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ABSTRACT: We present the analytic expressions for the two-loop form factors for the production
or decay of pseudo-scalar quarkonia, in a scheme where the quarks are produced at threshold.
We consider the two-loop amplitude for the process vy <+ 1S([)1], that was previously known only
numerically, as well as for the processes gg <> 1S([)1], vg 1S([,8] and gg < 18([)8}, which have not
been computed before. The two-loop corrections to gg <> 15’%1} are the last missing ingredients
for a full NNLO calculation of 7g hadro-production. We discuss how the singularity structure of
the amplitudes is affected by the threshold kinematics, which in particular introduces Coulomb
singularities. In this context, we first show how the usual structure of the infrared singularities
degenerates at threshold kinematics, and then extract the anomalous dimensions governing the
Coulomb singularities for colour-singlet and octet channels, the latter being presented here for the
first time. We give high-precision numerical results for the hard functions, which can be used for
phenomenological studies of g production and decay at NNLO.
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1 Introduction

The high-luminosity program of the Large Hadron Collider (LHC), which will take place during the
second part of this decade, will enable us to study the fundamental interactions among particles at
an unprecedented level of precision and to measure a large number of physical observables at the
percent level. A lot of effort has to be put into improving theoretical predictions to reach this level
of precision in order to make the most of the LHC physics program.

The production and decay of quarkonium bound states play an important role within the context
of this program. Indeed, quarkonium physics can be used as a probe to study several aspects of
QCD, such as the interplay between the perturbative and non-perturbative regimes of QCD [1-5]
or the analysis of the gluon Parton Distribution Function (PDF) of the proton [6-10]. Specifically,
charmonium production can be used to set constraints on the PDFs at energy scales on the order
of the charm quark mass. Quarkonium physics also provides a way to test the convergence of the



perturbative expansion in QCD, since the strong coupling «y is not so small at the relevant energy
scales (see for instance refs. [10, 11]).

In this paper we focus on the production and decay of a pseudo-scalar quarkonium state ng,
which is a bound state of a quark-antiquark pair QQ, where the massive quark @ can be either a ¢ or
b quark. The state-of-the-art for this process are next-to-leading order (NLO) QCD corrections [12—
15]. An interesting feature of NLO corrections to pseudo-scalar quarkonium hadro-production is
the appearance of negative cross sections, whose origin can be traced back to an over-subtraction
of the initial-state collinear divergences inside the PDFs in the MS-scheme [10]. While it is possible
to devise a prescription of how to avoid the appearance of negative cross sections at NLO [10, 16],
most likely only a complete next-to-next-to-leading order (NNLO) computation can provide reliable
phenomenological predictions for this process. The NNLO corrections require the knowledge of the
two-loop contributions for the production of a quarkonium state, which are currently unavailable
in the literature.

One of the main goals of this paper is to close this gap and to present for the first time the
two-loop QCD corrections to the amplitudes for both colour-singlet and colour-octet configurations,
in the channels v, vg and gg. More precisely, we will consider the processes vy > 1S([)1], gg <
15([)1], vg 1S([)8} and gg < 15([)8]. The computation is carried out within the framework of Non-
Relativistic QCD (NRQCD) [17], where the production mechanism of the quarkonium state assumes
the factorisation into a perturbative part, which describes the high-energy physics of the process,
and a non-perturbative part, which takes into account the low-energy physics. While the two-loop
corrections to the decay of the colour-singlet state into two photons have already been calculated
numerically [18, 19], the corrections to the other three processes have not been calculated before and
are presented here for the first time.! Moreover, the two-loop QCD corrections to the colour-singlet
configuration in the gg channel are the last missing ingredients for a full NNLO computation for
pseudo-scalar quarkonium hadro-production.

The computation of these processes is performed by decomposing the amplitudes into form
factors. Using Integration-By-Parts (IBP) identities [21, 22], the form factors can be written in
terms of a basis of scalar Feynman integrals, the so-called master integrals. The evaluation of the set
of master integrals required for these amplitudes was discussed in ref. [23], where we provided both
analytic results and high-precision numerical evaluations. Here we simply note that these integrals
involve multiple polylogarithms (MPLs) [24] but also elliptic multiple polylogarithms (eMPLs) [25—
27] (and the related iterated integrals of Eisenstein series [28, 29]). While MPLs are well understood
and their analytic manipulation and numerical evaluation is under good control, the same is not
true for their elliptic generalisation. In particular, the high-precision numerical evaluations of the
integrals involving elliptic functions are not obtained from their analytic representations, but rather
by numerically solving the differential equations they satisfy with tools such as AMFlow [30-32] and
diffexp [33].

The paper is structured as follows. In section 2 we present the general setup of the computation
and we discuss the decomposition of the amplitudes in terms of form factors. Section 3 is dedicated
to the description of the general structure of the bare form factors and the UV renormalisation
procedure. In section 4 we analyse the IR pole structure, including the Coulomb singularities.
Finally, in section 5 we present our results for the finite remainder of the form factors for the
different processes. Our conclusions and outlook are given in section 6.

IThe hadronic decay width of nq has been computed up to NNLO in pure numerical form in ref. [20] using the
optical theorem and transforming phase-space integrations into loop integrals. The results for the two-loop virtual
contributions have, however, not been given, so the results presented in that reference cannot be used for NNLO
pseudo-scalar quarkonium hadro-production.



2 Computational setup

Within the framework of NRQCD [17], the production of a quarkonium state can be factorised
into a perturbative part that describes the production of a heavy-quark pair QQ at a hard scale
it ~ mgq, and a non-perturbative part that describes the hadronisation of the QQ pair to the bound
state Q at a much lower scale uy < mg. This factorisation can be expressed at the partonic level
as

doap(Q+ {k}) = d6ay (QQIn] + {k})(0B), (2.1)

where a and b are the initial-state particles, and d&.,(QQ[n] + {k}) describes the short-distance
production of a Q@) pair in a given quantum configuration n with additional partons in the final state
represented by {k}. The quantum configuration n of the Q@ state can be expressed in spectroscopic
notation as 2% +1L.[]1 8] where § is the total spin of the QQ pair, L is the orbital angular momentum
and J is the total angular momentum. The superscript [1, 8] indicates that the QQ pair is in either
a colour-singlet or colour-octet state. The hadronisation of the QQ[n] state into the quarkonium
state Q is encoded in the non-perturbative Long-Distance Matrix Element (LDME) (O3).

While the sum in the factorisation formula eq. (2.1) proceeds over all quantum configurations
n, in this paper only a few contributions will be relevant. Indeed, the factorisation formula admits
an expansion in both the strong coupling a, and the relative velocity v between the QQ pair in
the rest frame of the quarkonium. We consider only pseudo-scalar S-wave states in both colour-
singlet and colour-octet configurations, 1S([)1’8]. More specifically, the colour-singlet state 1S([)1] is the
leading term in the v-expansion of 7g production and corresponds to the colour-singlet model [34—
36]. We will also consider the final-state Q@ pair to be in the colour-octet state 1S([)8]. For the
(short-distance) perturbative corrections, we will always work at leading order in v, that is, we set
v = 0 at the integrand level.

Since we are primarily interested in 7g production, we will briefly discuss the LDME and its
dominant contribution in the 1551] channel. It can be expressed in terms of the total wave function
1o at the origin [15, 17],

1 gl 2
(@3 = wof? = Bl

where we have also given the relation to the more commonly used radial wave function at the origin

(2.2)

Ry and the spherical harmonic Yy = 1/ VA7, Due to heavy-quark spin symmetry, the radial wave
function Ry is the same for both 1o and J/¢ up to higher-order corrections in the v-expansion.
Ry can be computed via the Schrodinger equation, and its value can also be extracted from the
leptonic decay width of the J/v |14, 37].2

The main focus of this paper are the perturbative corrections to eq. (2.1), described by the
short-distance interaction

a(k1)b(k2) = Q(p1)Q(p2) , (2.3)

where in our case a and b represent either gluons or photons. For the 1S0[1’8] state, we consider the
final-state heavy quarks at threshold kinematics. This corresponds to

1 1
M=k=0, p'=ckh-kh=m}y, with p=p =p=z(+h), (2.4)
where the Mandelstam variables are given by

§=(ky + ko)? = M3 = 4m}) , i=(ki—p)?=-mb, a=(ky—p)°=-my. (25

2There are different models that yield different numerical values for the radial wave function. For instance, in
refs. [10, 38|, the numerical values used for the S-wave functions were \Ro\f]c =1 GeV? and \Ro\f]b =7.5 GeV3.



This effectively reduces the kinematics underlying the process in eq. (2.3) to those of a three-point
process.

In this paper we are only interested in the two-loop contributions to the production or decay
of a quarkonium bound state. Specifically, we consider the two-loop amplitudes for the channels
VY 1S([)1], gg + 1S([)1], vg 1S([)8] and gg < 1S([)8], where the double-arrows indicate that we
consider both production and decay. Indeed, the channels with a light quark pair in the initial /final
state, qq <> 150[1’8], are loop-induced and only contribute at NNLO as the product of one-loop
amplitudes. This contribution vanishes in d = 4 dimensions.

To compute the required amplitudes, we first generate the Feynman diagrams with a QQ pair
in the final state using the FeynArts package [39]. We then need to project the QQ pair onto
the 1S([)1’8] state. All colour and Lorentz algebra manipulations are performed with FeynCalc [40].
As the amplitude has two fermions in the final state, it contains the product of spinors u, v with
matrices T involving Dirac v matrices. As this product is a number, we can convert it to a trace
and write

ﬂ(p, Sl)Tv(pa 52) =Tr [ﬂ(p, Sl)Tv(pa 52)] =Tr [T’U(p, Sg)ﬂ(p, 51)]' (26)

The projection of the final QQ pair onto a pseudo-scalar state 1S([)1’8] can be done by means of the
replacement [15, 41-44],3

1
v(p, 2)TU(p, 51) = ———="5 (p+mq) P}, (2.7)
\/2mqg

The colour-projection operators are

plisl _ {(L-j/\/Nc colour-singlet [1], (2.8)

“ V2 t colour-octet [8],

where we denote by t® the generators of the fundamental representation of the SU(N..) gauge group,

and ;5 is the Kronecker delta. The traces involve a 5 matrix, which requires a careful treatment

when working with dimensional regularisation. We employ the 't Hooft-Veltman scheme [45].%
The Lorentz structure of the amplitude for the production of a pseudo-scalar state is indepen-

dent of the channel and can be written as®

Ap.c =Ap o €"(k1)e” (k2) = Apc €uupo " (k1)e” (ko) kT ES . (2.9)

where p indicates the channel (p = gg, vg, v7v), and ¢ denotes the colour state (¢ = [1],[8]). The
scalar form factor A, . is obtained with the projection operator

1 ’ !
LG T 2.10
(d—3)(d—2)mb" b (2.10)

-
& 4

where the overall normalisation is fixed by requiring that

PH Ay e = Apc . (2.11)

3The relative normalisation of the LDME and the short-distance part can be chosen freely. We follow the con-
ventions of ref. [15].

4However, we observe that, since there is only a single 75 in the trace, there is no difference when employing naive
dimensional regularisation versus the 't Hooft-Veltman scheme.

5The polarisation vectors of the gluons and photons must be complex conjugated in the amplitudes depending on
whether they correspond to the production or decay channels.



The (bare) scalar form factor fipyc can be expanded into powers of the (bare) strong coupling
aB. We define the normalised bare form factor F, . and its perturbative expansion as

B\ ¢ B B\ 2
Fpe =Ap o] AL = (“—) 1+ <O‘—> F + (O‘S ) F) +(9(af)3] , (2.12)
™ T T
) . .
where Aj;¢ is given by
_47r2\/§
A = iV Z 0l €O 0 (k)" (R JRERS (2.13)
m

Q

and ¢ = 0 for A, 1), ¢ = % for A, s, and ¢ = 1 for Ay 1) and Ay 5. The channel-dependent
factors CIC)?C]' and C,°'P" are given by

VN, vy & 15’%1}, € Qem /T Y 15%1}’
o _ JTROMNN gge sy L)1 99150 oy
Pe \/§TF sbe g IS([)g]a me €QvV O‘em/Tr g < IS([)g]’ .
\/ETF dabc/Q gg < 15%8]’ 1 gg < 18’%8]’

where eg denotes the electric charge of the heavy quark and we defined the usual quantities
1
Tr[t*) =Tro, Tr[t*t°t°] = Try (d* +ifebe) . (2.15)

In our conventions, we set Tp = 1/2.

The two-loop scalar form factors F, (22 can be decomposed into a basis of two-loop Feynman
integrals. In order to do so, however, we must first account for partial-fraction relations that arise
because of the degenerate kinematics of egs. (2.4) and (2.5). For this we use the package Apart [46].
Details and consequences of this procedure are given in our companion paper [23|. Having defined
a set of linearly-independent propagators, we employ standard packages such as FIRE [47] or KIRA
[48] to decompose the form factors into a basis of 76 master integrals. In ref. [23], we computed
them both analytically and numerically.

Within this setup, we compute the two-loop form factors f}g?c) for vy <> 1Sé1}, gg 15%1],
vg > 1S([)8] and gg < 1S([)8]. While the first one had already been computed numerically [18, 19],
the last three are obtained here for the first time. In particular, ‘7:;521?[1} is the last missing ingredient
for a full NNLO computation of 7g hadro-production.

3 The bare amplitude and UV renormalisation

We perform our calculations in the framework of dimensional regularisation, where the ultraviolet
(UV) and infrared (IR) singularities appear as poles in the dimensional regulator e. In this section
we first discuss the pole structure of the bare form factors up to two loops, and we then outline the
renormalisation procedure which removes the UV singularities.

3.1 Bare form factors

One-loop form factors have poles of up to second order in the dimensional regulator e. We write

Fi =8 (mg)™" Y FFLP, (3.1)
k>—2



where S. = (47) e~7%. With this choice of normalisation, the mg, dependence is fully factorised

and the coefficients I,S}g’” are simply numbers. They can be decomposed in terms of the colour
factors as
1,k 1k
FLR = CuFUE + CrFLEN, (3.2)

where C'4 and Cp are the usual Casimir invariants of SU(N.),

2 _
Nc 1 51’]’ and facdfbcd CA 5ab c 5ab . (33)

tth; = Cp 0y = —oo—
C

The coefficients of the poles in € are particularly simple. Indeed, the poles proportional to Cr are
identically zero for all form factors

(1,-2) _ (1,-1)
p,c; F _]:PaC?F

—0, (3.4)

while the poles proportional to C'4 are form-factor-dependent and read

(1’—2) - 1= _

f 1A =0, ]:'7%[1];14 =0, (3.5)
(-2 _ 1 (1,-1) _ iw

]:997 (1];A - 5 ’ ‘Fgg,[l];A - _E + 1Og2a (36)
-2 __1 -1y 1 1

‘7:79,[8];14 Ty fvg,[8];A -y + 3 log2, (3.7)
(-2 _ 1 1,-1 _ ir 1

]:997[8];14*75’ ‘Fgg,[g];AffzferlOgQ. (3.8)

The two-loop form factors have poles up to order e~4. We write the form factor as

FE =82 (m3) Y FFEP., (3.9)

k>—4

We find it convenient to classify the different contributions that appear in the two-loop amplitude.
First, we distinguish terms that survive in the limit C'y — 0, which we call abelian contributions, and
terms that vanish. Second, we distinguish sets of gauge-invariant contributions: the regular two-
loop contributions, coming from diagrams without closed fermion loops, the light-by-light scattering
contributions, coming from diagrams with fermion loops connected to the external bosons, and
the vacuum polarisation contributions, coming from diagrams with closed fermion loops in gluon
propagators and with triple gluon vertices. Representative diagrams for each contribution can be
found in fig. 1. We can express the bare two-loop amplitude as

FER = FER o+ Foh + FER. (3.10)
where
]:fckrzag =C% ]:pQCkpZF +CrCa ]:( P FA +C% ]:(QCkAA ; (3.11)
]:;S,Qéﬁl)al =CpTpnp ]: pe Fh 1 T Crlrmy ‘Fp p Fl Ibl (3.12)
+CaTrpny f e Ah 1+ CaTriy ]-'p i Al bl > .
‘F;g owac =CrTrnp, ]'—,5 ck}‘h wac T CFTFMY ]'—,5 ck}‘l wvac (3.13)
+ CaTrnp ]:;S ckf)xh vac T CaTrny ]'—;5 ck,a)xz vac .

where np and n; are the number of heavy and light quarks respectively. For the light-by-light
contributions, we have to define the quantity n; that takes into account the QED coupling between



(a) (b) (c)

Figure 1: Two-loop diagrams for the form factor vy + 1551] with (a) regular contributions, (b)
light-by-light contributions and (c¢) vacuum polarisation contributions.

the external photons and the fermion flavour inside the loop. This quantity reads

Z?l ef /eZQ for vy channel,
= ZZ” ei/eq for vg channel, (3.14)
ny for gg channel.

We further note that the light-by-light contributions are finite in four dimensions and are thus not
affected by the procedure of UV renormalisation. In appendix A, we give, in addition to the analytic
expressions for the poles, also the numerical values for the finite part for the contributions given
in egs. (3.11)-(3.13). We observe that, while the two-loop form factor .7-1(7?7[1] has poles of at most
second order, the other form factors have poles starting at the quadruple pole.

It is clear that abelian contributions should be very similar across different channels. Indeed,
they are only different in the light-by-light contributions, where colour-singlet channels differ from
colour-octet channels by a factor of 2 coming from the different colour algebra. Because the light-
by-light contributions are finite, we find that the abelian contributions to the pole structure of
all channels is the same. Verifying that these relations hold provides a stringent check of our
calculations. We also note that in the limit C4 — 0, Cr — 1 and Tp — 1 the colour-singlet
contributions should reproduce the two-loop contributions to para-positronium production or decay
obtained numerically in ref. [49], which provides another important check.

3.2 UV renormalisation

Having explained how we obtained the bare two-loop form factors F, ., we now discuss how to
compute their renormalised counterparts. We work in the on-shell renormalisation scheme for the
heavy-quark wave function, for the heavy-quark mass and for the gluon wave function. As for the
strong coupling avs, we employ the MS-scheme. The renormalisation is performed with multiplicative
factors Z,,, with kK = Q, m, g, as respectively. For instance, the bare coupling is related to the
renormalised coupling o by

af = S % Z, oM, (3.15)

where we take into account ny = n; 4+ n,, flavours in the running of the coupling. The Z,; factors
admit an expansion in the renormalised coupling with n; flavours as

o) a0\ ?
Zo=1+|—"—)Z2M + =] ZzP +0(a?), (3.16)
™ ™

and the Z,(f) are collected in appendix C. It is more common to express the results in terms of a

coupling ai”l) where we only consider the light-quark flavours in the running of the coupling. In

order to convert from one coupling to the other, we apply the decoupling identity [50]

almtnn) — gasagnl), (3.17)

S



where (,, admits an expansion in the strong coupling similar to eq. (3.16), but with n; flavours in
the running of the coupling. The coefficients for ¢,, are also given in appendix C.

As done for the other bare quantities, the renormalisation of the heavy-quark mass mg could in
principle be implemented through a simple replacement mg = Zm mgq in the amplitude. However,
given the degenerate kinematics underlying our process (cf. egs. (2.4) and (2.5)), we have evaluated
the integrals at § = 4m§2. Hence the threshold value of § is related to the on-shell mass mg of
the heavy quarks, while the propagators involve the bare mass mQ Since we did not distinguish
between the bare and on-shell masses at the time of the diagram generation, it is not possible
to simply substitute mg by its renormalised value. Instead, we compute counterterms that are
added to the bare amplitude to implement the heavy-quark mass renormalisation. This involves
computing one-loop amplitudes with doubled propagators, which we do using the same standard
approach described above for the calculation of the bare amplitudes.

We write the renormalised form factors, expanded in powers of agm), as

(n1)\ ¢ (n1) (n1) 3
= [ s (1) —(2) (n)
fp,c< - ) 1+< - )fpch(—ﬂ ) 7 +(9( ) , (3.18)

where the n-loop renormalised form factors can be written as

—=(n) ne g—n —(n n n,decouplin,
Fpe = ppeS7mFm + FinOT) 4 Findecoupling) (3.19)
. . . . . . (n,CT) (n) n,CT)
The contribution of all renormalisation factors is collected in Fp. " ’. Both F, ¢/ and f are

(m)'

d 1
computed as an expansion in a( ) and Fp,c (ndecoupling) . nslates the result to an expansion in ag

At one-loop level, the counterterm contrlbutlon in eq. (3.19) gives

1,CT) _ 1 1 (1) 1
FLOD = q (20 + 20) + 23 - 2. (3.20)
We note that Zg ) = Z,(T%), and the renormalised form factor ]-' (for which ¢ = 0) equals its

bare counterpart. As will be discussed below, this form factor exhlblts neither soft nor collinear
singularities and is thus finite, which agrees with our results, see egs. (3.4) and (3.5). At two-loop
level, the counterterm contribution in eq. (3.19) reads

FEOD = g2 F) [qu) +(1+q 2z + qu — Z{) Fllymass OT)
+az (a20 + 25 = Z0) + az2 + aZP + a2 (2 - Zﬁi)) (3.21)

+ %q(q— 1) |:(Zg¢15))2 . (Zgn)?} +Zg) _ Zf,f) Z(1)Z(1) . (Z(l)) ,

where f;}gmasg ") is obtained by considering the one-loop amplitude with all possible ways of
squaring the massive-quark propagator (see, e.g., refs. [49, 51]). These must be computed to O(e)
M has a simple pole in e. As for the decoupling contribution in eq. (3.19), we have

because Z,
fé}c,decoupling) _ qC(l) (3.22)

. 2
fé?c,decouplmg) C(Q) + q (q - 1) (Céls)) (q 4 1) C(l) ( (1) f(l decouplmg)) (323)

The renormalised form factors .7 are free of UV singularities, but still exhibit IR singularities
in €, which will be discussed in the next section. We write the renormalised one-loop form factors

F = 3 ST, (3.24)

p;c p;c
k>—2

as



where we have expanded out all factors depending on €. As the renormalisation procedure introduces
a Trn; term, the colour decomposition now involves

FOP = e T o T e T

p,cl *

Ty, (3.25)

As for the bare amplitudes, in all channels, there are no poles proportional to C'r. For the Cy
contributions, we have that

—=(1,-2) —=(1,-1)

Fyvma =0, Foyyiga =0,
=(1,-2) 1 —=(1,-1) ‘ 11 1
]:99»[1]§A:7§’ ‘Fgg[l]AffgﬁLl 2*5751#1%,
—=(1,-2) 1 —(1,-1) 17 1 (3.26)
]:797[8];14:*1’ ]'—wg,[s];A:*ﬂwL—l g2 — 41;”;7
—=(1,-2) 1 —(1,-1) it 7 1
Fogighia == 5> Fegia =7 — g t1082= Sl
where we used the shorthand notation
2
1
bo=log g (3.27)

Finally, for the Trn; contributions the poles are

Fom =0, Fouu=0,
Famn =0, Feni=s.
N -
Fomn =0, Forni=1s.
The two-loop form factors can be similarly written as
Fo— 3 SFEY, (3.29)
k>—4
where the 7, Fm can be decomposed into the different sets as
Foi = Foptes + Tyt  Fporunc (3.30)
where
Fprones =Ck Fpcr + CrCaTpipa + CA T (3:31)
?](fékl)bl =CpTFrny, fp o })r'h a1+ CrTry fp Ckl)” bl (3.32)
+ CaTrny, ]:p c-Ah;lbl + CaTrmy ]:p c-Al;lbl ; .
Fpitne =CrTrmy Fytnavae + CrTrm ‘F1()2ckl)5‘l vac (3.33)

2,k)
+CATF”hf( cAhvac+CATFnlf cAl wvac T TEN] ‘F;Encll

The last term proportional to T}% is a new colour structure that arises through the renormalisation
factors. Since the light-by-light contributions are finite, we have that F 1(7 Col)bl = .715720’,;01331. As done for

the bare form factors, we have collected the singular parts and the finite piece of the renormalised



form factors in appendix B. For most channels we find that the pole structure is what would be
expected for a two-loop amplitude involving external massless particles, that is we find poles up to
order 0(6_4). The exception is the form factor ?'m[l]’ which has a much simpler pole structure,
namely a simple pole with contributions proportional to C% and C4Cp. This pole has a special
interpretation that will be discussed in the next section.

4 Infrared singularities

The pole structure of renormalised amplitudes in NRQCD is more involved than that of amplitudes
in full QCD. Indeed, in NRQCD a new type of singularity arises, the so-called Coulomb singularity,
see, e.g., refs. [18, 19, 52-54|. It appears as a consequence of the fact that we have expanded the
amplitude with respect to the relative velocity v between the heavy quarks. Taking this fact into
account, we define a finite remainder F’ fin as

]:ﬁn ZCiul ZIR ]:;D cH (41)

where Zcoul. is the factor that removes the Coulomb singularity, while Zir subtracts the standard
infrared (IR) poles. They are in general matrices in colour space.

The Z, factors above admit an expansion in powers of agnl), similarly to the renormalisation
factors discussed in the previous section. However, while the strong coupling in the renormalisation
factors is evaluated at the renormalisation scale, ug, the coupling expansion in the Zig and Zcou.
factors proceeds at different scales, namely the factorisation scale, ppr, and the NRQCD scale, i,
respectively. In order to match the coupling expansions, we will therefore first need to evolve all
couplings to the same scale, for instance the renormalisation scale, pur. Starting from the evolution

equation for the strong coupling in d = 4 — 2¢ dimensions,

w2 o) - lZ o (5 )"H] - e, (42)

and using the short-hand notation &s = a,(ft) and as = as(p), we can evolve the coupling from
the scale i to the scale p in d = 4 — 2¢ dimensions with

on () R oo

Expanding eq. (4.1) in powers of o™ and using the scale evolution of the couplings in eq. (4.3),

we then find that

() \ 1 (n1) 2\ €
fin _ [ Xs Qs =(1) MR (1)
]:p*c_< 7r ) {1+< 7T ) []:p’c_ (M%) ZIR}
(n)\ 2 2 2\ €
al —©2) U, W (F0 Bo ([ k&
G ) FR (HR) 70 (F PR
+< m ) e (u%) IR( pe e <<M%) )) (44)
2 2e 2 2 2e
_(Fr @) _ (71 _(HFr (2)
<M%) <ZIR (i) ) (ui ZCO“I'H

+0(af™),
where the quantities Z,(f) correspond to the coefficients of Z, expanded around the coupling at the
respective scales, pup and pa. In addition, we used the fact that Z(Clgul =0 [18, 19, 54].
In this section we will discuss how to determine the ZS)

. While some of the ingredients were
known in the literature, some are obtained here for the first time. We will generically label all scales
with p, however, it is implicitly understood that u = pp when discussing Zig and pu = pp when
discussing Zcoul. -
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4.1 General structure of IR singularities

Let us first focus on Zig, which describes the infrared structure of loop amplitudes in QCD [55-59].

It satisfies the evolution equation
d

dlog p

Zir = T Zr, (4.5)

where the soft anomalous dimension I' is a matrix in colour space which admits the perturbative
expansion
(n1)

r= Zrk<o‘ﬂ> . (4.6)

Solving eq. (4.5) order by order in ol L), we can express Zig as

(n1) /
Qg T I‘O
Zie =1 -0 4 -9
m= ( 7r ) [462 + 26]

+ (a‘(;l)) (;66)4 + g—; (Fo - gﬁo) + % (Fo _ %50) N 11(;’22 N % (4.7)
+ (’)(ag’) ,
where we defined ;
= Dlog i (4.8)

The explicit form of the soft anomalous dimension matrix I', and therefore of the operator Zig, is
known up to two-loop order [56759]:

r-y T o ( ) + Zv

(4,9)

- Z TI T]’Ycusp ﬂIJ +Z’7 +ZTI ]’Ycusplog<mlyj>

—s1;
) 1 (4.9)
+ Z if " TYTY T Fy (Brs, Buk Br1)
(I,J,K)
Y A TITY T fo <51J,10g (M)> +0(a),
—O0IkKVI - Pk
(1,7) k
and
- _’YCuspZ TZQ . (410)

The sums in eq. (4.9) run over colourful initial- and final-state partons, and when summing over
several parton indices we take them to be distinct (that is, for instance, i # j in the first term of
the first line). The lowercase indices 4 stand for massless partons and the uppercase indices I for
massive ones, which in particular implies that the third line in eq. (4.9) does not contribute in our
case as there are only two massive quark legs. The T¢ are the generators of the Lie algebra of the
gauge group SU(N.) in the representation of parton i. Specifically, we distinguish three different
cases. When the parton i is a gluon, we have (T¢),. = —i i f*b¢. In the case of an initial-state quark
or final-state anti-quark we have that (T¢)_, = 5= "tha Finally, in the case of the emission of a gluon
from an initial-state anti-quark or final-state quark we have that (T¢) ap = tag- These relations
equally apply to massive partons I as heavy (anti-)quarks. It should be kept in mind that the sum
over the different colours in eq. (4.9) is performed implicitly. We have the following properties

T, T, =T, - T;, (4.11)

— 11 —



T2 —

3

{CA if i is a gluon, (4.12)

Cr if i is a quark or anti-quark,

and similarly for massive partons I, J. The expressions for the quark and gluon anomalous dimen-
sions 7%, 79 and for the massless cusp anomalous dimension Yeusp are collected in appendix D. The
kinematical dependence in eq. (4.9) is encoded in the quantities (the indices a and b can denote
either massive or massless partons)

Sab = 20apPaPy + 30T, (4.13)

with o4, = +1 if both partons a and b are both incoming/outgoing and o4, = —1 otherwise. The
cusp anomalous dimension depends on the angle 3;;, related to the invariants s;; by cosh 8;; =
—s17/ (2mymy), and vy is defined as pr/my.

Equation (4.9) is the general expression for the soft anomalous dimension for any number of
external legs up to two loops in full QCD. In our case we can simplify this expression further. First
we note that, as already mentioned, the third line does not contribute, and neither does the fourth
line. Second, the kinematical variables only depend on the mass of the partons and are the same
for all form factors, that is

sij =4mg +i0% ., spp=2mg +i0%, s = —2mg +i07, (4.14)
yielding
12 M 1
1og< ) =l —2log2 +im, 1og< ) = -1, —log2. (4.15)
—Sij —S71j 2

We can then write

I‘(Z) 5 J,YCuSp(l“72log2+Z7T)+Z’Y
2, 3

- TQ : TQ Ycusp (BQQ) + 27 + TQ + T Z Tz Ycusp ( - 1Og 2)
T T (4.16)
:Z Z2 j’Ycusp(lH7210g2+i7r)+Z’YZ
(i,9)
1 2 Q 1 2 2 1
- §TQ'7cusp (ﬁQ@) + 2’7 + 5 (TQ + T@) Ycusp (ﬁQ@) Tg'ycusp Elu - IOg 2 )
where in the last line we introduced the total colour charge Tg = T + Tg = — >; T of the
quarkonium bound state. We have that
T2 0  if Q is in colour-singlet state [1], (417)
Ca if Q is in colour-octet state [8].

At this point we have to address two issues: First, we see that eq. (4.16) depends explicitly
on the colour charges T?Q and TZ of the constituent quarks. However, from colour coherence we
expect that the structure of the IR divergences is such that the soft gluons do not resolve the short-
distance physics, in this case the individual constituent quarks. Instead, the IR structure should
only depend on the colour charge TQQ of the quarkonium bound state. Second, and more strikingly,
we work in a NRQCD framework where the heavy quarks are produced at threshold at zero relative
velocity, v = 0. The velocity v is related to the cusp angle ﬂQ@ through

+U

Bog = —im + 10g (4.18)
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Expanding the cusp anomalous dimension around v = 0, we find

: () () \ 2
Yeusp(Brs) == 5 | = (0‘; ) cA(171T—2> —279+0( Y, (419)

2v T

where 79 = CLF’YQ is the heavy-quark anomalous dimension with the Casimir scaled out. We see
that the cusp anomalous dimension diverges at v = 0, which corresponds to the Coulomb singularity
of the amplitude. In our NRQCD framework, we put v = 0 at the integrand level, and the Coulomb
divergence manifests itself as poles in the dimensional regulator, captured by the factor Zcoy. in
eq. (4.1). The formula for the soft anomalous dimension in eq. (4.9), however, is valid in a framework
where v is not put to zero from the start. We should therefore start from a variant of eq. (4.9) with
Yeusp(Br.s) replaced by a constant thres

cusp - 10 the following we argue what the correct form of the

thres

soft anomalous dimension in our framework is, and we determine 7.,

through two loops.

To understand this point, let us first discuss the process vy <> 1S([)1]. Given that the external
particles are either photons or massive quarks, there cannot be any collinear divergences in this
channel. In addition, since the heavy quarks are in a colour-singlet state, colour-coherence implies

1601
that there are no IR divergences. We must then have that I‘—,.SY0 = 0. From eq. (4.9) with

thres

Yeusp(Br7) = Yensys however, we find that

1 gl1]
0L 105" = Cppthres 120539 1 O(a), (4:20)

cusp

where we used Z(I,J) T, - T;= —2T2Q with T2Q = T% = CF, and so we find

enres — — 299 + 0(a) . (4.21)
We note that eq. (4.21) is equivalent to eq. (4.19), when simply removing the poles in v, as is
customary within the NRQCD framework [17]. Inserting this relation into eq. (4.16), we find

T, T, ) i =N 1
= Z T]'ycusp (I, —2log2 +im) + 27 + TQQ'yQ — THYeusp (§lu — log 2) . (4.22)
(4,4) i

Equation (4.22) is the soft anomalous dimension matrix that describes the IR singularities of quarko-
nium production and decay at two loops. Note in particular that eq. (4.22) only depends on the
colour charges of the massless external legs and the quarkonium bound state, as expected from
colour coherence.

4.2 Coulomb singularity

We now turn to the second type of singularities that remain in the renormalised amplitudes, namely
the Coulomb singularities that are related to the bound state of the heavy quarks and are governed
by Zcou.- We work in the MS-scheme and we define:

4e T

1 agm) ’ )
ZCOU]- =1 + = ’ygoculomb + O(Oéi) ’ (423)

where Yo 1oy 1S the anomalous dimension for the Coulomb singularity. Note that a priori the
value of the anomalous dimension may depend on the channel p and the colour ¢. The Coulomb
singularity for the colour-singlet form factor v <> 1S([)1} was already known [18, 19, 54|,

st 1
Veoulomb =~ (012? + §CFCA) : (4.24)
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The other anomalous dimensions have not been considered before and will be presented for the first
time in this section. We note nevertheless that the authors of ref. [20] give compelling evidence for
the fact that the Coulomb singularity in gg <> 18’% is the same as in vy < 15[1]

For all form factors we have considered, we find that

(1)
1= Qg 1 . 0 3
Z R ‘vac = ( T ) Zevgoulomb + O(e 7as) : (425)
For the case (p,c) = (7, 1S([)1]) we reproduce eq. (4.24). For (p,c) = (gg, 1S([)1]), we find the same
result as in eq. (4.24), i.e., we find that the anomalous dimension only depends on the colour, but
not, on the channel: » »
tsi ¥7,' 85 99.'Sg

’yCoulomb - ’yCoulomb ’yCoulomb (426)
This is in agreement with refs. [18, 19, 54| and confirms the observation made in ref. [20]. For the
colour-octet form factors we find

Lsf) vg,' S 99,' 857 2 1
’yCoulomb - ’yCoulomb = ’yCoulomb OF - §CFCA : (427)

We observe that the Coulomb singularity for the colour-octet states differs only in the sign of the
non-abelian coefficient CrC'4 from the colour-singlet case. We remark that in the QED limit,
Cr -1, Cqy — 0, Tr — 1, we reproduce the Coulomb singularity encountered in the para-
positronium decay to two photons [23, 49].

To conclude, we find that all our results have the expected IR and Coulomb singularity structure.
This is a very strong check of the correctness of our results.

5 Form factors

In this section we present our results for the finite remainder of the form factors for the processes
vy 15’%”, gg < 1551], vg 1558] and gg < 18’%8]. We write the one-loop and two-loop corrections
in the following form:

fi agnl) (m) fin, (1) 0‘( AN fin,(2) 3
Fon = - 1+ - Fpwt + - Fw®l +0(al), (5.1)

where f,f,i, ﬁ’(l) is the one-loop correction and f,f,i, ﬁ’@) is the two-loop correction. In the following

we will separate the terms that depend on the renormalisation scale ug, the factorisation scale g
and the NRQCD scale pup from the scale-independent terms. Our results can be found in a set of
ancillary files which can be obtained from ref. [60].

At one-loop level, we can express the finite remainder as

FinW = Finl +cM) 4+l (5.2)
where Cl(tl) encapsulates the p-scale dependence at one-loop and is given by
1) 2—50 Lum (5.3)
ch = ch LAV - (3+ qﬂo) . (5.4)
where, for convenience, we have defined the quantity
B=—-4qCxlog2+Tg —ir (T —2qCa), (5.5)

— 14 —



and ¢ is defined below eq. (2.13).

The situation is more involved at two loops. We can express .7-'3 nc’(2)

in terms of their different
contributions as

fin, __fin, fin, (2) fin, fin,
Fin@ =Fin @ + Fn + i@ 4+ Q) (pgg +Cf}F>)

p,cireg D, p,ci;vac p,cireg (5 6)
2 2 2 1) A1
o +e +c2 + Dt
where the scale-dependent terms are given by
1
Dl(illz :Z (1 +q) BO ZMR’ (5.7)
1 1
Cl =50 (1 + Q) B3 + 760 s (5.8)
1 1 ~ 1
c :ﬁqQCi I, + 54 Ca (B +3 (2 + 3q) 50) 3.
1 /4 -
+35 (B2+q(1+q) 85+ (1+29) 8 B 84Carlily ) 2, (5.9)
1 1
+ ('yc(]ll)sp (q Calog2+ Ziﬂ (TS — 2qC’A)) + §T2Q 79 M 4 q*yg’(l)) Liws
1
c = 3 YCoulomb - (5.10)

The expressions for vélll)sp, 79’(1) and ﬁQ’(l) refer to the coefficients of the O(a?) terms given in

appendix D.

In eq. (5.6), Fo 255; is the regular contribution, while ]-'; ncl(il) represents the light-by-light contri-

butions and ]-'5}2’;5,2&)0 is the contribution due to vacuum polarisation diagrams. These contributions

can be further decomposed as

Fin®) —02al) pp + CrCaayspy +C3al?) 4, (5.11)
.7:;21(51) =CrTEny, b;(72,¢):;Fh + CpTrny ng;Fl + CyuTprny, ng;Ah + CyTrmy ng;Al , (5.12)
Fin® —CrTrny &) oy + CrTrn ¢ oy + CaTrng )y + CaTpmy &) 4. (5.13)

The definition to the quantity 7; can be found in eq. (3.14). The purely abelian contributions at
one-loop and two-loop level for the regular and vacuum polarisation corrections are identical for
all form factors considered, which is a strong check of the calculation. As mentioned earlier, the
abelian contribution for the light-by-light contributions depends on the colour state of the bound
state, but is independent of the initial-state partons. Its value differs only by a factor of two between
colour-singlet and colour-octet states and comes from the different colour algebra. Similarly, for the
non-abelian light-by-light contributions, we can reconstruct the contributions to the colour-octet
form factors using the results obtained in the colour-singlet case by simple colour algebra and we
find again full agreement, which is another strong check of the calculation.

For phenomenological applications we are interested in the hard functions obtained by squaring
the form factors we obtain in this paper. More explicitly, the hard function H is defined as

. 2
agm) ' fin, ()
Hp,c - Z T ‘F‘p,c7 ! 5

i=0

p,C + - p,C + - p,C + (055),
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where we have that /H,()?g = 1 due to the normalisation of ]-ffé’(o) = 1. In the following subsections,

we present our results for H for the different channels we consider in this paper.

Before doing so, however, we close this introductory discussion by noting that by taking the
QED limit, Cr — 1, C4 — 0, Tr — 1, of a colour-singlet form factor, and setting n; = 0 we
reproduce the form factor of the para-positronium decay into two photons [49] which we have
already presented in our companion paper [23]. The form factors can also be used to describe the
para-muonium and para-tauonium decay into two photons up to NNLO accuracy. In this case, one
again takes the QED limit but now retains the n; term. Indeed, in addition to the light fermions
(e for muonium and e, o for tauonium), one now also has to take into account light quarks and
their relative charge. We will denote generically the relative charge of leptons and quarks that
form the bound state as ey. If we wish to compute the NNLO QED corrections to quarkonium or
leptonium decay into two photons, we would need to make the following replacements a s — efcaem,

- 1bl,QED ED _ .
ny — nlb QED nlvaC’Q , with
ng ny
IbLLQED __ 4.4 vac,QED __ 2/, 2
n, = E e /€5, n, = E e;/e}- (5.15)

K2 3

For the leptonium bound states, one would consider also the non-perturbative effects from the
bound state, including the removal of the Coulomb singularity, similarly to what was done for the
para-positronium case in refs. [23, 49].

5.1 Form factor coefficients

In this subsection we present the set of independent coefficients that appear in the different form
factors. Since the analytical expressions are rather lengthy, we have collected the complete analytical
expressions for all coefficients expressible in terms of multiple polylogarithms, elliptic multiple
polylogarithms and iterated integrals of Eisenstein series in appendix E and in a set of ancillary
files that can be obtained from ref. [60]. We also have available high-precision numerical evaluations
up to more than 1000 digits. In the following, we will show only the first 20 digits of the numerical
evaluations.
For the one-loop coefficients, we define the following coefficients,

2
5
al! :% — 5 = —1.2662094498638301726, (5.16)
2
1
al! _% + 5 —log” 2+ imlog 2 = 1.66448105203002501181 + § 2.17758609030360213050, (5.17)
(1) ™ 3 1 1 9
af) =75 + 7 + 51082 — 5 log” 2 = 1.0619638416769002460. (5.18)

At two-loop level, we define

af? =a?) |\ pp = —21.10789796731067145661, (5.19)
a5 =a2) |\ pa = —4.79298000108431445013, (5.20)
af =a’) || 4 = —1.63396444740133643183 — 1 2.75747606818258018891, (5.21)
af? =a?) o 4 = 11.4964197929416576889, (5.22)
af? =al) 1 44 = —4.16141057462231200330 + i 12.74963942099565970837, (5.23)
o) =al®) ) 4a = 1.1674088877410300338, (5.24)
al? :ag’[gk = —0.47052470943276 749673 + i 3.76949207800965060010, (5.25)
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b =b'? | oy = 0.64696557211233073992 + i 2.07357555846158085167, (5.26)
b8 =b2) || gy = 0.73128459201956 765416 — i 1.79084590261634204461, (5.27)
b =b? || 1), = 0.17355457403625922073 + i 0.27096443988081661998, (5.28)
b =b? | 1 = —0.27562418279938901511 + i 0.56534858757600288424, (5.29)
@_.®  _
o =c2) || gy = 0.22367201327357266787, (5.30)
@ _.®  _
o) =c?) ||y = —0.56481511444874563705, (5.31)
o =) | = —0.19435982593932209621 — i 0.26424642484869050250, (5.32)
@ _.®  _
o =c?) = —0.1068025969267476488, (5.33)
ol =c?\ || 11 = 0.20360900095614056680 —  2.96547152392125649208, (5.34)
@ _.®
ot =c2) o 1 = —0.5846981879646550889. (5.35)
1
5.2 vy 155 ]
For the form factor f»{j'ryl,mv the correction at one-loop accuracy reads
fin,(1) o (1)
Fil) e =Cra’). (5.36)
At two-loop level, the individual coefficients in eqs. (5.11)-(5.13) read
@) NC) @) e (2) _
Ayy,1)spF = 415 Ayy,1)Fa = %2 Aoy, 144 = 0,
@ @ @ @ @ @
b'y'y,[l];Fh =07, b—y»y,[1];Fl = by, b'y—y,[l];Ah =0, b—y'y,[l];Al =0, (5.37)
@  _.® @ _ @ @ @
Cyy,[1FR = 1 Cyy.ljFL = 2 Cyy.11l4h = 0, Cyy,l1)sa1 = 0.

As mentioned before, the coefficients for the regular and vacuum insertion contributions have been
computed in numerical form for the first time in ref. [18]. The light-by-light contribution has been
considered in ref. [19] where all coefficients have been evaluated at an improved numerical precision
of 10 digits. We find full agreement for all the coefficients presented in both references.

Using the results for this form factor, we can compute the hard function that can be used for
the decay width into two photons. We obtain

H{ | = — 3.37679853207021379372, (5.38)
H | = — 109.3826016955304736674 — 9.2861959656680879327 L,

— 37.28517218189313256001,,, — 0.7530868192649941827 n; (5.39)
+0.5627997554950356323 n; 1., + 0.97504612269275687222 1.

For charmonium decay, we set n; = 3 and in the bottomonium case n; = 4. The light-by-light
contributions which have been omitted in ref. [18] contain the term 7; which turns out to be quite
large for the bottomonium state

O 62 3/2 for cc
fiy = e_z:{/ or <% (5.40)

10 for bb.
5.3 gg <« 15([)1]

In this subsection, we present for the first time the form factor f?g“[l]. The correction at one-loop
accuracy reads

]_-ﬁn,(l) —Cp agl) +C4 agl). (541)

99,[1];reg
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The two-loop coefficients read

(2) (2) (2) () (2) (2)

Qgg,1);rF = %15 Agg.1); 74 = 43 Qyg,11;44 = %5
(2) _1(2) (2) _1(2) (2) _ (2 (2) _ (2
bgg,[l];Fh =b", bgg,[ll;Fl =by", bgg,[ll;Ah = b3, bgg,[l];Al =bs", (5.42)
(2) _ (2 (2) _ (2 (2) _ (2 (2) _ (2
Cg.1;Fh = €1 5 Cog.1F1 = C2 99,1140 = ©3 Cgg.1);41 = C5 -

The hard function, which can be used in collinear or Transverse-Momentum-Dependent (TMD)
factorisation, exhibits the following structure:

M) 1) =6.6100877846099362771 + 5.50000000000000000001,,,
— 1.3411169166403281435 [,,,. — 1.50000000000000000000 12 (5.43)

—0.3333333333333333333 7 ({u, — lur)
= — 108.32872969182897851535 + 67.28322422303197428616 1, ,,

-+ 22.6875000000000000000 ZZR — 15.24945497092079433491 1, ,.

— 11.8456969740765133031 ZZF +4.76167537496049221524 le

-+ 1.1250000000000000000 liF —11.06421456228270718381,,,,1,,,»
—12.37500000000000000001,, , liF — 37.28517218189313256001,,
+0.0059137578980173446 n; — 4.88837722563830147189 ny 1,

— 2.7500000000000000000 1, ZZR + 2.7479948883357910787 ny 1.

— 0.6004653819334700598 n; liF — 0.66666666666666666667 n; liF

+ 3.42055845832016407175n 1, 1, + 0.75000000000000000000 ;1 12

KR "np
+0.08333333333333333333 12 Ly — Ly )2

(5.44)

We note that the size of the coefficient multiplying the logarithm of the NRQCD scale is rather
large and has an important effect on the numerical value of the hard function.

5.4 g < 15([)8]

As for the colour-octet states, we first consider the form factor ]-f;[g]. At one-loop accuracy, the
correction is given by

Fin®)  —cpal + Cyall. (5.45)

79,[8];reg —
At two-loop order, the coefficients read,

e (2) (2) (2) (2) )

v 8 FF M1 Qg 8, FA = A4’ Ayg81;44 = %6

@) (2) @) PTC) @) __3.2 ©) __ 3@

by g gsn = 2017, by g = 2627 by g ssan = 4 b byg.isliat = 4 by",  (5.46)
(2) _ (2 (2) _ (2 (2) _ (2 (2) _ (2

Cyg.8:Fn = €1 Cyg.8FL = €2 Cg,18:4n = €4 Cyg,[8;41 = C6 -

The hard function for the colour-octet state in the channel vg takes the form

o)

~o[8] =2.9949845170911876879 + 2.75000000000000000001,, ,,

— 2.1705584583201640717 I,,,. — 0.75000000000000000000 12 (5.47)
— 0.16666666666666666667n (1., — L,uy.) +
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Hffg) (8] =40.4242880521358345950 + 22.84741484400153228336 1, ,

-+ 7.56250000000000000000 ZZR — 14.8215925690621966374 1, .

+ 0.75699232806869328971 ZZF + 3.0029188437401230538 lfLF

-+ 0.2812500000000000000 l4 —11.938071520760902394621,, , 1, -

— 4.12500000000000000001,, , li +2.193245422464301915301,,,

— 2.5071813831589594496 n; — 1.78999483903039589596 n; 1, ,

— 0.9166666666666666667 1, ZZR + 1.18814689958143744113 ny 1, .

— 0.5634729479133743513 ny 12 — 0.20833333333333333333 n; 13
+1.64018615277338802392 1, 1y, + 0.2500000000000000000 7, 1 12

MR "pp

+0.0277TTTTTTTTTTTTITI8NG (Lyy — L) + 0.30470191334148652257 .

(5.48)

The variable n; vanishes for charmonium states and takes a negative value for bottomonium states

Ry 0 for cc,
i = E R -~ 5.49
l {2 for bb. (549)

5.5 gg <« 15([)8]

For the second colour-octet form factor f;i;[g], the relative correction at one-loop level is

99,(8];

Fin) o =Cra” + 0 zal +al" ). 5.50
reg 1

At two-loop order the coefficients read,

;29),[8] FF — a§2)’ “_572;,[8];1?,4 3¢ (2) + § ( '+ “(2) afg),[sl AA T a§2),
Do = 2017, by st = 205
b2 o = f% b + % by, b2 o = 7% bs? + %bf), (5.51)
fg),[a Fh = c§2>, fg),[a FL~ 052)’
Céz{[s];Ah 7€ (2) te (2) Cé?,[sw 7€ (2) te (2)

The hard function for the second colour-octet state in the gg-channel is given by

23D

90.[8] =7.9884276758812627233 + 5.50000000000000000001,, ,,

— 2.8411169166403281435 1,,,. — 1.50000000000000000000 12, (5.52)
— 0.3333333333333333333 (1,1, — L) ,
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)
Hg

9.[8] =47.92683141521562851467 + 78.65452832602041746721,, ,

=+ 22.6875000000000000000 lfm — 34.2091378115074325464 1, ,,

— 8.7140314360230107571 liF + 7.01167537496049221524 lfw

+ 1.1250000000000000000 lﬁF — 23.43921456228270718381,, , 1,1
—12.37500000000000000001,, , liF +2.193245422464301915301,,,,

— 2.3105022425823455994 n; — 5.5775471712739646950 n; 1, ,,

— 2.7500000000000000000 n; lfm + 3.62410818542623322740 ny 1, .

— 1.2254653819334700598 n; liF — 0.66666666666666666667 n; liF
+4.1705584583201640717 1y, 1,1, + 0.75000000000000000000 72, ey

MR "pp
+0.08333333333333333333 17 Ly, — Ly )2

(5.53)

Comparing the size of the coeflicient of the NRQCD scale dependence of the colour-octet states with
the situation in the colour-singlet case, we can conclude that the hard function is not as sensitive
to the NRQCD scale as it is in the colour-singlet case.

6 Conclusions

In this paper we have computed analytically the complete two-loop QCD corrections to the form
factors relevant for 7g production and decay. In particular, we have considered the processes
vy > 1S([)1}, gg < 1S([)1], NG 1S([)8], gg <> 1S([)8]. We have also obtained high-precision numerics
up to 1000 digits for all form factors, which makes our results readily usable for phenomenological
studies. The form factors presented also allow us to consider the two-loop QED corrections to
leptonium bound states.

The form factor vy <> 1S([,1] has been computed before only in purely numerical form [18, 19].
Our result is in agreement with those references, which serves as a cross-check of our calculation.
The form factor gg <> 15’([)1} is new and is the last missing ingredient for a full NNLO calculation of
nq hadro-production in either collinear or TMD factorisation. We also computed the form factors
to produce a pseudo-scalar state in a colour-octet configuration 15([)8], which corresponds to higher
terms in the v-expansion of the LDME. For instance, the pseudo-scalar state 1558] turns out to be
one of the leading contributions to the pseudo-vector particle hg, the other being the state 1le.
It also appears in the higher terms in the v-expansion for the vector particles J/¢ and Y.

The two-loop bare form factors can be expressed in terms of 76 master integrals, which we
have already discussed in our companion paper [23|. After UV renormalisation, the renormalised
amplitude still contains IR as well as Coulomb singularities. By imposing that the result has the
expected IR pole structure, we were able to reproduce the Coulomb singularity of the colour-singlet
state 1S([)1]. This serves as a cross-check of our approach. This singularity is independent of the
initial-state particles and depends only on the bound-state colour configuration. In addition, we
obtain for the first time the Coulomb singularity for the colour-octet state 18’%8]. It differs only in
the non-abelian part from the one in the colour-singlet case.

We have presented the finite remainders for the form factors in section 5. The complete ana-
lytical expressions to the coefficients can be found in appendix E and in a set of ancillary files [60].
In addition to this, we have presented the hard function for all processes including the dependence
on the renormalisation scale ppg, the factorisation scale urp and the NRQCD scale . These hard
functions can now be directly used for phenomenology, e.g., when computing the NNLO corrections
to ng hadro-production. We leave this for future work.
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A Bare amplitude structure

In this appendix, we give the structure of the bare amplitude for each form factor at one-loop level

up to O(€?) and at two-loop level up to the finite piece O(e?).

amplitude follows the notation in section 3.1.

The decomposition of the bare

For the one-loop amplitude, we furnish the analytic expressions up to O(el), while for the
highest order term we give its numerical value. In the case of the two-loop amplitude, we provide
the analytic expressions for the pole structure, while for the finite piece we furnish the numerical
value. For convenience, we display only the first 5 digits after the decimal.

At one-loop order we have the following results for the different form factors:

vy 15’%1]:
vy, [1] || €72 et €? et €
FP oo 0 =3 1+ 172 4 4log2 + 1¢3 | 5.52395
7Vl 0 0 0 0
gg <> 1s[ ]
99, (1] e ? et €0 el €?
FDolo 0 = _3 1+ 172 4 4log2+ T¢s | 5.52395
. 1,2,1.3
1) Log ipr g | MPTRSTEERT 2082 g so0014
}:(4 -1 = +log?2 2 67 4 Lr2log2 — imlog®2 + |
imlog2 —log” 2 3 3 7 14.79988
3 10g 2 — ECB
8
79 < 1S5
vg,[8] || €72 et e €l €?
Folo 0 = 3 1+ 1724 4log2+ I¢s | 5.52395
1 1,2 1
3 1.2 -5 - gﬂ' — §10g2 —
FOO| -t | <hadtesa |1 T WD T Lalog2 — Llog?2 + | ~112737
5log2—3lo
2TTE T flog’ 2+ £y
8
99 < 15§
99,[8] || €72 e ! €? €t €
FP oo 0 =3 1+ 172 4 4log2+ I¢s | 5.52395
i 1 + 2n? + | fr—Ba?4imd—2log2—
FO Ol Zr T T Ler | It L Lion2g | 292383+
A 2 log 2 2 %8 oo | BT 08 208 7 2.39994
simlog2—log®2 | gimlog?2+ 2log” 2+ (3
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At two-loop level we find the following structures for the bare amplitudes:

Yy > 1S([)l]:
¥y, [1] et |3 €2 e ! e
Fooollo o 3 I N N —9.58245
Faoollo o 0 ~205 1.56657
F 0 0 0 0 0
Fithwac || 0 0 % Iz —2.25015
]:1(:'2,? vac O O O % - g_z —311684
F el 0 0 0 0 0
1(427%;V'<LC 0 0 0 0 0
FEO 1 = (0.64697 + i 2.07358) CpTrny, + (0.73128 — i 1.79085) CrT i
1
gg <> 15'([) I,
99, [1] S e? e ! €V
FZoolo o 3 —89 1 | 3og2 —9.58245
313 | 5im _ 13x% _ im’
96 4 96 16
(2) 3 7 _x2 .3 49 3 1002 1.2 6.32284 —
Fra 0 —15 16— 15 T 5 log2 %—610g27810g 2457 log2— 1 12.79196
5G3
754 72 i
19 i | —qm o et e - F
7@ 1 -5+ F - 19i828+ 0| Fplog2 4 qyimlog2 4 | 3.45556 +
A4 8 Llog 2 e IOgQ , | Blos2 — Hlog®2 4 | i24.90661
imlog 2+ log 2imlog? 2 — %log3 2+ 411_; 3
‘FI(:?J)L;vaC 0 0 _% % - TQF_AZL —2.25015
‘FI(TQ,l);vaC O O O %_Z - g_z —311684
(2) 1 1, im 1 7 x 1 11042 1.01362 —
F i hpvac || 0 G 6 te —3log2 | —53 -5y —gimlog24glogm2 ) L0
@) 0 N 5 i 1eg LS T Sog2 — | 141108 —
Alivac 2 [EEEEE lirlog2 + Llog” 2 i4.80147
FO o1 = (0.64697 + i 2.07358) CpTrny + (0.73128 — i 1.79085) Cp T

+ (0.17355 4 ¢ 0.27096) CaTpny, + (—0.27562 + 7 0.56535) CaTriy
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Yg > 15’%8]:

~g,[8] et €3 €2 et €V
Faooloo o 2 —39 T 3log2 —9.58245
199 572 77
—5r + %= — s5log2 +
F@ 0 _3 2Lz 4 3592 | ,9 96 32 11.58260
FA 16 32 32 "8 ’17—610g2— %10g22— 1_76<3
—28_Liogo4 | 25 4+ 2018 187 10g2 +
2 1 L 1lloe9 576, 48 108 381 144 —0.78451
AA 32 102 — 58108 1og®2 L log”2 — +1og® 2 — £2¢; 0784
hevac || 0 0 —1 oo —2.25015
1(72,l);vac 0 0 0 % - gz *311684
fgfgwac 0 . L Lliogo —23 — Llog2+ Llog”2 0.69685
@ 0 L 1L Llog2 | =82z 5094 110622 | (0.15016
A,lvac 18 144 — 12 108 133 96 36082t log 49
Fo e = (1.29393 + i 4.14715) CpTrny, + (1.46257 — i 3.58169) CpTri
+ (—0.48522 — i 1.55518) Ca Trnyp, + (—0.54846 + ¢ 1.34313) Cu Ty
8
gg <> 15'([) I
99, [8] e 4 e 3 e ? et I
F2) 0 0 3 —39_ 1 4 31pg2 —9.58245
FF 32 32 16 T 498 :
% e
2 13. —
fg}l 0 - T4+ 2log2 | Blog2 + in?log2 - .39607
6 085 i6.3610
16 10g 2 — §§3
43 211im 2972 33
] 235 _ bim ?7288+W764+
F(2) 1 % T F | b e, | Tls2 + 5flog2 4 | —0.80634+
A4 8 Llog2 96 217085 7 | 11t 000 4 Log?9 4 | $9.46843
Tlog24log 2 | 8 4. 3275
imlog®2 — 3log” 2 — 1=(3
}(72,;7,;V'<LC 0 0 7% % - g_z —2.25015
‘7:1(:'2,l);vac O O O é_z - g_z —311684
@ 0 N T in110p0 | T967 361082 Flog2+ | 1.20366 -
A, h;vac 6 48 12 3108 % 10g2 ) 10.83480
_ _19 | sim x4 _ 5570 —
fhc [0 | 5 S+g-dlog2 | S T o
Ve T log2+ 5log”2 12.40073
Fortan = (1:20393 4 i 4.14715) CpTny, + (146257 — i 3.58169) Cr Ty

+ (—0.39845 — §1.41970) CaTrnyp, + (—0.68628 + i 1.62581) Cu Ty
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B Renormalised amplitude structure

In this appendix, we give the structure of the renormalised amplitude for each form factor at one-

loop level up to 0(62) and at two-loop level up to the finite piece (’)(60). We proceed in a similar

fashion as done in appendix A. The decomposition follows the notation in section 3.2. From the

finite piece on, we give for convenience the coefficients evaluated at the scale y = mq.

At one-loop order, we have the following results for the different form factors:

—2 —1 0 1 2
v || e € €] e S S
7 0 0 = 3 14172 4 410g2+ I¢5 | 5.52395
7 o 0 0 0 0
7Y o 0 0 0 0
-2 —1 0 1 2
gg’ [1] € € u=mgq € p=mgq € ’#:mQ
Fi 0 0 = _5 14 1x% 441082+ I¢5 | 5.52395
. . Lo 14+in+im?+im3—2log2—
0| 1| SEles2z |4+ g 4| G TR e, | 9502914
A —3 u_ 1y irlog2 —log22 | 12 - i4.79988
22 g g 210g® 2 — Ly
7o 1 0 0 0
—2 —1 0 1 2
v9.18] | € e ] e Mg, o
7 0 0 = 3 14 1ix% 441082+ I¢3 | 5.52395
1 1,2 1
17 3 1.2 —3 — §T — plog2 —
—=(1) —54 + 13 + T+
N —1 o2 - 11, | Liog2—Llog?2 m2log2 — Flog®2 4 | —1.12737
2 a2 2 1log®2 + (s
7Y o 1 0 0 0
-2 —1 0 1 2
gg’ [8] € € € u=mgq € p=mq € |1U':mQ
7o 0 Ly —1+ 124+ 4log2+1¢ | 5.52395
5 1 5 3 3
—(1) IR T et i Pl QY VYO
Fao |72 |ioga_yy, | 3los? | gmilog2 — glog®2 — | o0,
627 2w lirlog2—log?2 | Limlog®2+2log® 2+ L¢3 '
7Y o L 0 0 0
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Similarly, at two-loop order we find the following structure for renormalised amplitudes. Since

the light-by-light contributions are finite in four dimensions, we have that 7,

corresponding values can be found in appendix A.

—=(2,0)
,c;lbl —

]:(2 0)

ealbl and the

) || et | e? e’ %o
Foo o o 0 . ~21.10790
) 0 0 0 _x —4.79298
o 0 0 0 0 0
‘Fg?)h vac || 0 0 0 0 0.22367
fggg e || 0 0 0 0 —0.56482
]:542,)h vac 0 0 0 0 0
]:A Jl;vac 0 0 0 0 0
fl(.?l?vac 0 0 0 0 0
99,[1] || e* | ? e? e g
F2) 0 0 0 _ —21.10790
(s 2 inS
— ; . i 67 1 5in ,35?71_6,% log2+ | —5.81386—
FA 17 16 1r%log2 + 31, — G =l — ¢ | 112.72196
95 175w _  113=x%
103 » _ §4 144 576
7 T 16 2+ 1Bog2 — Lin 10g2 +
—2) o in B _Llog2— | Hr 10%2 b oy 10.09665-+
Faa | 5 Vo2 N 11 imlog2+log? 2+ | 2imlog?2— 4 log’2— 21, + 14.80863
g 11 i 11 19 2 —u Lls.
Bl + 51 ol — 3gml — 15 log 21,
log20, + 112 | 2ilog2l, +210g 21 - li
212 —log 22 + £13 + 12Cs
Fivme || 0 0 0 0 0.22367
7%2,3;% 0 0 0 g 1.54971
o —0.19436—
‘ 0 0 0 0
]:A,h vac 10.26425
5im
5im — 3 1og2
s lo (e o | BT e
A,l;vac 24 % log 2 — il# 17r g g 2 11.12947
Sl t+ 3 1og 21 — 12lu
Flihae [0 |0 5 0 0
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_ 0
v9,18] || e | e® e’ et -
o 71'2 J—
Frr 0 0 0 -z 21.10790
2 7_‘,2
=) 0 0 5_ x° Z_;_%Qz_%b?g“ﬁlogﬂ 7.82058
e o glu — gl — 166
211 3?2 11
—== + =2 4+ =log2 +
67 %532_%1(%2"’_ 352116 29 ,64l1 3gli 3
—=(2) 1 192 T Llpe2904 17 45 08 308 727K 2.24678
Far |lm |1 dg, | T8 ETE T S0 L Ligg?o1, 4 |
slog2+ 5l liog2r, + 112 | % og o ,2 1g3 o
4 pOUAGT 3512 — 2log 212 + 5515 — $5(s
fg)h,m 0 0 0 0 0.22367
— 17 w2 5
fﬁ)z,m 0 0 0 -5+ 0.49245
7(/;2,)h;vac 0 0 0 0 —0.10680
1 2
=) 0 s —15 +tglog2 — | 15 — f5log2 - 210872 5013
Alivac 8 Ll sl + 15 log 2, — £12
—=(2) 1
‘Fl(,l;vac 0 0 24 0 0
_ 0
99, (8] et e’ e’ e Clu=mq
2
Foo o o 0 _z ~21.10790
i T in 9 o
=(2) 0 0 5 a2 %+5T—4—8—§—§1og3+ 731014
]:FA 4 16 %7{'2 10g2+gl#—%7{'2lu7§<3 1636098
_ 1847 _ 2llim _ 232
. 864 288 . 576
B+ M o) 3 Lliogy— mlog2 +
7r? 15 17n? 23 2
) 89 4 ix | 95— wlog2 =) TEolog2 + gilog 2| g ppngg
‘FAA % ?61 8 1l % log 2+10g 2+ 1T log 2 — 3 log 2 — mlu + 2441944
3log2+ 1, is; imp | dTimg 72 2310091
6w T 2t 48 lw— 28T w12 g23%2t
log 21, + 312, imlog 21, +2log 21M+§—Sl#+
i 2 173
Ili — 10g2l# + gl# — @4-3
Frnac|| 0 0 0 0 0.22367
- 7 w2
-F;"Q‘,)l;vac 0 0 0 -4z 1.54971
o ~0.20398—
fA,h;vac 0 0 0 0 10.13212
151 5im i |
, _2 iz |oe T P g gloe2 g
Fithvac || 0 2 1og2 - 1] olog2 = 5log™2 + g5lu = | ;g 56u74
2 an @], + log2l, — 52
‘Tl(.?l?vac 0 0 % 0 0
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C Renormalisation coefficients

In this appendix, we give the expressions for the renormalisation coefficients Z used to remove
the UV singularities. We apply for the gluon wavefunction Z,, the heavy-quark wavefunction
Z¢q and for the renormalisation of the heavy-quark mass Z,, the on-shell renormalisation scheme,
while for the coupling renormalisation Z,, we adopt the MS-scheme [61-64]. In the following, the
expansion in the strong coupling involves the coupling with ny = n; 4+ ny, flavours. In order to get
to the conventional coupling where only n; massless flavours are absorbed, we need to apply the
decoupling relation given in ref. [50], which reads:

o) = o ©1

with

(1) 2 2
s 1 1
Ca, =1+ (aﬂ ) Trny, [31 + = 612 + W—e + —6213 + —€2l — —€ C3}

6 " 36 18 36 9

(n1)
« 1 15 1 2 5

- T Trnpyl? =1 S 3. 2
+< . ) Fnh|:9 FNp +CF<16+4H>+CA< 9+12#):|+O(Oéé) (C )
The renormalisation factors read

(ry) 1 1 1 2 1
Zg1+<0‘s )Tpnh {——z 6127”—67—2137”—21 +—e 43]

7r 3¢ 3" 6 " 36 18 36
(ng) 2 2
a s 1 1 1 s
& Tenp |T 12 Temg | —— — —1, — —12 — —
+< T F"h[ it (9 bt 6l” 108) e l( 02 " 9l T Tslm 108)
11 15 35 13 5 5 13 1372
Crl—=——=l,——)+C - — P —
+F( 8¢ 4" 16) A(1442+72“ 32¢ 6”+36“+192+864)]
+0(a?), (C.3)

() 3 3 3 2 1 1
Zg =1+ <o¢5 ) Cr [———1——1 —2¢—el, — Zel? — 7T—€—4€2—262l — e -z
T

de 4" 8 16 B mogo
72, w2, 1, o\’ 1 1, 947 11 3, 52
e T - : Trnp | —— + 1+ e + =1, + 212 = 2
- "1t 643} 77 CF{Fnh<166+46“+288+24“+8“ 16)
1 113 19, 1, =2 9 51 9 433
T 2+ )y S Al
+F"l( 82 "4z T o6 T “+8“+12)+ F(322+64e+166”+128
51, 9, 4972 11 127 1705 215, 11
Sl Tol - =+ mllog2 — < C Ll By L
Tl T et T g T8 @’) e <32e2 192¢ 384 96 * 32
572 1
if—w og2+ —(3 || +0(ay), .
+ log 2 g O(a? C4
16 2
al") 3 3 3 ., R T
Ly =1+ CF[_I_l_Zlu_Qe_du 861M—E6—46 —2€7l, —561 —geﬂ
T €
e ay ag] oy (0 o [ (<L ML 1 7
12° 16Tt T PR\ 782 Ta8e T 06 T 24" T8 6
1 5 71 13 2 9 45 9 199
T = 2 =
* F"l( 8 Tz Tog Tl +8l“ )+CF(3262+646+1661“+128
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45 9, 177r2 1, 11 97 1111 185, 11,
taplet gl T g T los2- _43 TOA (302 "Toze 31 96 ¢ 32
2
+71T—2 — m?log2+ @)] (C.5)
("f 5 (ns)\ 2 2
o o (e g B ,
Lo, =1 ( s ) 4de ( T ) (1662 326) +(9(0¢5), (C.6)
with 11 4 34 20
ﬁo = ?CA — 5 an, 61 = ?Ci — ?CATFTLf — 4CFTF7’Lf. (C7)

D IR singularities

In this appendix, we give the coefficients that appear in the anomalous dimension matrix I' which
is needed to construct the IR singularity structure Zir for the amplitude. The expansion in the
coupling is done with n; light flavours inside the running. Apart from the coefficient 'yglhlifgs,
have computed in the main text, the remaining coefficients have been computed in refs. [57, 58, 65—
69]. The coefficients read

(1) () \ 2 2
o o 67 w 5
oo = | =2 s — ) -7 3 D.1
Teusp ( . >+< - ) [C (36 12) 9 F”Z}JFO(O‘&)’ (D-1)
(1) (n) \ 2 2
g_ [ @ g 9 7@ 117 1
7 <w>4+<w>[c’4<108+288+8§3
16 72
27 72

(n1) (n1) 2
o_ [ \Cr  [as Cr _4 7 10 3
7@ = < — ) 5 +< — ) 1 [CA( 18+ (3 +9TF711 +0(a?). (D3)

E Form factors: analytic expressions

which we

+CATrny ( ) + CFTFTLZ:| + O(Ozi), (D.2)

In this appendix, we collect the analytical expressions for the individual coefficients in the form-
factor decomposition defined in section 5. We also make them available in electronic form in ref. [60].
These coefficients can be expressed in terms of master integrals that we have computed in our
companion paper [23]. In the case where these are expressible in terms of multiple polylogarithms,
we will write them out explicitly. For the integrals that involve functions in the class of elliptic
multiple polylogarithms and iterated integrals of modular forms, as these are rather lengthy, we
will keep the master integral notation. The master integrals will be expanded in the dimensional
regulator e as done in our companion paper [23]

Fr=>Y ér". (E.1)
k

The complete analytical expressions for the F I(k) terms can be found in ref. [70].

In the following we define some non-trivial constants that appear in the coefficients and that
have not yet been defined previously in our companion paper [23]. The Catalan constant C' is
defined as

Z = 0.915966 . (E.2)
2n +1
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whereas the polygamma function ¥ (z) is given by

dm+1
W (2) = s log (T(2)) (E.3)

with I'(2) being the gamma function. The function HPLI (0, —, +, —) can be expressed in terms of
multiple polylogarithms as

- G(0,-1,1,1;i) + G(0,1, -1, —1;4) + G(0,1,—1, 1514) (E4)
— G(0,1,1,—1;4) — G(0,1,1,1;4).
Having defined the constants above, we now turn to the individual form-factor coefficients.

We first collect the coefficients al@) needed for the regular contributions,

() _1261 2579 , 57743 , 35 1(5) 3 [< L 1)}
G =96 T Tras”  dama00” T ass” 2 \3) Fypmim |Gl ey

+ éwlm [G(o,e*%,q;l)} n 1—76Re [G(e*%,l,—l;l)} - %R {G(O 0,6~ % 71;1)}
- %R {G(o,o,e*“, : )} - %Re [G(e’%,l,l,—l;l)} +El - % 2log
+ 45—87r012 (g) log2 — gRe {G(e_%r,l,fl;l)] log2 — ilog 2 — %W log? 2 + llog 2

7 7 3, 1 7 . 1
37 2log 3 + WCIQ( )log3f—log 210g37—67r Lis <—> +—210g2 Ligy (5)

+ 2B %@ log2 ~ F{0 ~ 37D + oA — SR - 1 + R + 2R
— P+ 2R, (©.5)
@y = - 4577563 + :13;222”2 i 61252900890107T4 N %”CIQ (g) - %“m [G(O’ Le ¥ 1)}
- %ﬂ'lm [G(o,e—%",—m)} - ;—;Re [G( —F 1,1 1)} n 1—60Re {G(O,o,e—%",—m)}
+ %Re {G(O,o,e—%, 1; 1)} + Re [G(e—%", 1,1,—1; 1)} n %1 92— %H log 2
3677012 (%) log 2 + %1og2Re [G(e—%”, 1,-1; 1)} n 1—61 o292 4 8g7r log? 2
— 11_2781 g® 2+ G—Zﬂ log3 — ﬂlogi’wClg (%) + é—zlog2210g3+ iﬂ'QLig (—%)
- g Lis <§> log2 — %@, ~ @@, log 2 + %Féo) + SF&” - 4—70Ff§’ Ffé”
TR PN PR ) ®o
@ = - 12%5 ﬁzz i 6399112003070 ' ?;chb (g) _3_92”Im {G(O’l’e_zéﬂ;l)}
- gﬂ'lm [G(O,e‘T,—l;l)} - ﬁRe [G(e—%”,l,—m)] + %R [G(o,o e —1;1)}
+ %Re {G(o,o,efzé”,—h 1)} n %Re [G(e*%", 1,1,— )] n %1 _ %H log 2
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We now collect the coefficients bl@) needed for the light-by-light contributions,
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In the following, we list the ¢;”’ coefficients needed for the vaccuum polarisation contributions,
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