leading term in the v-expansion of ηQ production and corresponds to the colour-singlet model [34–

36]. We will also consider the final-state QQ pair to be in the colour-octet state 1S
[8]
0 . For the

(short-distance) perturbative corrections, we will always work at leading order in v, that is, we set

v = 0 at the integrand level.

Since we are primarily interested in ηQ production, we will briefly discuss the LDME and its

dominant contribution in the 1S
[1]
0 channel. It can be expressed in terms of the total wave function

ψ0 at the origin [15, 17],

〈O
1S

[1]
0

ηQ 〉 = |ψ0|2 =
|R0|2
4π

, (2.2)

where we have also given the relation to the more commonly used radial wave function at the origin

R0 and the spherical harmonic Y00 = 1/
√
4π. Due to heavy-quark spin symmetry, the radial wave

function R0 is the same for both ηQ and J/ψ up to higher-order corrections in the v-expansion.

R0 can be computed via the Schrödinger equation, and its value can also be extracted from the

leptonic decay width of the J/ψ [14, 37].2

The main focus of this paper are the perturbative corrections to eq. (2.1), described by the

short-distance interaction

a(k1)b(k2) → Q(p1)Q(p2) , (2.3)

where in our case a and b represent either gluons or photons. For the 1S0
[1,8]

state, we consider the

final-state heavy quarks at threshold kinematics. This corresponds to

k21 = k22 = 0, p2 =
1

2
k1 · k2 = m2

Q , with p = p1 = p2 =
1

2
(k1 + k2) , (2.4)

where the Mandelstam variables are given by

ŝ = (k1 + k2)
2
=M2

Q = 4m2
Q , t̂ = (k1 − p)

2
= −m2

Q , û = (k2 − p)
2
= −m2

Q . (2.5)

2There are different models that yield different numerical values for the radial wave function. For instance, in

refs. [10, 38], the numerical values used for the S-wave functions were |R0|
2

ηc
= 1 GeV3 and |R0|

2

ηb
= 7.5 GeV3.

– 3 –



This effectively reduces the kinematics underlying the process in eq. (2.3) to those of a three-point

process.

In this paper we are only interested in the two-loop contributions to the production or decay

of a quarkonium bound state. Specifically, we consider the two-loop amplitudes for the channels

γγ ↔ 1S
[1]
0 , gg ↔ 1S

[1]
0 , γg ↔ 1S

[8]
0 and gg ↔ 1S

[8]
0 , where the double-arrows indicate that we

consider both production and decay. Indeed, the channels with a light quark pair in the initial/final

state, qq ↔ 1S0
[1,8]

, are loop-induced and only contribute at NNLO as the product of one-loop

amplitudes. This contribution vanishes in d = 4 dimensions.

To compute the required amplitudes, we first generate the Feynman diagrams with a QQ pair

in the final state using the FeynArts package [39]. We then need to project the QQ pair onto

the 1S
[1,8]
0 state. All colour and Lorentz algebra manipulations are performed with FeynCalc [40].

As the amplitude has two fermions in the final state, it contains the product of spinors u, v with

matrices T involving Dirac γ matrices. As this product is a number, we can convert it to a trace

and write

u(p, s1)T v(p, s2) =Tr [u(p, s1)T v(p, s2)] = Tr [T v(p, s2)u(p, s1)]. (2.6)

The projection of the final QQ pair onto a pseudo-scalar state 1S
[1,8]
0 can be done by means of the

replacement [15, 41–44],3

v(p, s2)u(p, s1) → − 1√
2mQ

γ5
(
/p+mQ

)
P

[1,8]
ij . (2.7)

The colour-projection operators are

P
[1,8]
ij =

{
δij/

√
Nc colour-singlet [1] ,

√
2 taij colour-octet [8] ,

(2.8)

where we denote by ta the generators of the fundamental representation of the SU(Nc) gauge group,

and δij is the Kronecker delta. The traces involve a γ5 matrix, which requires a careful treatment

when working with dimensional regularisation. We employ the ’t Hooft-Veltman scheme [45].4

The Lorentz structure of the amplitude for the production of a pseudo-scalar state is indepen-

dent of the channel and can be written as5

Ap,c =Ap,c;µν ε
µ(k1)ε

ν(k2) = Ãp,c ǫµνρσ ε
µ(k1)ε

ν(k2)k
ρ
1k

σ
2 . (2.9)

where p indicates the channel (p = gg, γg, γγ), and c denotes the colour state (c = [1], [8]). The

scalar form factor Ãp,c is obtained with the projection operator

Pµν =
1

4 (d− 3) (d− 2)m4
Q

ǫµνρ
′σ′

k1,ρ′k2,σ′ , (2.10)

where the overall normalisation is fixed by requiring that

PµνAp,c;µν = Ãp,c . (2.11)

3The relative normalisation of the LDME and the short-distance part can be chosen freely. We follow the con-

ventions of ref. [15].
4However, we observe that, since there is only a single γ5 in the trace, there is no difference when employing naive

dimensional regularisation versus the ’t Hooft-Veltman scheme.
5The polarisation vectors of the gluons and photons must be complex conjugated in the amplitudes depending on

whether they correspond to the production or decay channels.
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The (bare) scalar form factor Ãp,c can be expanded into powers of the (bare) strong coupling

αB
s . We define the normalised bare form factor Fp,c and its perturbative expansion as

Fp,c =Ap,c/A(0)
p,c =

(
αB
s

π

)q
[
1 +

(
αB
s

π

)
F (1)

p,c +

(
αB
s

π

)2

F (2)
p,c +O

(
αB
s

)3
]
, (2.12)

where A(0)
p,c is given by

A(0)
p,c = i

4π2
√
2

m
5/2
Q

Ccol.
p,c Ccoup.

p,c ǫµνρσ ε
µ(k1)ε

ν(k2)k
ρ
1k

σ
2 , (2.13)

and q = 0 for Aγγ,[1], q = 1
2 for Aγg,[8], and q = 1 for Agg,[1] and Agg,[8]. The channel-dependent

factors Ccol.
p,c and Ccoup.

p,c are given by

Ccol.
p,c =





√
Nc γγ ↔ 1S

[1]
0 ,

TF δ
ab/

√
Nc gg ↔ 1S

[1]
0 ,

√
2TF δ

bc γg ↔ 1S
[8]
0 ,√

2TF d
abc/2 gg ↔ 1S

[8]
0 ,

Ccoup.
p,c =





e2Qαem/π γγ ↔ 1S
[1]
0 ,

1 gg ↔ 1S
[1]
0 ,

eQ
√
αem/π γg ↔ 1S

[8]
0 ,

1 gg ↔ 1S
[8]
0 ,

(2.14)

where eQ denotes the electric charge of the heavy quark and we defined the usual quantities

Tr[tatb] =TF δ
ab, Tr[tatbtc] = TF

1

2

(
dabc + ifabc

)
. (2.15)

In our conventions, we set TF = 1/2.

The two-loop scalar form factors F (2)
p,c can be decomposed into a basis of two-loop Feynman

integrals. In order to do so, however, we must first account for partial-fraction relations that arise

because of the degenerate kinematics of eqs. (2.4) and (2.5). For this we use the package Apart [46].

Details and consequences of this procedure are given in our companion paper [23]. Having defined

a set of linearly-independent propagators, we employ standard packages such as FIRE [47] or KIRA

[48] to decompose the form factors into a basis of 76 master integrals. In ref. [23], we computed

them both analytically and numerically.

Within this setup, we compute the two-loop form factors F (2)
p,c for γγ ↔ 1S

[1]
0 , gg ↔ 1S

[1]
0 ,

γg ↔ 1S
[8]
0 and gg ↔ 1S

[8]
0 . While the first one had already been computed numerically [18, 19],

the last three are obtained here for the first time. In particular, F (2)
gg,[1] is the last missing ingredient

for a full NNLO computation of ηQ hadro-production.

3 The bare amplitude and UV renormalisation

We perform our calculations in the framework of dimensional regularisation, where the ultraviolet

(UV) and infrared (IR) singularities appear as poles in the dimensional regulator ǫ. In this section

we first discuss the pole structure of the bare form factors up to two loops, and we then outline the

renormalisation procedure which removes the UV singularities.

3.1 Bare form factors

One-loop form factors have poles of up to second order in the dimensional regulator ǫ. We write

F (1)
p,c = Sǫ

(
m2

Q

)−ǫ ∑

k≥−2

ǫkF (1,k)
p,c , (3.1)
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where Sǫ = (4π)
ǫ
e−ǫγE . With this choice of normalisation, the m2

Q dependence is fully factorised

and the coefficients F (1,k)
p,c are simply numbers. They can be decomposed in terms of the colour

factors as

F (1,k)
p,c = CAF (1,k)

p,c;A + CFF (1,k)
p,c;F , (3.2)

where CA and CF are the usual Casimir invariants of SU(Nc),

taikt
a
kj = CF δij =

N2
c − 1

2Nc
δij and facdf bcd = CA δ

ab = Nc δ
ab . (3.3)

The coefficients of the poles in ǫ are particularly simple. Indeed, the poles proportional to CF are

identically zero for all form factors

F (1,−2)
p,c;F = F (1,−1)

p,c;F = 0 , (3.4)

while the poles proportional to CA are form-factor-dependent and read

F (1,−2)
γγ,[1];A =0 , F (1,−1)

γγ,[1];A = 0 , (3.5)

F (1,−2)
gg,[1];A =− 1

2
, F (1,−1)

gg,[1];A = − iπ
2

+ log 2 , (3.6)

F (1,−2)
γg,[8];A =− 1

4
, F (1,−1)

γg,[8];A = −1

4
+

1

2
log 2 , (3.7)

F (1,−2)
gg,[8];A =− 1

2
, F (1,−1)

gg,[8];A = − iπ
4

− 1

4
+ log 2 . (3.8)

The two-loop form factors have poles up to order ǫ−4. We write the form factor as

F (2)
p,c = S2

ǫ

(
m2

Q

)−2ǫ ∑

k≥−4

ǫkF (2,k)
p,c . (3.9)

We find it convenient to classify the different contributions that appear in the two-loop amplitude.

First, we distinguish terms that survive in the limit CA → 0, which we call abelian contributions, and

terms that vanish. Second, we distinguish sets of gauge-invariant contributions: the regular two-

loop contributions, coming from diagrams without closed fermion loops, the light-by-light scattering

contributions, coming from diagrams with fermion loops connected to the external bosons, and

the vacuum polarisation contributions, coming from diagrams with closed fermion loops in gluon

propagators and with triple gluon vertices. Representative diagrams for each contribution can be

found in fig. 1. We can express the bare two-loop amplitude as

F (2,k)
p,c = F (2,k)

p,c;reg + F (2,k)
p,c;lbl + F (2,k)

p,c;vac, (3.10)

where

F (2,k)
p,c;reg =C2

F F (2,k)
p,c;FF + CFCA F (2,k)

p,c;FA + C2
A F (2,k)

p,c;AA , (3.11)

F (2,k)
p,c;lbl =CFTFnhF (2,k)

p,c;Fh;lbl + CFTF ñl F (2,k)
p,c;Fl;lbl

+ CATFnh F (2,k)
p,c;Ah;lbl + CATF ñl F (2,k)

p,c;Al;lbl ,
(3.12)

F (2,k)
p,c;vac =CFTFnhF (2,k)

p,c;Fh;vac + CFTFnl F (2,k)
p,c;Fl;vac

+ CATFnh F (2,k)
p,c;Ah;vac + CATFnl F (2,k)

p,c;Al;vac ,
(3.13)

where nh and nl are the number of heavy and light quarks respectively. For the light-by-light

contributions, we have to define the quantity ñl that takes into account the QED coupling between

– 6 –



(a) (b) (c)

Figure 1: Two-loop diagrams for the form factor γγ ↔ 1S
[1]
0 with (a) regular contributions, (b)

light-by-light contributions and (c) vacuum polarisation contributions.

the external photons and the fermion flavour inside the loop. This quantity reads

ñl =





∑nl

i e2i /e
2
Q for γγ channel ,

∑nl

i ei/eQ for γg channel ,

nl for gg channel .

(3.14)

We further note that the light-by-light contributions are finite in four dimensions and are thus not

affected by the procedure of UV renormalisation. In appendix A, we give, in addition to the analytic

expressions for the poles, also the numerical values for the finite part for the contributions given

in eqs. (3.11)-(3.13). We observe that, while the two-loop form factor F (2)
γγ,[1] has poles of at most

second order, the other form factors have poles starting at the quadruple pole.

It is clear that abelian contributions should be very similar across different channels. Indeed,

they are only different in the light-by-light contributions, where colour-singlet channels differ from

colour-octet channels by a factor of 2 coming from the different colour algebra. Because the light-

by-light contributions are finite, we find that the abelian contributions to the pole structure of

all channels is the same. Verifying that these relations hold provides a stringent check of our

calculations. We also note that in the limit CA → 0, CF → 1 and TF → 1 the colour-singlet

contributions should reproduce the two-loop contributions to para-positronium production or decay

obtained numerically in ref. [49], which provides another important check.

3.2 UV renormalisation

Having explained how we obtained the bare two-loop form factors Fp,c, we now discuss how to

compute their renormalised counterparts. We work in the on-shell renormalisation scheme for the

heavy-quark wave function, for the heavy-quark mass and for the gluon wave function. As for the

strong coupling αs, we employ the MS-scheme. The renormalisation is performed with multiplicative

factors Zκ, with κ = Q, m, g, αs respectively. For instance, the bare coupling is related to the

renormalised coupling αs by

αB
s = S−1

ǫ µ2ǫ
RZαs

α
(nf )
s , (3.15)

where we take into account nf = nl + nh flavours in the running of the coupling. The Zκ factors

admit an expansion in the renormalised coupling with nf flavours as

Zκ = 1 +

(
α
(nf )
s

π

)
Z(1)
κ +

(
α
(nf )
s

π

)2

Z(2)
κ +O

(
α3
s

)
, (3.16)

and the Z
(i)
κ are collected in appendix C. It is more common to express the results in terms of a

coupling α
(nl)
s where we only consider the light-quark flavours in the running of the coupling. In

order to convert from one coupling to the other, we apply the decoupling identity [50]

α(nl+nh)
s = ζαs

α(nl)
s , (3.17)
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where ζαs
admits an expansion in the strong coupling similar to eq. (3.16), but with nl flavours in

the running of the coupling. The coefficients for ζαs
are also given in appendix C.

As done for the other bare quantities, the renormalisation of the heavy-quark mass mQ could in

principle be implemented through a simple replacement mB
Q = ZmmQ in the amplitude. However,

given the degenerate kinematics underlying our process (cf. eqs. (2.4) and (2.5)), we have evaluated

the integrals at ŝ = 4m2
Q. Hence the threshold value of ŝ is related to the on-shell mass mQ of

the heavy quarks, while the propagators involve the bare mass mB
Q. Since we did not distinguish

between the bare and on-shell masses at the time of the diagram generation, it is not possible

to simply substitute mB
Q by its renormalised value. Instead, we compute counterterms that are

added to the bare amplitude to implement the heavy-quark mass renormalisation. This involves

computing one-loop amplitudes with doubled propagators, which we do using the same standard

approach described above for the calculation of the bare amplitudes.

We write the renormalised form factors, expanded in powers of α
(nl)
s , as

Fp,c =

(
α
(nl)
s

π

)q

1 +

(
α
(nl)
s

π

)
F (1)

p,c +

(
α
(nl)
s

π

)2

F(2)

p,c +O
(
α(nl)
s

)3

 , (3.18)

where the n-loop renormalised form factors can be written as

F (n)

p,c = µ2nǫ
R S−n

ǫ F (n)
p,c + F (n,CT)

p,c + F (n,decoupling)
p,c . (3.19)

The contribution of all renormalisation factors is collected in F (n,CT)
p,c . Both F (n)

p,c and F (n,CT)
p,c are

computed as an expansion in α
(nf )
s and F (n,decoupling)

p,c translates the result to an expansion in α
(nl)
s .

At one-loop level, the counterterm contribution in eq. (3.19) gives

F (1,CT)
p,c = q

(
Z(1)
g + Z(1)

αs

)
+ Z

(1)
Q − Z(1)

m . (3.20)

We note that Z
(1)
Q = Z

(1)
m , and the renormalised form factor F (1)

γγ,[1] (for which q = 0) equals its

bare counterpart. As will be discussed below, this form factor exhibits neither soft nor collinear

singularities and is thus finite, which agrees with our results, see eqs. (3.4) and (3.5). At two-loop

level, the counterterm contribution in eq. (3.19) reads

F (2,CT)
p,c = S−1

ǫ µ2ǫ
RF (1)

p,c

[
qZ(1)

g + (1 + q)Z(1)
αs

+ Z
(1)
Q

]
− Z(1)

m F (1,mass CT)
p,c

+ qZ(1)
αs

(
qZ(1)

g + Z
(1)
Q − Z(1)

m

)
+ qZ(2)

αs
+ qZ(2)

g + qZ(1)
g

(
Z

(1)
Q − Z(1)

m

)

+
1

2
q (q − 1)

[(
Z(1)
αs

)2
+
(
Z(1)
g

)2]
+ Z

(2)
Q − Z(2)

m − Z(1)
m Z

(1)
Q +

1

2

(
Z(1)
m

)2
,

(3.21)

where F (1,mass CT)
p,c is obtained by considering the one-loop amplitude with all possible ways of

squaring the massive-quark propagator (see, e.g., refs. [49, 51]). These must be computed to O(ǫ)

because Z
(1)
m has a simple pole in ǫ. As for the decoupling contribution in eq. (3.19), we have

F (1,decoupling)
p,c = q ζ(1)αs

, (3.22)

F (2,decoupling)
p,c = q ζ(2)αs

+
1

2
q (q − 1)

(
ζ(1)αs

)2
+ (q + 1) ζ(1)αs

(
F (1)

p,c −F (1,decoupling)
p,c

)
. (3.23)

The renormalised form factors F(n)

p,c are free of UV singularities, but still exhibit IR singularities

in ǫ, which will be discussed in the next section. We write the renormalised one-loop form factors

as

F (1)

p,c =
∑

k≥−2

ǫkF (1,k)

p,c , (3.24)
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where we have expanded out all factors depending on ǫ. As the renormalisation procedure introduces

a TFnl term, the colour decomposition now involves

F (1,k)

p,c = CA F (1,k)

p,c;A + CF F (1,k)

p,c;F + TFnl F
(1,k)

p,c;l . (3.25)

As for the bare amplitudes, in all channels, there are no poles proportional to CF . For the CA

contributions, we have that

F (1,−2)

γγ,[1];A =0 , F (1,−1)

γγ,[1];A = 0 ,

F (1,−2)

gg,[1];A =− 1

2
, F (1,−1)

gg,[1];A = − iπ
2

+ log 2− 11

12
− 1

2
lµR

,

F (1,−2)

γg,[8];A =− 1

4
, F (1,−1)

γg,[8];A = −17

24
+

1

2
log 2− 1

4
lµR

,

F (1,−2)

gg,[8];A =− 1

2
, F (1,−1)

gg,[8];A = − iπ
4

− 7

6
+ log 2− 1

2
lµR

,

(3.26)

where we used the shorthand notation

lµ = log
µ2

m2
Q

. (3.27)

Finally, for the TFnl contributions the poles are

F (1,−2)

γγ,[1];l =0 , F (1,−1)

γγ,[1];l = 0 ,

F (1,−2)

gg,[1];l =0 , F (1,−1)

gg,[1];l =
1

3
,

F (1,−2)

γg,[8];l =0 , F (1,−1)

γg,[8];l =
1

6
,

F (1,−2)

gg,[8];l =0 , F (1,−1)

gg,[8];l =
1

3
.

(3.28)

The two-loop form factors can be similarly written as

F (2)

p,c =
∑

k≥−4

ǫkF (2,k)

p,c , (3.29)

where the F (2,k)

p,c can be decomposed into the different sets as

F (2,k)

p,c = F (2,k)

p,c;reg + F (2,k)

p,c;lbl + F (2,k)

p,c;vac, (3.30)

where

F (2,k)

p,c;reg =C2
F F (2,k)

p,c;FF + CFCA F (2,k)

p,c;FA + C2
A F (2,k)

p,c;AA , (3.31)

F (2,k)

p,c;lbl =CFTFnhF
(2,k)

p,c;Fh;lbl + CFTF ñl F
(2,k)

p,c;Fl;lbl

+ CATFnh F
(2,k)

p,c;Ah;lbl + CATF ñl F
(2,k)

p,c;Al;lbl ,
(3.32)

F(2,k)

p,c;vac =CFTFnhF
(2,k)

p,c;Fh;vac + CFTFnl F
(2,k)

p,c;Fl;vac

+ CATFnh F
(2,k)

p,c;Ah;vac + CATFnl F
(2,k)

p,c;Al;vac + T 2
Fn

2
l F

(2,k)

p,c;ll .
(3.33)

The last term proportional to T 2
F is a new colour structure that arises through the renormalisation

factors. Since the light-by-light contributions are finite, we have that F (2,0)

p,c;lbl = F (2,0)
p,c;lbl. As done for

the bare form factors, we have collected the singular parts and the finite piece of the renormalised
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form factors in appendix B. For most channels we find that the pole structure is what would be

expected for a two-loop amplitude involving external massless particles, that is we find poles up to

order O
(
ǫ−4
)
. The exception is the form factor Fγγ,[1], which has a much simpler pole structure,

namely a simple pole with contributions proportional to C2
F and CACF . This pole has a special

interpretation that will be discussed in the next section.

4 Infrared singularities

The pole structure of renormalised amplitudes in NRQCD is more involved than that of amplitudes

in full QCD. Indeed, in NRQCD a new type of singularity arises, the so-called Coulomb singularity,

see, e.g., refs. [18, 19, 52–54]. It appears as a consequence of the fact that we have expanded the

amplitude with respect to the relative velocity v between the heavy quarks. Taking this fact into

account, we define a finite remainder Ffin
p,c as

Ffin
p,c = Z

−1
Coul.Z

−1
IR Fp,c , (4.1)

where ZCoul. is the factor that removes the Coulomb singularity, while ZIR subtracts the standard

infrared (IR) poles. They are in general matrices in colour space.

The Zκ factors above admit an expansion in powers of α
(nl)
s , similarly to the renormalisation

factors discussed in the previous section. However, while the strong coupling in the renormalisation

factors is evaluated at the renormalisation scale, µR, the coupling expansion in the ZIR and ZCoul.

factors proceeds at different scales, namely the factorisation scale, µF , and the NRQCD scale, µΛ,

respectively. In order to match the coupling expansions, we will therefore first need to evolve all

couplings to the same scale, for instance the renormalisation scale, µR. Starting from the evolution

equation for the strong coupling in d = 4− 2ǫ dimensions,

µ2 ∂αs

∂µ2
=β(αs)− ǫαs = −αs

[
∞∑

n=0

βn

(αs

4π

)n+1
]
− ǫαs , (4.2)

and using the short-hand notation α̃s = αs(µ̃) and αs = αs(µ), we can evolve the coupling from

the scale µ̃ to the scale µ in d = 4− 2ǫ dimensions with

α̃s = αs

(
µ2

µ̃2

)ǫ [
1 +

αs

π

β0
4ǫ

((
µ2

µ̃2

)ǫ

− 1

)]
+O

(
α3
s

)
. (4.3)

Expanding eq. (4.1) in powers of α
(nl)
s and using the scale evolution of the couplings in eq. (4.3),

we then find that

Ffin
p,c =

(
α
(nl)
s

π

)q {
1 +

(
α
(nl)
s

π

)[
F (1)

p,c −
(
µ2
R

µ2
F

)ǫ

Z
(1)
IR

]

+

(
α
(nl)
s

π

)2 [
F (2)

p,c −
(
µ2
R

µ2
F

)ǫ

Z
(1)
IR

(
F (1)

p,c +
β0
4ǫ

((
µ2
R

µ2
F

)ǫ

− 1

))

−
(
µ2
R

µ2
F

)2ǫ (
Z
(2)
IR −

(
Z
(1)
IR

)2)
−
(
µ2
R

µ2
Λ

)2ǫ

Z
(2)
Coul.

]}

+O
(
αq+3
s

)
,

(4.4)

where the quantities Z
(i)
κ correspond to the coefficients of Zκ expanded around the coupling at the

respective scales, µF and µΛ. In addition, we used the fact that Z
(1)
Coul. = 0 [18, 19, 54].

In this section we will discuss how to determine the Z
(i)
κ . While some of the ingredients were

known in the literature, some are obtained here for the first time. We will generically label all scales

with µ, however, it is implicitly understood that µ = µF when discussing ZIR and µ = µΛ when

discussing ZCoul..
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4.1 General structure of IR singularities

Let us first focus on ZIR, which describes the infrared structure of loop amplitudes in QCD [55–59].

It satisfies the evolution equation
d

d logµ
ZIR = −ΓZIR , (4.5)

where the soft anomalous dimension Γ is a matrix in colour space which admits the perturbative

expansion

Γ =

∞∑

k=0

Γk

(
α
(nl)
s

π

)k+1

. (4.6)

Solving eq. (4.5) order by order in α
(nl)
s , we can express ZIR as

ZIR =1 +

(
α
(nl)
s

π

)[
Γ
′
0

4ǫ2
+

Γ0

2ǫ

]

+

(
α
(nl)
s

π

)2 [
(Γ′

0)
2

32ǫ4
+

Γ
′
0

8ǫ3

(
Γ0 −

3

8
β0

)
+

Γ0

8ǫ2

(
Γ0 −

1

2
β0

)
+

Γ
′
1

16ǫ2
+

Γ1

4ǫ

]

+O
(
α3
s

)
,

(4.7)

where we defined

Γ
′ =

∂

∂ logµ
Γ . (4.8)

The explicit form of the soft anomalous dimension matrix Γ, and therefore of the operator ZIR, is

known up to two-loop order [56–59]:

Γ =
∑

(i,j)

Ti ·Tj

2
γcusp log

(
µ2

−sij

)
+
∑

i

γi

−
∑

(I,J)

TI ·TJ

2
γcusp(βIJ) +

∑

I

γI +
∑

I,j

TI ·Tjγcusp log

(
mIµ

−sIj

)

+
∑

(I,J,K)

ifabc
T

a
IT

b
JT

c
KF1(βIJ , βJK , βKI)

+
∑

(I,J)

∑

k

ifabc
T

a
IT

b
JT

c
kf2

(
βIJ , log

(−σJkvJ · pk
−σIkvI · pk

))
+O

(
α3
s

)
,

(4.9)

and

Γ
′ = −γcusp

∑

i

T
2
i . (4.10)

The sums in eq. (4.9) run over colourful initial- and final-state partons, and when summing over

several parton indices we take them to be distinct (that is, for instance, i 6= j in the first term of

the first line). The lowercase indices i stand for massless partons and the uppercase indices I for

massive ones, which in particular implies that the third line in eq. (4.9) does not contribute in our

case as there are only two massive quark legs. The T
a
i are the generators of the Lie algebra of the

gauge group SU(Nc) in the representation of parton i. Specifically, we distinguish three different

cases. When the parton i is a gluon, we have (Ta
i )bc = −ifabc. In the case of an initial-state quark

or final-state anti-quark we have that (Ta
i )αβ = −taβα. Finally, in the case of the emission of a gluon

from an initial-state anti-quark or final-state quark we have that (Ta
i )αβ = taαβ . These relations

equally apply to massive partons I as heavy (anti-)quarks. It should be kept in mind that the sum

over the different colours in eq. (4.9) is performed implicitly. We have the following properties

Ti ·Tj =Tj ·Ti, (4.11)
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T2
i =

{
CA if i is a gluon,

CF if i is a quark or anti-quark ,
(4.12)

and similarly for massive partons I, J . The expressions for the quark and gluon anomalous dimen-

sions γQ, γg and for the massless cusp anomalous dimension γcusp are collected in appendix D. The

kinematical dependence in eq. (4.9) is encoded in the quantities (the indices a and b can denote

either massive or massless partons)

sab = 2σabpapb + i0+, (4.13)

with σab = +1 if both partons a and b are both incoming/outgoing and σab = −1 otherwise. The

cusp anomalous dimension depends on the angle βIJ , related to the invariants sIJ by coshβIJ =

−sIJ/ (2mImJ ), and vI is defined as pI/mI .

Equation (4.9) is the general expression for the soft anomalous dimension for any number of

external legs up to two loops in full QCD. In our case we can simplify this expression further. First

we note that, as already mentioned, the third line does not contribute, and neither does the fourth

line. Second, the kinematical variables only depend on the mass of the partons and are the same

for all form factors, that is

sij = 4m2
Q + i0+ , sIJ = 2m2

Q + i0+ , sIj = −2m2
Q + i0+ , (4.14)

yielding

log

(
µ2

−sij

)
= lµ − 2 log 2 + iπ, log

(
mIµ

−sIj

)
=

1

2
lµ − log 2 . (4.15)

We can then write

Γ =
∑

(i,j)

Ti ·Tj

2
γcusp (lµ − 2 log 2 + iπ) +

∑

i

γi

−TQ ·TQ γcusp

(
βQQ

)
+ 2γQ + (TQ +TQ) ·

∑

i

Ti γcusp

(
1

2
lµ − log 2

)

=
∑

(i,j)

Ti ·Tj

2
γcusp (lµ − 2 log 2 + iπ) +

∑

i

γi

− 1

2
T

2
Qγcusp

(
βQQ

)
+ 2γQ +

1

2
(T2

Q +T
2
Q
) γcusp

(
βQQ

)
−T

2
Qγcusp

(
1

2
lµ − log 2

)
,

(4.16)

where in the last line we introduced the total colour charge TQ = TQ + TQ = −
∑

i Ti of the

quarkonium bound state. We have that

T2
Q =

{
0 if Q is in colour-singlet state [1] ,

CA if Q is in colour-octet state [8] .
(4.17)

At this point we have to address two issues: First, we see that eq. (4.16) depends explicitly

on the colour charges T
2
Q and T

2
Q

of the constituent quarks. However, from colour coherence we

expect that the structure of the IR divergences is such that the soft gluons do not resolve the short-

distance physics, in this case the individual constituent quarks. Instead, the IR structure should

only depend on the colour charge T
2
Q of the quarkonium bound state. Second, and more strikingly,

we work in a NRQCD framework where the heavy quarks are produced at threshold at zero relative

velocity, v = 0. The velocity v is related to the cusp angle βQQ through

βQQ = −iπ + log
1 + v

1− v
. (4.18)
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Expanding the cusp anomalous dimension around v = 0, we find

γcusp(βIJ) =− iπ

2v


α

(nl)
s

π
−
(
α
(nl)
s

π

)2

CA

(
1− π2

12

)
− 2γ̂Q +O

(
α3
s, v

1
)
, (4.19)

where γ̂Q = 1
CF
γQ is the heavy-quark anomalous dimension with the Casimir scaled out. We see

that the cusp anomalous dimension diverges at v = 0, which corresponds to the Coulomb singularity

of the amplitude. In our NRQCD framework, we put v = 0 at the integrand level, and the Coulomb

divergence manifests itself as poles in the dimensional regulator, captured by the factor ZCoul. in

eq. (4.1). The formula for the soft anomalous dimension in eq. (4.9), however, is valid in a framework

where v is not put to zero from the start. We should therefore start from a variant of eq. (4.9) with

γcusp(βIJ) replaced by a constant γthres
cusp . In the following we argue what the correct form of the

soft anomalous dimension in our framework is, and we determine γthres
cusp through two loops.

To understand this point, let us first discuss the process γγ ↔ 1S
[1]
0 . Given that the external

particles are either photons or massive quarks, there cannot be any collinear divergences in this

channel. In addition, since the heavy quarks are in a colour-singlet state, colour-coherence implies

that there are no IR divergences. We must then have that Γ

1S
[1]
0

γγ = 0. From eq. (4.9) with

γcusp(βIJ) → γthres
cusp , however, we find that

0
!
= Γ

1S
[1]
0

γγ = CF γ
thres
cusp + 2CF γ̂

Q +O(α3
s) , (4.20)

where we used
∑

(I,J) TI ·TJ = −2T2
Q with T

2
Q = T

2
Q
= CF , and so we find

γthres
cusp =− 2γ̂Q +O

(
α3
s

)
. (4.21)

We note that eq. (4.21) is equivalent to eq. (4.19), when simply removing the poles in v, as is

customary within the NRQCD framework [17]. Inserting this relation into eq. (4.16), we find

Γ =
∑

(i,j)

Ti ·Tj

2
γcusp (lµ − 2 log 2 + iπ) +

∑

i

γi +T
2
Qγ̂

Q −T
2
Qγcusp

(
1

2
lµ − log 2

)
. (4.22)

Equation (4.22) is the soft anomalous dimension matrix that describes the IR singularities of quarko-

nium production and decay at two loops. Note in particular that eq. (4.22) only depends on the

colour charges of the massless external legs and the quarkonium bound state, as expected from

colour coherence.

4.2 Coulomb singularity

We now turn to the second type of singularities that remain in the renormalised amplitudes, namely

the Coulomb singularities that are related to the bound state of the heavy quarks and are governed

by ZCoul.. We work in the MS-scheme and we define:

ZCoul. =1 +
1

4ǫ

(
α
(nl)
s

π

)2

γp,cCoulomb +O
(
α3
s

)
, (4.23)

where γp,cCoulomb is the anomalous dimension for the Coulomb singularity. Note that a priori the

value of the anomalous dimension may depend on the channel p and the colour c. The Coulomb

singularity for the colour-singlet form factor γγ ↔ 1S
[1]
0 was already known [18, 19, 54],

γ
γγ,1S

[1]
0

Coulomb = −π2

(
C2

F +
1

2
CFCA

)
. (4.24)

– 13 –



The other anomalous dimensions have not been considered before and will be presented for the first

time in this section. We note nevertheless that the authors of ref. [20] give compelling evidence for

the fact that the Coulomb singularity in gg ↔ 1S
[1]
0 is the same as in γγ ↔ 1S

[1]
0 .

For all form factors we have considered, we find that

Z
−1
IR Fp,c =

(
α
(nl)
s

π

)2
1

4ǫ
γp,cCoulomb +O

(
ǫ0, α3

s

)
. (4.25)

For the case (p, c) = (γγ, 1S
[1]
0 ) we reproduce eq. (4.24). For (p, c) = (gg, 1S

[1]
0 ), we find the same

result as in eq. (4.24), i.e., we find that the anomalous dimension only depends on the colour, but

not on the channel:

γ
1S

[1]
0

Coulomb ≡ γ
γγ,1S

[1]
0

Coulomb = γ
gg,1S

[1]
0

Coulomb . (4.26)

This is in agreement with refs. [18, 19, 54] and confirms the observation made in ref. [20]. For the

colour-octet form factors we find

γ
1S

[8]
0

Coulomb ≡ γ
γg,1S

[8]
0

Coulomb = γ
gg,1S

[8]
0

Coulomb = −π2

(
C2

F − 1

2
CFCA

)
. (4.27)

We observe that the Coulomb singularity for the colour-octet states differs only in the sign of the

non-abelian coefficient CFCA from the colour-singlet case. We remark that in the QED limit,

CF → 1, CA → 0, TF → 1, we reproduce the Coulomb singularity encountered in the para-

positronium decay to two photons [23, 49].

To conclude, we find that all our results have the expected IR and Coulomb singularity structure.

This is a very strong check of the correctness of our results.

5 Form factors

In this section we present our results for the finite remainder of the form factors for the processes

γγ ↔ 1S
[1]
0 , gg ↔ 1S

[1]
0 , γg ↔ 1S

[8]
0 and gg ↔ 1S

[8]
0 . We write the one-loop and two-loop corrections

in the following form:

Ffin
p,c =

(
α
(nl)
s

π

)q

1 +

(
α
(nl)
s

π

)
Ffin,(1)

p,c +

(
α
(nl)
s

π

)2

Ffin,(2)
p,c


+O

(
α3
s

)
, (5.1)

where Ffin,(1)
p,c is the one-loop correction and Ffin,(2)

p,c is the two-loop correction. In the following

we will separate the terms that depend on the renormalisation scale µR, the factorisation scale µF

and the NRQCD scale µΛ from the scale-independent terms. Our results can be found in a set of

ancillary files which can be obtained from ref. [60].

At one-loop level, we can express the finite remainder as

Ffin,(1)
p,c = Ffin,(1)

p,c;reg + C(1)
µR

+ C(1)
µF
, (5.2)

where C(1)
µ encapsulates the µ-scale dependence at one-loop and is given by

C(1)
µR

=
q

4
β0 lµR

, (5.3)

C(1)
µF

=− q CA

4
l2µF

− 1

4

(
B̃ + qβ0

)
lµF

, (5.4)

where, for convenience, we have defined the quantity

B̃ = −4 q CA log 2 +T
2
Q − iπ

(
T

2
Q − 2 q CA

)
, (5.5)
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and q is defined below eq. (2.13).

The situation is more involved at two loops. We can express Ffin,(2)
p,c in terms of their different

contributions as

Ffin,(2)
p,c =Ffin,(2)

p,c;reg + Ffin,(2)
p,c;lbl + Ffin,(2)

p,c;vac + Ffin,(1)
p,c;reg

(
D(1)

µR
+ C(1)

µF

)

+ C(2)
µR

+ C(2)
µF

+ C(2)
µΛ

+D(1)
µR

C(1)
µF
,

(5.6)

where the scale-dependent terms are given by

D(1)
µR

=
1

4
(1 + q)β0 lµR

, (5.7)

C(2)
µR

=
1

32
q (1 + q)β2

0 l
2
µR

+
1

16
q β1 lµR

, (5.8)

C(2)
µF

=
1

32
q2C2

A l
4
µF

+
1

16
q CA

(
B̃ +

1

3
(2 + 3q)β0

)
l3µF

+
1

32

(
B̃2 + q (1 + q)β2

0 + (1 + 2q)β0 B̃ − 8q CA γ
(1)
cusp

)
l2µF

+

(
γ(1)cusp

(
q CA log 2 +

1

4
iπ
(
T

2
Q − 2 q CA

))
+

1

2
T

2
Q γ̂

Q,(1) + q γg,(1)
)
lµF

,

(5.9)

C(2)
µΛ

=
1

2
γCoulomb lµΛ . (5.10)

The expressions for γ
(1)
cusp, γg,(1) and γ̂Q,(1) refer to the coefficients of the O

(
α2
s

)
terms given in

appendix D.

In eq. (5.6), Ffin,(2)
p,c;reg is the regular contribution, while Ffin,(2)

p,c;lbl represents the light-by-light contri-

butions and Ffin,(2)
p,c;vac is the contribution due to vacuum polarisation diagrams. These contributions

can be further decomposed as

Ffin,(2)
p,c;reg =C2

F a
(2)
p,c;FF + CFCA a

(2)
p,c;FA + C2

A a
(2)
p,c;AA , (5.11)

Ffin,(2)
p,c;lbl =CFTFnh b

(2)
p,c;Fh + CFTF ñl b

(2)
p,c;Fl + CATFnh b

(2)
p,c;Ah + CATF ñl b

(2)
p,c;Al , (5.12)

Ffin,(2)
p,c;vac =CFTFnh c

(2)
p,c;Fh + CFTFnl c

(2)
p,c;Fl + CATFnh c

(2)
p,c;Ah + CATFnl c

(2)
p,c;Al . (5.13)

The definition to the quantity ñl can be found in eq. (3.14). The purely abelian contributions at

one-loop and two-loop level for the regular and vacuum polarisation corrections are identical for

all form factors considered, which is a strong check of the calculation. As mentioned earlier, the

abelian contribution for the light-by-light contributions depends on the colour state of the bound

state, but is independent of the initial-state partons. Its value differs only by a factor of two between

colour-singlet and colour-octet states and comes from the different colour algebra. Similarly, for the

non-abelian light-by-light contributions, we can reconstruct the contributions to the colour-octet

form factors using the results obtained in the colour-singlet case by simple colour algebra and we

find again full agreement, which is another strong check of the calculation.

For phenomenological applications we are interested in the hard functions obtained by squaring

the form factors we obtain in this paper. More explicitly, the hard function H is defined as

Hp,c =

∣∣∣∣∣∣

∑

i=0

(
α
(nl)
s

π

)i

Ffin,(i)
p,c

∣∣∣∣∣∣

2

,

=H(0)
p,c +

(
α
(nl)
s

π

)
H(1)

p,c +

(
α
(nl)
s

π

)2

H(2)
p,c +O

(
α3
s

)
,

(5.14)
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where we have that H(0)
p,c = 1 due to the normalisation of Ffin,(0)

p,c = 1. In the following subsections,

we present our results for H for the different channels we consider in this paper.

Before doing so, however, we close this introductory discussion by noting that by taking the

QED limit, CF → 1, CA → 0, TF → 1, of a colour-singlet form factor, and setting nl = 0 we

reproduce the form factor of the para-positronium decay into two photons [49] which we have

already presented in our companion paper [23]. The form factors can also be used to describe the

para-muonium and para-tauonium decay into two photons up to NNLO accuracy. In this case, one

again takes the QED limit but now retains the nl term. Indeed, in addition to the light fermions

(e for muonium and e, µ for tauonium), one now also has to take into account light quarks and

their relative charge. We will denote generically the relative charge of leptons and quarks that

form the bound state as ef . If we wish to compute the NNLO QED corrections to quarkonium or

leptonium decay into two photons, we would need to make the following replacements αs → e2fαem,

ñl → nlbl,QED
l , nl → nvac,QED

l , with

nlbl,QED
l =

nl∑

i

e4i /e
4
f , nvac,QED

l =

nl∑

i

e2i /e
2
f . (5.15)

For the leptonium bound states, one would consider also the non-perturbative effects from the

bound state, including the removal of the Coulomb singularity, similarly to what was done for the

para-positronium case in refs. [23, 49].

5.1 Form factor coefficients

In this subsection we present the set of independent coefficients that appear in the different form

factors. Since the analytical expressions are rather lengthy, we have collected the complete analytical

expressions for all coefficients expressible in terms of multiple polylogarithms, elliptic multiple

polylogarithms and iterated integrals of Eisenstein series in appendix E and in a set of ancillary

files that can be obtained from ref. [60]. We also have available high-precision numerical evaluations

up to more than 1000 digits. In the following, we will show only the first 20 digits of the numerical

evaluations.

For the one-loop coefficients, we define the following coefficients,

a
(1)
1 =

π2

8
− 5

2
= −1.2662994498638301726, (5.16)

a
(1)
2 =

π2

6
+

1

2
− log2 2 + iπ log 2 = 1.66448105293002501181+ i 2.17758609030360213050, (5.17)

a
(1)
3 =

π2

48
+

3

4
+

1

2
log 2− 1

2
log2 2 = 1.0619638416769002469. (5.18)

At two-loop level, we define

a
(2)
1 =a

(2)
γγ,[1];FF = −21.10789796731067145661, (5.19)

a
(2)
2 =a

(2)
γγ,[1];FA = −4.79298000108431445013, (5.20)

a
(2)
3 =a

(2)
gg,[1];FA = −1.63396444740133643183− i 2.75747606818258018891, (5.21)

a
(2)
4 =a

(2)
γg,[8];FA = 11.4964197929416576889, (5.22)

a
(2)
5 =a

(2)
gg,[1];AA = −4.16141057462231200330+ i 12.74963942099565970837, (5.23)

a
(2)
6 =a

(2)
γg,[8];AA = 1.1674088877410300338, (5.24)

a
(2)
7 =a

(2)
gg,[8];AA = −0.47052470943276749673+ i 3.76949207800965060010, (5.25)
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b
(2)
1 =b

(2)
γγ,[1];Fh = 0.64696557211233073992+ i 2.07357555846158085167, (5.26)

b
(2)
2 =b

(2)
γγ,[1];Fl = 0.73128459201956765416− i 1.79084590261634204461, (5.27)

b
(2)
3 =b

(2)
gg,[1];Ah = 0.17355457403625922073+ i 0.27096443988081661998, (5.28)

b
(2)
4 =b

(2)
gg,[1];Al = −0.27562418279938901511+ i 0.56534858757600288424, (5.29)

c
(2)
1 =c

(2)
γγ,[1];Fh = 0.22367201327357266787, (5.30)

c
(2)
2 =c

(2)
γγ,[1];Fl = −0.56481511444874563705, (5.31)

c
(2)
3 =c

(2)
gg,[1];Ah = −0.19435982593932209621− i 0.26424642484869050250, (5.32)

c
(2)
4 =c

(2)
γg,[8];Ah = −0.1068025969267476488, (5.33)

c
(2)
5 =c

(2)
gg,[1];Al = 0.20360900095614056680− i 2.96547152392125649208, (5.34)

c
(2)
6 =c

(2)
γg,[8];Al = −0.5846981879646550889. (5.35)

5.2 γγ ↔ 1S
[1]
0

For the form factor Ffin
γγ,[1], the correction at one-loop accuracy reads

Ffin,(1)
γγ,[1];reg =CF a

(1)
1 . (5.36)

At two-loop level, the individual coefficients in eqs. (5.11)-(5.13) read

a
(2)
γγ,[1];FF = a

(2)
1 , a

(2)
γγ,[1];FA = a

(2)
2 , a

(2)
γγ,[1];AA = 0,

b
(2)
γγ,[1];Fh = b

(2)
1 , b

(2)
γγ,[1];Fl = b

(2)
2 , b

(2)
γγ,[1];Ah = 0, b

(2)
γγ,[1];Al = 0, (5.37)

c
(2)
γγ,[1];Fh = c

(2)
1 , c

(2)
γγ,[1];Fl = c

(2)
2 , c

(2)
γγ,[1];Ah = 0, c

(2)
γγ,[1];Al = 0.

As mentioned before, the coefficients for the regular and vacuum insertion contributions have been

computed in numerical form for the first time in ref. [18]. The light-by-light contribution has been

considered in ref. [19] where all coefficients have been evaluated at an improved numerical precision

of 10 digits. We find full agreement for all the coefficients presented in both references.

Using the results for this form factor, we can compute the hard function that can be used for

the decay width into two photons. We obtain

H(1)
γγ,[1] =− 3.37679853297021379372, (5.38)

H(2)
γγ,[1] =− 109.3826016955304736674− 9.2861959656680879327 lµR

− 37.2851721818931325600 lµΛ − 0.7530868192649941827nl

+ 0.5627997554950356323nl lµR
+ 0.97504612269275687222 ñl.

(5.39)

For charmonium decay, we set nl = 3 and in the bottomonium case nl = 4. The light-by-light

contributions which have been omitted in ref. [18] contain the term ñl which turns out to be quite

large for the bottomonium state

ñl =

nl∑

i

e2i
e2Q

=

{
3/2 for cc,

10 for bb.
(5.40)

5.3 gg ↔ 1S
[1]
0

In this subsection, we present for the first time the form factor Ffin
gg,[1]. The correction at one-loop

accuracy reads

Ffin,(1)
gg,[1];reg =CF a

(1)
1 + CA a

(1)
2 . (5.41)
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The two-loop coefficients read

a
(2)
gg,[1];FF = a

(2)
1 , a

(2)
gg,[1];FA = a

(2)
3 , a

(2)
gg,[1];AA = a

(2)
5 ,

b
(2)
gg,[1];Fh = b

(2)
1 , b

(2)
gg,[1];Fl = b

(2)
2 , b

(2)
gg,[1];Ah = b

(2)
3 , b

(2)
gg,[1];Al = b

(2)
4 , (5.42)

c
(2)
gg,[1];Fh = c

(2)
1 , c

(2)
gg,[1];Fl = c

(2)
2 , c

(2)
gg,[1];Ah = c

(2)
3 , c

(2)
gg,[1];Al = c

(2)
5 .

The hard function, which can be used in collinear or Transverse-Momentum-Dependent (TMD)

factorisation, exhibits the following structure:

H(1)
gg,[1] =6.6100877846099362771+ 5.5000000000000000000 lµR

− 1.3411169166403281435 lµF
− 1.50000000000000000000 l2µF

− 0.3333333333333333333nl (lµR
− lµF

) ,

(5.43)

H(2)
gg,[1] =− 108.32872969182897851535+ 67.28322422303197428616 lµR

+ 22.6875000000000000000 l2µR
− 15.24945497092079433491 lµF

− 11.8456969740765133031 l2µF
+ 4.76167537496049221524 l3µF

+ 1.1250000000000000000 l4µF
− 11.0642145622827071838 lµR

lµF

− 12.3750000000000000000 lµR
l2µF

− 37.2851721818931325600 lµΛ

+ 0.0059137578980173446nl− 4.88837722563830147189nl lµR

− 2.7500000000000000000nl l
2
µR

+ 2.7479948883357910787nl lµF

− 0.6004653819334700598nl l
2
µF

− 0.66666666666666666667nl l
3
µF

+ 3.42055845832016407175nl lµR
lµF

+ 0.75000000000000000000nl lµR
l2µF

+ 0.08333333333333333333n2
l (lµR

− lµF
)
2
.

(5.44)

We note that the size of the coefficient multiplying the logarithm of the NRQCD scale is rather

large and has an important effect on the numerical value of the hard function.

5.4 γg ↔ 1S
[8]
0

As for the colour-octet states, we first consider the form factor Ffin
γg,[8]. At one-loop accuracy, the

correction is given by

Ffin,(1)
γg,[8];reg =CF a

(1)
1 + CA a

(1)
3 . (5.45)

At two-loop order, the coefficients read,

a
(2)
γg,[8];FF = a

(2)
1 , a

(2)
γg,[8];FA = a

(2)
4 , a

(2)
γg,[8];AA = a

(2)
6 ,

b
(2)
γg,[8];Fh = 2 b

(2)
1 , b

(2)
γg,[8];Fl = 2 b

(2)
2 , b

(2)
γg,[8];Ah = −3

4
b
(2)
1 , b

(2)
γg,[8];Al = −3

4
b
(2)
2 , (5.46)

c
(2)
γg,[8];Fh = c

(2)
1 , c

(2)
γg,[8];Fl = c

(2)
2 , c

(2)
γg,[8];Ah = c

(2)
4 , c

(2)
γg,[8];Al = c

(2)
6 .

The hard function for the colour-octet state in the channel γg takes the form

H(1)
γg,[8] =2.9949845170911876879+ 2.7500000000000000000 lµR

− 2.1705584583201640717 lµF
− 0.75000000000000000000 l2µF

− 0.16666666666666666667nl (lµR
− lµF

) ,

(5.47)
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H(2)
γg,[8] =40.4242880521358345950+ 22.84741484400153228336 lµR

+ 7.56250000000000000000 l2µR
− 14.8215925690621966374 lµF

+ 0.75699232806869328971 l2µF
+ 3.0029188437401230538 l3µF

+ 0.2812500000000000000 l4µF
− 11.93807152076090239462 lµR

lµF

− 4.1250000000000000000 lµR
l2µF

+ 2.19324542246430191530 lµΛ

− 2.5071813831589594496nl− 1.78999483903039589596nl lµR

− 0.9166666666666666667nl l
2
µR

+ 1.18814689958143744113nl lµF

− 0.5634729479133743513nl l
2
µF

− 0.20833333333333333333nl l
3
µF

+ 1.64018615277338802392nl lµR
lµF

+ 0.2500000000000000000nl lµR
l2µF

+ 0.02777777777777777778n2
l (lµR

− lµF
)
2
+ 0.30470191334148652257 ñl.

(5.48)

The variable ñl vanishes for charmonium states and takes a negative value for bottomonium states

ñl =

nl∑

i

ei
eQ

=

{
0 for cc,

−2 for bb.
(5.49)

5.5 gg ↔ 1S
[8]
0

For the second colour-octet form factor Ffin
gg,[8], the relative correction at one-loop level is

Ffin,(1)
gg,[8];reg =CF a

(1)
1 + CA

(
1

2
a
(1)
2 + a

(1)
3

)
. (5.50)

At two-loop order the coefficients read,

a
(2)
gg,[8];FF = a

(2)
1 , a

(2)
gg,[8];FA = −1

2
a
(2)
2 +

1

2
a
(2)
3 + a

(2)
4 , a

(2)
gg,[8];AA = a

(2)
7 ,

b
(2)
gg,[8];Fh = 2 b

(2)
1 , b

(2)
gg,[8];Fl = 2 b

(2)
2 ,

b
(2)
gg,[8];Ah = −3

4
b
(2)
1 +

1

2
b
(2)
3 , b

(2)
gg,[8];Al = −3

4
b
(2)
2 +

1

2
b
(2)
4 , (5.51)

c
(2)
gg,[8];Fh = c

(2)
1 , c

(2)
gg,[8];Fl = c

(2)
2 ,

c
(2)
gg,[8];Ah =

1

2
c
(2)
3 + c

(2)
4 , c

(2)
gg,[8];Al =

1

2
c
(2)
5 + c

(2)
6 .

The hard function for the second colour-octet state in the gg-channel is given by

H(1)
gg,[8] =7.9884276758812627233+ 5.5000000000000000000 lµR

− 2.8411169166403281435 lµF
− 1.50000000000000000000 l2µF

− 0.3333333333333333333 (lµR
− lµF

) ,

(5.52)
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H(2)
gg,[8] =47.92683141521562851467+ 78.6545283260204174672 lµR

+ 22.6875000000000000000 l2µR
− 34.2091378115074325464 lµF

− 8.7140314360230107571 l2µF
+ 7.01167537496049221524 l3µF

+ 1.1250000000000000000 l4µF
− 23.4392145622827071838 lµR

lµF

− 12.3750000000000000000 lµR
l2µF

+ 2.19324542246430191530 lµΛ

− 2.3105022425823455994nl− 5.5775471712739646950nl lµR

− 2.7500000000000000000nl l
2
µR

+ 3.62410818542623322740nl lµF

− 1.2254653819334700598nl l
2
µF

− 0.66666666666666666667nl l
3
µF

+ 4.1705584583201640717nl lµR
lµF

+ 0.75000000000000000000nl lµR
l2µF

+ 0.08333333333333333333n2
l (lµR

− lµF
)
2
.

(5.53)

Comparing the size of the coefficient of the NRQCD scale dependence of the colour-octet states with

the situation in the colour-singlet case, we can conclude that the hard function is not as sensitive

to the NRQCD scale as it is in the colour-singlet case.

6 Conclusions

In this paper we have computed analytically the complete two-loop QCD corrections to the form

factors relevant for ηQ production and decay. In particular, we have considered the processes

γγ ↔ 1S
[1]
0 , gg ↔ 1S

[1]
0 , γg ↔ 1S

[8]
0 , gg ↔ 1S

[8]
0 . We have also obtained high-precision numerics

up to 1000 digits for all form factors, which makes our results readily usable for phenomenological

studies. The form factors presented also allow us to consider the two-loop QED corrections to

leptonium bound states.

The form factor γγ ↔ 1S
[1]
0 has been computed before only in purely numerical form [18, 19].

Our result is in agreement with those references, which serves as a cross-check of our calculation.

The form factor gg ↔ 1S
[1]
0 is new and is the last missing ingredient for a full NNLO calculation of

ηQ hadro-production in either collinear or TMD factorisation. We also computed the form factors

to produce a pseudo-scalar state in a colour-octet configuration 1S
[8]
0 , which corresponds to higher

terms in the v-expansion of the LDME. For instance, the pseudo-scalar state 1S
[8]
0 turns out to be

one of the leading contributions to the pseudo-vector particle hQ, the other being the state 1P
[1]
1 .

It also appears in the higher terms in the v-expansion for the vector particles J/ψ and Υ.

The two-loop bare form factors can be expressed in terms of 76 master integrals, which we

have already discussed in our companion paper [23]. After UV renormalisation, the renormalised

amplitude still contains IR as well as Coulomb singularities. By imposing that the result has the

expected IR pole structure, we were able to reproduce the Coulomb singularity of the colour-singlet

state 1S
[1]
0 . This serves as a cross-check of our approach. This singularity is independent of the

initial-state particles and depends only on the bound-state colour configuration. In addition, we

obtain for the first time the Coulomb singularity for the colour-octet state 1S
[8]
0 . It differs only in

the non-abelian part from the one in the colour-singlet case.

We have presented the finite remainders for the form factors in section 5. The complete ana-

lytical expressions to the coefficients can be found in appendix E and in a set of ancillary files [60].

In addition to this, we have presented the hard function for all processes including the dependence

on the renormalisation scale µR, the factorisation scale µF and the NRQCD scale µΛ. These hard

functions can now be directly used for phenomenology, e.g., when computing the NNLO corrections

to ηQ hadro-production. We leave this for future work.
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A Bare amplitude structure

In this appendix, we give the structure of the bare amplitude for each form factor at one-loop level

up to O
(
ǫ2
)

and at two-loop level up to the finite piece O
(
ǫ0
)
. The decomposition of the bare

amplitude follows the notation in section 3.1.

For the one-loop amplitude, we furnish the analytic expressions up to O
(
ǫ1
)
, while for the

highest order term we give its numerical value. In the case of the two-loop amplitude, we provide

the analytic expressions for the pole structure, while for the finite piece we furnish the numerical

value. For convenience, we display only the first 5 digits after the decimal.

At one-loop order we have the following results for the different form factors:

γγ ↔ 1S
[1]
0 :

γγ, [1] ǫ−2 ǫ−1 ǫ0 ǫ1 ǫ2

F (1)
F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)
A 0 0 0 0 0

gg ↔ 1S
[1]
0 :

gg, [1] ǫ−2 ǫ−1 ǫ0 ǫ1 ǫ2

F (1)
F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)
A − 1

2 − iπ
2 + log 2

1
2 + 1

6π
2 +

iπ log 2− log2 2

1+iπ+ 1
8π

2+ i
8π

3−2 log 2−
7
12π

2 log 2 − iπ log2 2 +
2
3 log

3 2− 7
12ζ3

−9.59291+

i 4.79988

γg ↔ 1S
[8]
0 :

γg, [8] ǫ−2 ǫ−1 ǫ0 ǫ1 ǫ2

F (1)
F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)
A − 1

4 − 1
4 + 1

2 log 2
3
4 + 1

48π
2 +

1
2 log 2− 1

2 log
2 2

− 1
2 − 1

6π
2 − 1

2 log 2 −
1
24π

2 log 2 − 1
2 log

2 2 +
1
3 log

3 2 + 7
12ζ3

−1.12737

gg ↔ 1S
[8]
0 :

gg, [8] ǫ−2 ǫ−1 ǫ0 ǫ1 ǫ2

F (1)
F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)
A − 1

2

− iπ
4 − 1

4 +

log 2

1 + 5
48π

2 +
1
2 log 2 +
1
2 iπ log 2− log2 2

i
2π− 5

48π
2+ i

16π
3− 3

2 log 2−
1
3π

2 log 2 − 1
2 log

2 2 −
1
2 iπ log

2 2+ 2
3 log

3 2+ 7
24ζ3

−5.92383+

i 2.39994
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At two-loop level we find the following structures for the bare amplitudes:

γγ ↔ 1S
[1]
0 :

γγ, [1] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0

F (2)
FF 0 0 3

32 − 39
32 − π2

16 + 3
4 log 2 −9.58245

F (2)
FA 0 0 0 − 205

96 − π2

96 1.56657

F (2)
AA 0 0 0 0 0

F (2)
F,h;vac 0 0 − 1

8
7
8 − π2

24 −2.25015

F (2)
F,l;vac 0 0 0 17

24 − π2

24 −3.11684

F (2)
A,h;vac 0 0 0 0 0

F (2)
A,l;vac 0 0 0 0 0

F (2,0)
γγ,[1];lbl

= (0.64697 + i 2.07358)CFTFnh + (0.73128− i 1.79085)CFTF ñl

gg ↔ 1S
[1]
0 :

gg, [1] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0

F (2)
FF 0 0 3

32 − 39
32 − π2

16 + 3
4 log 2 −9.58245

F (2)
FA 0 − 3

16
7
16 − π2

16 +
3
8 log 2

− 313
96 + 5iπ

4 − 13π2

96 − iπ3

16 −
49
16 log 2− 3

8 log
2 2+ 1

8π
2 log 2−

7
8ζ3

6.32284−
i 12.72196

F (2)
AA

1
8

− 11
96 + iπ

4 −
1
2 log 2

− 139
288 − 11iπ

48 −
19π2

96 + 11
24 log 2−

iπ log 2 + log2 2

− 211
432 − 175iπ

144 + 7π2

64 − iπ3

8 +
175
72 log 2 + 11

12 iπ log 2 +
11
12π

2 log 2 − 11
12 log

2 2 +

2iπ log2 2− 4
3 log

3 2 + 17
48ζ3

3.45556+

i 24.90661

F (2)
F,h;vac 0 0 − 1

8
7
8 − π2

24 −2.25015

F (2)
F,l;vac 0 0 0 17

24 − π2

24 −3.11684

F (2)
A,h;vac 0 1

6
1
16 +

iπ
6 − 1

3 log 2 − 7
32 − π2

24 − 1
3 iπ log 2+

1
3 log

2 2
1.01362−
i 1.66960

F (2)
A,l;vac 0 1

24
5
72 +

iπ
12 − 1

6 log 2
− 17

216 + 5iπ
36 − π2

16 − 5
18 log 2 −

1
3 iπ log 2 +

1
3 log

2 2

1.41108−
i 4.80147

F (2,0)
gg,[1];lbl

= (0.64697+ i 2.07358)CFTFnh + (0.73128− i 1.79085)CFTF ñl

+ (0.17355+ i 0.27096)CATFnh + (−0.27562+ i 0.56535)CATF ñl
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γg ↔ 1S
[8]
0 :

γg, [8] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0

F (2)
FF 0 0 3

32 − 39
32 − π2

16 + 3
4 log 2 −9.58245

F (2)
FA 0 − 3

16
21
32 − π2

32 +
3
8 log 2

− 199
96 + 5π2

96 − 77
32 log 2 +

π2

16 log 2− 3
8 log

2 2− 7
16 ζ3

11.58260

F (2)
AA

1
32

1
192 − 1

8 log 2
− 223

576− 1
48 log 2+

1
4 log

2 2

25
108 + 29π2

384 + 187
144 log 2 +

1
24 log

2 2− 1
3 log

3 2− 17
96 ζ3

−0.78451

F (2)
F,h;vac 0 0 − 1

8
7
8 − π2

24 −2.25015

F (2)
F,l;vac 0 0 0 17

24 − π2

24 −3.11684

F (2)
A,h;vac 0 1

12
11
96 − 1

6 log 2 − 53
192 − 1

6 log 2 +
1
6 log

2 2 0.69685

F (2)
A,l;vac 0 1

48
11
144 − 1

12 log 2 − 59
432 − π2

96 − 11
36 log 2+

1
6 log

2 2 0.15016

F (2,0)
γg,[8];lbl

= (1.29393+ i 4.14715)CFTFnh + (1.46257− i 3.58169)CFTF ñl

+ (−0.48522− i 1.55518)CATFnh + (−0.54846+ i 1.34313)CATF ñl

gg ↔ 1S
[8]
0 :

gg, [8] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0

F (2)
FF 0 0 3

32 − 39
32 − π2

16 + 3
4 log 2 −9.58245

F (2)
FA 0 − 9

32
7
8 − π2

16 + 9
16 log 2

− 253
96 + 5iπ

8 − π2

96 − iπ3

32 −
63
16 log 2 + 1

8π
2 log 2 −

9
16 log

2 2− 7
8ζ3

13.9607−
i 6.3610

F (2)
AA

1
8

1
96 + iπ

8 −
1
2 log 2

− 235
288 − 5iπ

96 −
7π2

96 − 1
24 log 2 −

iπ
2 log 2 + log2 2

43
864 − 211iπ

288 + 29π2

192 − 3iπ3

64 +
217
72 log 2 + 5iπ

24 log 2 +
17π2

48 log 2 + 1
12 log

2 2 +

iπ log2 2− 4
3 log

3 2− 7
48ζ3

−0.80634+

i 9.46843

F (2)
F,h;vac 0 0 − 1

8
7
8 − π2

24 −2.25015

F (2)
F,l;vac 0 0 0 17

24 − π2

24 −3.11684

F (2)
A,h;vac 0 1

6
7
48 +

iπ
12 − 1

3 log 2
− 37

96 − π2

48 − 1
6 log 2− iπ

6 log 2+
1
3 log

2 2

1.20366−
i 0.83480

F (2)
A,l;vac 0 1

24
1
9 + iπ

24 − 1
6 log 2

− 19
108 + 5iπ

72 − π2

24 − 4
9 log 2 −

iπ
6 log 2 + 1

3 log
2 2

0.85570−
i 2.40073

F (2,0)
gg,[8];lbl

= (1.29393+ i 4.14715)CFTFnh + (1.46257− i 3.58169)CFTF ñl

+ (−0.39845− i 1.41970)CATFnh + (−0.68628+ i 1.62581)CATF ñl
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B Renormalised amplitude structure

In this appendix, we give the structure of the renormalised amplitude for each form factor at one-

loop level up to O
(
ǫ2
)

and at two-loop level up to the finite piece O
(
ǫ0
)
. We proceed in a similar

fashion as done in appendix A. The decomposition follows the notation in section 3.2. From the

finite piece on, we give for convenience the coefficients evaluated at the scale µ = mQ.

At one-loop order, we have the following results for the different form factors:

γγ, [1] ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

ǫ1
∣∣
µ=mQ

ǫ2
∣∣
µ=mQ

F (1)

F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)

A 0 0 0 0 0

F (1)

l 0 0 0 0 0

gg, [1] ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

ǫ1
∣∣
µ=mQ

ǫ2
∣∣
µ=mQ

F (1)

F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)

A − 1
2

− iπ
2 +log 2−

11
12 − 1

2 lµ

1
2 + 1

6π
2 +

iπ log 2− log2 2

1+iπ+ 1
8π

2+ i
8π

3−2 log 2−
7
12π

2 log 2 − iπ log2 2 +
2
3 log

3 2− 7
12ζ3

−9.59291+

i 4.79988

F (1)

l 0 1
3 0 0 0

γg, [8] ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

ǫ1
∣∣
µ=mQ

ǫ2
∣∣
µ=mQ

F (1)

F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)

A − 1
4

− 17
24 +

1
2 log 2− 1

4 lµ

3
4 + 1

48π
2 +

1
2 log 2− 1

2 log
2 2

− 1
2 − 1

6π
2 − 1

2 log 2 −
1
24π

2 log 2 − 1
2 log

2 2 +
1
3 log

3 2 + 7
12ζ3

−1.12737

F (1)

l 0 1
6 0 0 0

gg, [8] ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

ǫ1
∣∣
µ=mQ

ǫ2
∣∣
µ=mQ

F (1)

F 0 0 π2

8 − 5
2 −1 + 1

4π
2 + 4 log 2 + 7

4ζ3 5.52395

F (1)

A − 1
2

− iπ
4 − 7

6 +

log 2− 1
2 lµ

1 + 5
48π

2 +
1
2 log 2 +
1
2 iπ log 2− log2 2

i
2π− 5

48π
2+ i

16π
3− 3

2 log 2−
1
3π

2 log 2 − 1
2 log

2 2 −
1
2 iπ log

2 2+ 2
3 log

3 2+ 7
24ζ3

−5.92383+

i 2.39994

F (1)

l 0 1
3 0 0 0
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Similarly, at two-loop order we find the following structure for renormalised amplitudes. Since

the light-by-light contributions are finite in four dimensions, we have that F (2,0)

p,c;lbl = F (2,0)
p,c;lbl and the

corresponding values can be found in appendix A.

γγ, [1] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

F (2)

FF 0 0 0 −π2

4 −21.10790

F (2)

FA 0 0 0 −π2

8 −4.79298

F (2)

AA 0 0 0 0 0

F (2)

F,h;vac 0 0 0 0 0.22367

F (2)

F,l;vac 0 0 0 0 −0.56482

F (2)

A,h;vac 0 0 0 0 0

F (2)

A,l;vac 0 0 0 0 0

F (2)

l,l;vac 0 0 0 0 0

gg, [1] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

F (2)

FF 0 0 0 −π2

4 −21.10790

F (2)

FA 0 0 5
4 − π2

16

67
24+

5iπ
4 − 35π2

96 − iπ3

16 − 9
2 log 2+

1
8π

2 log 2 + 5
2 lµ − π2

8 lµ − 7
8ζ3

−5.81386−
i 12.72196

F (2)

AA
1
8

77
96 + iπ

4 −
1
2 log 2 +

1
4 lµ

103
288 + 11iπ

16 −
19π2

96 − 11
8 log 2−

iπ log 2+log2 2+
11
16 lµ + iπ

2 lµ −
log 2 lµ + 1

4 l
2
µ

− 95
54 − 175iπ

144 − 113π2

576 −
iπ3

8 + 175
72 log 2 − 11

12 iπ log 2 +
11
12π

2 log 2 + 11
12 log

2 2 +

2iπ log2 2− 4
3 log

3 2− 139
144 lµ +

11
24 iπlµ− 19

48π
2lµ− 11

12 log 2lµ−
2iπ log 2lµ+2 log2 2lµ+

11
48 l

2
µ+

iπ
2 l

2
µ − log 2l2µ + 1

6 l
3
µ + 17

48ζ3

10.09665+

i 14.80863

F (2)

F,h;vac 0 0 0 0 0.22367

F (2)

F,l;vac 0 0 0 − 17
24 + π2

24 1.54971

F (2)

A,h;vac 0 0 0 0
−0.19436−
i 0.26425

F (2)

A,l;vac 0 − 7
24

− 13
24 − iπ

4 +
1
2 log 2− 1

4 lµ

25
54 + 5iπ

36 + 7π2

144 − 5
18 log 2 +

1
3 iπ log 2 − 1

3 log
2 2 + 5

36 lµ −
iπ
6 lµ + 1

3 log 2lµ − 1
12 l

2
µ

−1.00386−
i 1.12947

F (2)

l,l;vac 0 0 1
9 0 0
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γg, [8] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

F (2)

FF 0 0 0 −π2

4 −21.10790

F (2)

FA 0 0 5
8 − π2

32

97
48 − 5π2

192 − 9
4 log 2+

π2

16 log 2+
5
4 lµ − π2

16 lµ − 7
16ζ3

7.82058

F (2)

AA
1
32

67
192 −
1
8 log 2+

1
16 lµ

313
1152 − 17

24 log 2+
1
4 log

2 2+ 17
48 lµ −

1
4 log 2lµ + 1

16 l
2
µ

− 211
216 + 3π2

64 + 11
18 log 2 +

35
48 log

2 2 − 1
3 log

3 2 − 31
72 lµ −

35
48 log 2lµ + 1

2 log
2 2lµ +

35
192 l

2
µ− 1

4 log 2l
2
µ+

1
24 l

3
µ− 17

96 ζ3

2.24678

F (2)

F,h;vac 0 0 0 0 0.22367

F (2)

F,l;vac 0 0 0 − 17
48 + π2

48 0.49245

F (2)

A,h;vac 0 0 0 0 −0.10680

F (2)

A,l;vac 0 − 5
48

− 5
18 + 1

6 log 2 −
1
12 lµ

37
108 − 1

18 log 2 − 1
12 log

2 2 +
1
36 lµ + 1

12 log 2lµ − 1
48 l

2
µ

−0.95213

F (2)

l,l;vac 0 0 1
24 0 0

gg, [8] ǫ−4 ǫ−3 ǫ−2 ǫ−1 ǫ0
∣∣
µ=mQ

F (2)

FF 0 0 0 −π2

4 −21.10790

F (2)

FA 0 0 5
4 − π2

16

41
12+

5iπ
8 − 7π2

48 − iπ3

32 − 9
2 log 2+

1
8π

2 log 2+ 5
2 lµ − 1

8π
2lµ − 7

8ζ3

7.31014−
i 6.36098

F (2)

AA
1
8

89
96 + iπ

8 −
1
2 log 2 +

1
4 lµ

139
288 + 13iπ

32 −
7π2

96 − 15
8 log 2 −

iπ
2 log 2+log2 2+
15
16 lµ + iπ

4 lµ −
log 2 lµ + 1

4 l
2
µ

− 1847
864 − 211iπ

288 − 23π2

576 −
3iπ3

64 + 151
72 log 2 − 17iπ

24 log 2 +
17π2

48 log 2 + 23
12 log

2 2 +

iπ log2 2 − 4
3 log

3 2 − 169
144 lµ +

17iπ
48 lµ − 7

48π
2lµ − 23

12 log 2lµ −
iπ log 2lµ+2 log2 2lµ+

23
48 l

2
µ +

iπ
4 l

2
µ − log 2l2µ + 1

6 l
3
µ − 7

48ζ3

6.55592+

i 4.41944

F (2)

F,h;vac 0 0 0 0 0.22367

F (2)

F,l;vac 0 0 0 − 17
24 + π2

24 1.54971

F (2)

A,h;vac 0 0 0 0
−0.20398−
i 0.13212

F (2)

A,l;vac 0 − 7
24

− 2
3 − iπ

8 +
1
2 log 2− 1

4 lµ

151
216 + 5iπ

72 + π2

36 − 1
9 log 2 +

iπ
6 log 2 − 1

3 log
2 2 + 1

18 lµ −
iπ
12 lµ + 1

3 log 2lµ − 1
12 l

2
µ

−1.82149−
i 0.56474

F (2)

l,l;vac 0 0 1
9 0 0
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C Renormalisation coefficients

In this appendix, we give the expressions for the renormalisation coefficients Z used to remove

the UV singularities. We apply for the gluon wavefunction Zg, the heavy-quark wavefunction

ZQ and for the renormalisation of the heavy-quark mass Zm the on-shell renormalisation scheme,

while for the coupling renormalisation Zαs
we adopt the MS-scheme [61–64]. In the following, the

expansion in the strong coupling involves the coupling with nf = nl + nh flavours. In order to get

to the conventional coupling where only nl massless flavours are absorbed, we need to apply the

decoupling relation given in ref. [50], which reads:

α
(nf )
s = ζαs

α(nl)
s , (C.1)

with

ζαs
=1 +

(
α
(nl)
s

π

)
TFnh

[
1

3
lµ +

1

6
ǫl2µ +

π2

36
ǫ+

1

18
ǫ2l3µ +

π2

36
ǫ2lµ − 1

9
ǫ2ζ3

]

+

(
α
(nl)
s

π

)2

TFnh

[
1

9
TFnhl

2
µ + CF

(
15

16
+

1

4
lµ

)
+ CA

(
−2

9
+

5

12
lµ

)]
+O

(
α3
s

)
. (C.2)

The renormalisation factors read

Zg =1 +

(
α
(nf )
s

π

)
TFnh

[
− 1

3ǫ
− 1

3
lµ − 1

6
ǫl2µ − π2

36
ǫ− 1

18
ǫ2l3µ − π2

36
ǫ2lµ +

1

9
ǫ2ζ3

]

+

(
α
(nf )
s

π

)2

TFnh

[
TFnh

(
1

9ǫ
lµ +

1

6
l2µ +

π2

108

)
+ TFnl

(
− 1

9ǫ2
− 1

9ǫ
lµ − 1

18
l2µ − π2

108

)

+CF

(
− 1

8ǫ
− 1

4
lµ − 15

16

)
+ CA

(
35

144ǫ2
+

13

72
lµ − 5

32ǫ
− 5

16
lµ +

1

36
l2µ +

13

192
+

13π2

864

)]

+O
(
α3
s

)
, (C.3)

ZQ =1 +

(
α
(nf )
s

π

)
CF

[
− 3

4ǫ
− 1− 3

4
lµ − 2ǫ− ǫlµ − 3

8
ǫl2µ − π2

16
ǫ − 4ǫ2 − 2ǫ2lµ − 1

2
ǫ2l2µ − 1

8
ǫ2l3µ

−π
2

12
ǫ2 − π2

16
ǫ2lµ +

1

4
ǫ2ζ3

]
+

(
α
(nf )
s

π

)2

CF

[
TFnh

(
1

16ǫ
+

1

4ǫ
lµ +

947

288
+

11

24
lµ +

3

8
l2µ − 5π2

16

)

+TFnl

(
− 1

8ǫ2
+

11

48ǫ
+

113

96
+

19

24
lµ +

1

8
l2µ +

π2

12

)
+ CF

(
9

32ǫ2
+

51

64ǫ
+

9

16ǫ
lµ +

433

128

+
51

32
lµ +

9

16
l2µ − 49π2

64
+ π2 log 2− 3

2
ζ3

)
+ CA

(
11

32ǫ2
− 127

192ǫ
− 1705

384
− 215

96
lµ − 11

32
l2µ

+
5π2

16
− 1

2
π2 log 2 +

3

4
ζ3

)]
+O

(
α3
s

)
, (C.4)

Zm =1 +

(
α
(nf )
s

π

)
CF

[
− 3

4ǫ
− 1− 3

4
lµ − 2ǫ− ǫlµ − 3

8
ǫl2µ − π2

16
ǫ − 4ǫ2 − 2ǫ2lµ − 1

2
ǫ2l2µ − 1

8
ǫ2l3µ

−π
2

12
ǫ2 − π2

16
ǫ2lµ +

1

4
ǫ2ζ3

]
+

(
α
(nf )
s

π

)2

CF

[
TFnh

(
− 1

8ǫ2
+

5

48ǫ
+

143

96
+

13

24
lµ +

1

8
l2µ − π2

6

)

+ TFnl

(
− 1

8ǫ2
+

5

48ǫ
+

71

96
+

13

24
lµ +

1

8
l2µ +

π2

12

)
+ CF

(
9

32ǫ2
+

45

64ǫ
+

9

16ǫ
lµ +

199

128
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+
45

32
lµ +

9

16
l2µ − 17π2

64
+

1

2
π2 log 2− 3

4
ζ3

)
+ CA

(
11

32ǫ2
− 97

192ǫ
− 1111

384
− 185

96
lµ − 11

32
l2µ

+
π2

12
− 1

4
π2 log 2 +

3

8
ζ3

)]
+O

(
α3
s

)
, (C.5)

Zαs
=1−

(
α
(nf )
s

π

)
β0
4ǫ

+

(
α
(nf )
s

π

)2(
β2
0

16ǫ2
− β1

32ǫ

)
+O

(
α3
s

)
, (C.6)

with

β0 =
11

3
CA − 4

3
TFnf , β1 =

34

3
C2

A − 20

3
CATFnf − 4CFTFnf . (C.7)

D IR singularities

In this appendix, we give the coefficients that appear in the anomalous dimension matrix Γ which

is needed to construct the IR singularity structure ZIR for the amplitude. The expansion in the

coupling is done with nl light flavours inside the running. Apart from the coefficient γthres
cusp , which we

have computed in the main text, the remaining coefficients have been computed in refs. [57, 58, 65–

69]. The coefficients read

γcusp =

(
α
(nl)
s

π

)
+

(
α
(nl)
s

π

)2 [
CA

(
67

36
− π2

12

)
− 5

9
TFnl

]
+O

(
α3
s

)
, (D.1)

γg =−
(
α
(nl)
s

π

)
β0
4

+

(
α
(nl)
s

π

)2 [
C2

A

(
−173

108
+

11π2

288
+

1

8
ζ3

)

+CATFnl

(
16

27
− π2

72

)
+

1

4
CFTFnl

]
+O

(
α3
s

)
, (D.2)

γQ =−
(
α
(nl)
s

π

)
CF

2
+

(
α
(nl)
s

π

)2
CF

4

[
CA

(
−49

18
+
π2

6
− ζ3

)
+

10
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E Form factors: analytic expressions

In this appendix, we collect the analytical expressions for the individual coefficients in the form-

factor decomposition defined in section 5. We also make them available in electronic form in ref. [60].

These coefficients can be expressed in terms of master integrals that we have computed in our

companion paper [23]. In the case where these are expressible in terms of multiple polylogarithms,

we will write them out explicitly. For the integrals that involve functions in the class of elliptic

multiple polylogarithms and iterated integrals of modular forms, as these are rather lengthy, we

will keep the master integral notation. The master integrals will be expanded in the dimensional

regulator ǫ as done in our companion paper [23]

FI =
∑

k

ǫkF
(k)
I . (E.1)

The complete analytical expressions for the F
(k)
I terms can be found in ref. [70].

In the following we define some non-trivial constants that appear in the coefficients and that

have not yet been defined previously in our companion paper [23]. The Catalan constant C is

defined as

C =

∞∑

n=0

(−1)
n

(2n+ 1)2
= 0.915966 . . . , (E.2)
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whereas the polygamma function ψm(z) is given by

ψm(z) =
dm+1

dzm+1
log (Γ(z)) (E.3)

with Γ(z) being the gamma function. The function HPLI (0,−,+,−) can be expressed in terms of

multiple polylogarithms as

HPLI (0,−,+,−) =G(0,−1,−1,−1; i)+G(0,−1,−1, 1; i)−G(0,−1, 1,−1; i)

−G(0,−1, 1, 1; i) +G(0, 1,−1,−1; i) +G(0, 1,−1, 1; i)

−G(0, 1, 1,−1; i)−G(0, 1, 1, 1; i).

(E.4)

Having defined the constants above, we now turn to the individual form-factor coefficients.

We first collect the coefficients a
(2)
i needed for the regular contributions,
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We now collect the coefficients b
(2)
i needed for the light-by-light contributions,
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In the following, we list the c
(2)
i coefficients needed for the vaccuum polarisation contributions,
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