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Outline

All results and plots in ATLAS-CONF-2022-054

• What on earth does this long title mean? (i.e. what is DV+Jets?)

• Physics Motivation and Signal Models

• Analysis Overview and Selections

• Backgrounds

• Unblinded Results

• Conclusion
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What is DV+Jets?

• If BSM particle doesn’t couple well with SM, has small 
mass splitting, or decays through off-shell mediator 
→ long-lived (LLP)

• If decays into quarks or several charged products 
→LLP gives displaced vertex (DV)

• Techniques for reconstructing long-lived BSM particles 
improved dramatically since Run 1. 

• Triggering: jets can come from initial or final state

→ DV+Jets searches for LLPs with DV signatures in events 
triggered by multi-jets

Be inclusive to as many models as possible: 
Higgs portal & RPV SUSY 3
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Higgs Portal Models

• Dark matter (DM) could have 
higher generation particles

• This “dark sector” (DS) should 
couple with the SM via the 
Higgs (i.e. a Higgs portal) if they 
have mass

• Therefore Higgs should be able 
to decay into dark sector 
particle pairs

• Jets from Higgs production
process and DS particle decay
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RPV SUSY Signal Models

• We are also sensitive to many models that predict LLPs with jets

• Particularly R-Parity Violating SUSY

• Small RPV coupling → long-lived ෥𝝌𝟏
𝟎
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Analysis Overview and Selections

• Full Run-2 dataset: 139 /fb

• Multi-jet trigger

• 2 SRs: High pT Jet and Trackless Jet 
signal regions [SR] (if jet is trackless, 
can lower jet pT req.)

• DVs must:

• lie outside of detector material, 

• have 5+ tracks, 

• invariant mass 𝒎𝑫𝑽 > 𝟏𝟎 𝐆𝐞𝐕
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Combined Background Estimate
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Combined Background Estimate – Cross-Check

Estimate three main sources of background 
individually and combine

• Hadronic Interactions (HI): [normalisation 
data-driven]

• Functional fit to 𝑚𝐷𝑉 < 10 GeV

• Extrapolate with MC-based correction to 
𝑚𝐷𝑉 > 10 GeV

• Merged Vertices (MV): [fully data-driven]
• Look at deficit of distance significance between 

pairs of DVs in same event vs different events

• Accidental Crossings (AX): [fully data-driven]
• Add crossed tracks to DVs

• Get rate from 𝐾𝑠
0 → 𝜋+𝜋− decays with extra track
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Outside, N-trk=4, High pT SR
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Inclusive Background Estimate

Alternative method. Combined and inclusive estimates cross-check each other.

• All sources of background correlated with prompt jets

→If know # DVs per jet in control region [CR], can take # SR jets and estimate # DVs

• Use single photon trigger as CR (no contamination from jetty signal)

9



Results

Signal Region Combined Inclusive Observed

High pT 1.08 ± 0.69 0.46−0.30
+0.27 1

Trackless 2.1 ± 1.1 0.83−0.53
+0.51 0
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Conclusions

• We searched for hadronically-decaying long-lived particles in the presence of many 
jets

• No significant excess observed

• Strict limits placed on the existence of such particles under two SUSY models

• Higgs portal interpretation still in progress

• Current public results here: ATLAS-CONF-2022-054
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https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2022-054/


Thank You
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Backup Concepts
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Why long-lived particles?

• There are likely undiscovered particles beyond 
the standard model (BSM)

• Hierarchy problem

• Dark matter

• No particular reason for BSM particles to be 
restricted to lifetimes 𝜏 < ~10−14 s [“decaying 
promptly”] 

• Assumption built into most regular collider searches 
(usually reconstruction or cleanings)

• Many SM particles don’t satisfy this

• → We should check the possibility that BSM 
particles we are looking for could be “long-
lived”
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https://doi.org/10.1016/j.ppnp.2019.02.006
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What could cause a BSM particle to be long-lived?

1) Fewer possible decay modes

2) Less phase space (small mass-splitting)

3) Small coupling between particles
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What could cause a BSM particle to be long-lived?

1) Fewer possible decay modes

2) Less phase space (small mass-splitting)

3) Small coupling between particles

4) Very off-shell intermediary
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Benchmark Models: SUSY vs. Scalar Portal
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Benchmark Models: SUSY vs. Scalar Portal
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SUSY Scalar Portal
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Context on the LHC Experiments
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https://cds.cern.ch/record/842700/
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Context on ATLAS and CMS

Muon Spectrometer (MS)

Hadronic Calorimeter (HCAL)

EM Calorimeter (ECAL)

Tracker
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https://cds.cern.ch/record/2204863/https://cds.cern.ch/record/1505342

https://cds.cern.ch/record/2204863/
https://cds.cern.ch/record/1505342


LLP Signatures in the Tracker
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Tracker

𝑓±

𝑓∓

prompt displaced

𝐿𝐿𝑃
• Can target:

• LLP itself (disappearing track 
[ATLAS, CMS]) 

• or decay products

• LLPs decaying to charged 
particles:

• Don’t see anything: need to run 
large radius tracking (LRT)!

• Displaced vertex (#trks, inv. mass, 
location)

• Backgrounds include:
• SM decays

• Hadronic interaction of SM particle 
with material (HI)

• Accidentally crossed tracks
• Vertices accidentally merged 

together can affect analysis 

https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/SUSY-2018-19/
http://cms-results.web.cern.ch/cms-results/public-results/publications/EXO-19-010/index.html


Some Existing Results [Higgs Portal]
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Backup Analysis Info 
and Plots
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Special Reconstruction for DVs

We use 2 special reconstruction algorithms

1) Large radius tracking (LRT) [ATL-PHYS-PUB-2017-014]
• Similar to standard tracking, but loosen requirements on 

impact parameters

• Computationally expensive, run in reco step (DRAW)

2) Secondary vertexing [ATL-PHYS-PUB-2019-013]
• Run in derivation step (SUSY15)

• Input: standard AND LRT tracks

• Algorithm:

1) Form 2-trk seed vertices with high-quality tracks

2) Merge to form N-trk vertices

3) Lower-quality tracks attached to vertices
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SRs and Event Selections
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Two cut-and-count signal regions:

• High pT SR: Events must

• Pass High-pT baseline jet selection

• Contain ≥1 DV passing the DV selection

• Trackless SR: Events must

• Pass Trackless baseline jet selection

• Fail the High-pT baseline jet selection

• Contain ≥1 DV passing the DV selection

Apply jet selections to offline-calibrated jets that 
are ~98% efficient wrt. Trigger and DRAW filters 

High-pT=

4j250
5j195
6j116
7j90

Trackless=

4j137
5j101
6j83
7j55

&  ቊ
1 trackless jet 78

2 trackless jets 56

෍

𝑡𝑟𝑘𝑠 𝑎𝑠𝑠𝑐.𝑤.𝑗𝑒𝑡

𝑝𝑇 < 5 GeV



DV and Track Selections
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DV-trks must pass a track 
cleaning to be counted at all:

Depends on 𝑟𝐷𝑉 and whether or 
not track is attached

• 𝑝𝑇 > 2-4 GeV

• 𝑑0-significance > 10-15

• Angular requirements

• Hit pattern requirements

Chosen to reduce background to 
~1 event in each SR

No SM process produces a high-mass DV

Final DV selection: 𝑚𝐷𝑉>10 GeV, 𝑁𝑡𝑟𝑘≥ 5, 𝑁𝑡𝑟𝑘
𝑠𝑒𝑙≥ 2

Baseline DV selections:

• 𝜒2/𝑁𝑑𝑜𝑓< 5                                                 (good quality)

• 𝑅𝐷𝑉 < 300 mm and 𝑧𝐷𝑉 < 300 mm       (fiducial volume)

• > 4 mm from any PV in the event           (displaced)

• Pass strict material veto (not in detector material 
[removes 48% of fiducial 
volume])

# all tracks     #non-attached tracks



Summary of Regions
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(Inside/outside refers to inside/outside detector material according to a material map veto)
(VR shown is only the blinded VR. Various other regions used as unblinded VRs)



Material Map

• This shows DVs vetoes by the map
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Inclusive Background Estimation Validation

• The blue error bands includes all systematic uncertainties. 

• The uncertainty based on observed non-closure in the Inside material VR is 

separately shown in red.
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Results

• Colour is signal yield, number is actual data number
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Cleanings and Selections
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Background Estimates
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Background Uncertainties

• "CR statistical“: propagation of 
statistical variations from CR-
>SR

• "Non-linearity“: residual 
dependence of jet-DV 
probability on amount of jet 
activity in event

• "VR non-closure“: from inside 
of material validation regions.

• "Pileup": reweighting events in 
CR to match SR pileup 
distribution
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Inclusive Estimate Procedure (1)

1. Measure jet-DV correlations in low n-jet control region of data (single photon 
trigger, fail jet requirements of SR)
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Number of jets 
matched to a DV

Number of jets
z (beamline)

y

x

∆𝑅 = (∆𝜙)2 + (∆𝜂)2

Jet axis

DV-PV vector

In control region of data, match 
each DV to closest track jet:

Calculate Prob( DV | track jet ) as a function of track jet properties



Inclusive Estimate Procedure (2)

1. Measure jet-DV correlations in low n-jet control region of data (single photon trigger, fail jet 
requirements of SR)

2. Use track jets in events passing SR jet requirements to estimate expected background:
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Events passing SR jet selectionProb (DV | jet) ×
𝑁𝐷𝑉
𝑆𝑅 = 𝑓 ⋅ ෍

𝑏𝑖𝑛𝑠

𝑃 𝐷𝑉 𝑗𝑒𝑡 ⋅ 𝑁𝑗𝑒𝑡𝑠,𝑏𝑖𝑛



Inclusive Estimate Uncertainties

Sources of systematic uncertainty:

1. Statistical variations of jet-DV probability and f-factor ( 58% )

2. Non-linear dependence of jet-DV probability on amount of jet 
activity in event (+10-27% High pT / +6.3-17% Trackless ) 

3. Non-closure inside material regions (4% in High-pT SR only)

4. Pileup difference in control and signal regions (5.9% High pT / 
20% Trackless)

• Obtained from difference in jet-DV probability when reweighting to 
match pileup distribution

• Reweighted is taken as nominal background estimate, difference is 
taken as uncertainty
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Inclusive Estimate Uncertainties

Sources of systematic uncertainty:

2. Non-linear dependence of jet-DV probability on amount of jet 
activity in event (+10-27% High pT / +6.3-17% Trackless ) 

• Fraction of CR jets matched to SR-like DV vs # track jets in event

• Value of fit at each bin is used to create an alternate jet-DV 
probability and multiplied by normalized # of track jets in that bin 
in CR and SR -> difference is uncertainty

• Repeated with variations of fit where anti-correlated params 
varied within 1 σ, largest difference becomes asymmetric 
uncertainty
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Updated HI Estimate

• HI generally follows the shape

• Fit in 𝑚𝐷𝑉 < 10 GeV and extrapolate to 𝑚𝐷𝑉 > 10 GeV

• However there is a secondary component of HI with a 
shallower exponential tail present

• This is due to “elastic” HI where most of the mass comes 
from a single high-momentum track collinear with the PV-
DV vector

• There are unfortunately too few stats for us to properly 
characterize this component

#DVs =
1

1
𝐶(𝑥 − 𝑏)

+
1

𝑒−
𝑥−𝐵
𝑙

(start with straight ascending line at low mass, 
exponential decay in high mass after peak)



Updated HI Estimate

• Assuming effect of MC->data and event selections 
are similar with primary and secondary components:

• Fit secondary exponential in MC full range

• Propagate ratio between components from MC to data

• We do not have enough stats to prove/disprove 
these assumptions

• Uncertainties on our knowledge of secondary 
component behaviour (i.e. MC) propagated to final 
template

• “Fixed” templates close within uncertainties 



MV Estimate

• Merging in vertexing algorithm is only 
possible if pairs of DVs have distance 
significance (S) < 10 σ

• Get mass template shape by merging pairs 
of DVs

• Get merging rate from comparing S of same-
event pairs and different-event pairs

• Uncertainties:
• 7-13%/30-50% (trackless/high pT) from statistical 

uncertainty on merging rate

• 70% from MC non-closure

42

Merging in 
S < 10 σ region

Shape of distributions match 
in S > 10 σ region – good!



AX Estimate

• Get mass template shape by randomly attaching 
tracks to DVs in data

• Get crossing rate from fraction of 𝐾𝑠
0 → 𝜋+𝜋−

decays reconstructed with extra track 

• Uncertainties:

• 25% from crossing rate

• 70% from MC non-closure
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MC Signal Uncertainties

• Standard:

o JES/JER ➝ negligible for Strong RPV (set 1% flat), ≲ 10% for EWK RPV

• Custom:

o JES/JER vs. displacement (we checked for trackless jets)➝ negligible

o Large radius tracking / secondary vertexing ➝ up to 15% for low 𝑚χ , long lifetime

o Compare number of reconstructed 𝐾𝑆
0 in data vs dijet MC

o Calculate per-track uncorrelated uncertainty

o Translate to signal efficiency by seeing difference when randomly killing tracks in a DV

o Pileup reweighting ➝ insignificant compared to statistical uncertainty

o Apply pileup reweighting by hand from MC/data distribution difference

o Currently being finalized
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Extra Stuff
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Analysis Overview and Selections

• Full Run-2 dataset: 139 /fb

• Multi-jet trigger

• 2 SRs: High pT Jet and Trackless Jet 
SRs (if jet is trackless, can lower jet pT
req.)

• DVs must:

• lie outside of detector material, 

• have 5+ tracks, 

• invariant mass 𝒎𝑫𝑽 > 𝟏𝟎 𝐆𝐞𝐕
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Reminder of Toy Model and Method

Inside

Outside

No Evsel (MC) With Evsel (Data)

𝐴𝑒
−
𝑥−𝑐
𝑚1 + 𝐴𝑒

−
𝑥−𝑡
𝑚2

𝑒
−
𝑥−𝑐
𝑚1 + 𝑒

−
𝑥−𝑡
𝑚2 𝑆𝑒−

𝑥
𝑠𝑒

−
𝑥−𝑐
𝑚1 + 𝑆𝑒−

𝑥
𝑠𝑒

−
𝑥−𝑡
𝑚2

𝐴𝑆𝑒
−
𝑥
𝑠𝑒

−
𝑥−𝑐
𝑚1 + 𝐴𝑆𝑒

−
𝑥
𝑠𝑒

−
𝑥−𝑡
𝑚2

Fitted in Estimate + Could Fit for non-closure + Can be fitted + Could be fitted if we took dRMax cut

𝐴𝑆𝑒−
𝑥
𝑠𝑒
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Reminder of Toy Model and Method

• Since errors would be dominated by bad stats in MC:

• Errors will be maximum of:
• Data nominal propagated statistical errors

• HI MC Inside poissonian errors scaled by the new data estimate divided by the 
full HI MC inside fit.

• 0 bins instead of HI MC Inside poissonian errors will be 1.832 times the average HI MC 
weight inside
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Motivation for Deeper Truth Studies

• Is this an AX? Using only info in NTUP we might naively 
think so!
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Motivation for Deeper Truth Studies

• Is this an AX? Using only info in NTUP we might naively 
think so!

• Digging into the DAOD and looking at the decay tree:
→more accurate to call this HI

• Tracks can undergo decays or HI later in the detector

• Any of these descendant tracks (that point back to the DV) 
can be reconstructed as “the track”
→distance between truth origins not what we think!

• Therefore it is essential that we know the truth parentage 
history of the tracks in order to determine what our 
categories should look like in MC truth!
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Defining the “Originating SM LLP” (OSMLLP)

• Motivated by distinguishing “real process” DVs (like SM or HI) from DVs that 
involve tracking (AX) or vertexing (MV) effects

• Trace ancestry or reconstructed tracks back to the originating particle that begun 
at the PV and the travelled out into the detector displaced

• Allows us to categorize background in truth as:

• Single-Process DVs (SM or HI)

• Single-Process DVs + Other Track (AX, or MV*)

• Possible MV

• Other
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Turns out there are 4 types of AX with distinct behaviours
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Crossed by track 

from same pp-

interaction

• Collimated with DV tracks

• Dominant in low m

Crossed by track 

from other pp-

interaction (True-PU)

• Distribution of angle with 

DV tracks is more broad

• Tends to have a much 

broader tail extending to 

high m

Crossed by fake 

track? (Fake-PU)


