

Search for Long-Lived Particles in ATLAS with Displaced Vertex Signatures in Multi-Jet-Triggered Events (DV+Jets)

David Rousso on behalf of the ATLAS Collaboration

EDSU2022

November 11, 2022

Outline

All results and plots in ATLAS-CONF-2022-054

- What on earth does this long title mean? (i.e. what is DV+Jets?)
- Physics Motivation and Signal Models
- Analysis Overview and Selections
- Backgrounds
- Unblinded Results
- Conclusion

What is DV+Jets?

- If BSM particle doesn't couple well with SM, has small mass splitting, or decays through off-shell mediator
 → long-lived (LLP)
- If decays into quarks or several charged products
 →LLP gives displaced vertex (DV)
- Techniques for reconstructing long-lived BSM particles improved dramatically since Run 1.
- Triggering: jets can come from initial or final state
- ightarrow DV+Jets searches for LLPs with DV signatures in events triggered by multi-jets

Be **inclusive** to as many models as possible: **Higgs portal** & **RPV SUSY**

Higgs Portal Models

- Dark matter (DM) could have higher generation particles
- This "dark sector" (DS) should couple with the SM via the Higgs (i.e. a Higgs portal) if they have mass
- Therefore Higgs should be able to decay into dark sector particle pairs
- Jets from Higgs production process and DS particle decay

Higgs Portal

RPV SUSY Signal Models

- We are also sensitive to many models that predict LLPs with jets
- Particularly R-Parity Violating SUSY
- Small RPV coupling ightarrow long-lived $\widetilde{\chi}_1^0$

Analysis Overview and Selections

- Full Run-2 dataset: 139 /fb
- Multi-jet trigger
- 2 SRs: High pT Jet and Trackless Jet signal regions [SR] (if jet is trackless, can lower jet pT req.)
- DVs must:
 - lie outside of detector material,
 - have 5+ tracks,
 - invariant mass $m_{DV} > 10 \text{ GeV}$

Data High pT or Trackless

Combined Background Estimate

low mass,

inside material

high # tracks)

Combined Background Estimate – Cross-Check

10 GeV

Estimate three main sources of background individually and combine

- Hadronic Interactions (HI): [normalisation data-driven]
 - Functional fit to $m_{DV} < 10 \text{ GeV}$
 - Extrapolate with MC-based correction to $m_{\it DV} > 10~{\rm GeV}$

- Look at deficit of distance significance between pairs of DVs in same event vs different events
- Accidental Crossings (AX): [fully data-driven]
 - Add crossed tracks to DVs
 - Get rate from $K_S^0 \to \pi^+\pi^-$ decays with extra track

Inclusive Background Estimate

Alternative method. Combined and inclusive estimates cross-check each other.

- All sources of background correlated with prompt jets
- →If know # DVs per jet in control region [CR], can take # SR jets and estimate # DVs
- Use single photon trigger as CR (no contamination from jetty signal)

Results

Signal Region	Combined	Inclusive	Observed
High pT	1.08 ± 0.69	$0.46^{+0.27}_{-0.30}$	
Trackless	2.1 ± 1.1	$0.83^{+0.51}_{-0.53}$	

Results

Signal Region	Combined	Inclusive	Observed
High pT	1.08 ± 0.69	$0.46^{+0.27}_{-0.30}$	1
Trackless	2.1 ± 1.1	$0.83^{+0.51}_{-0.53}$	0

Conclusions

- We searched for hadronically-decaying long-lived particles in the presence of many jets
- No significant excess observed
- Strict limits placed on the existence of such particles under two SUSY models
- Higgs portal interpretation still in progress
- Current public results here: <u>ATLAS-CONF-2022-054</u>

Backup Concepts

Why long-lived particles?

- There are likely undiscovered particles beyond the standard model (BSM)
 - Hierarchy problem
 - Dark matter
- No particular reason for BSM particles to be restricted to lifetimes $\tau < \sim 10^{-14}~\rm s$ ["decaying promptly"]
 - Assumption built into most regular collider searches (usually reconstruction or cleanings)
 - Many SM particles don't satisfy this
- → We should check the possibility that BSM particles we are looking for could be "long-lived"

https://doi.org/10.1016/j.ppnp.2019.02.006

What could cause a BSM particle to be long-lived?

- 1) Fewer possible decay modes
- 2) Less phase space (small mass-splitting)
- 3) Small coupling between particles

$$\tau = \frac{1}{\sum_{\text{decay modes}} \Gamma_{\text{decay mode}}}$$

$$\Gamma_{\text{decay mode}} \propto \frac{|\vec{p}^*|}{m_X} |M|^2$$

$$\propto \frac{\sqrt{(m_X^2 - m_a^2)^2 + (m_X^2 - m_b^2)^2 - m_x^4 - 2m_a^2 m_b^2}}{m_X^2} |M|^2$$

 $M \propto g$

What could cause a BSM particle to be long-lived?

- 1) Fewer possible decay modes
- 2) Less phase space (small mass-splitting)
- 3) Small coupling between particles
- 4) Very off-shell intermediary

$$\tau = \frac{1}{\sum_{\text{decay modes}} \Gamma_{\text{decay mode}}}$$

$$\Gamma_{\rm decay\,mode} \propto |M|^2$$

Benchmark Models: SUSY vs. Scalar Portal

Benchmark Models: SUSY vs. Scalar Portal

Context on the LHC Experiments

Context on ATLAS and CMS

LLP Signatures in the Tracker

- Can target:
 - LLP itself (disappearing track [ATLAS, CMS])
 - or decay products
- LLPs decaying to charged particles:
 - Don't see anything: need to run large radius tracking (LRT)!
 - Displaced vertex (#trks, inv. mass, location)
- Backgrounds include:
 - SM decays
 - Hadronic interaction of SM particle with material (HI)
 - Accidentally crossed tracks
 - Vertices accidentally merged together can affect analysis

Some Existing Results [Higgs Portal]

Backup Analysis Info and Plots

Special Reconstruction for DVs

We use 2 special reconstruction algorithms

- 1) Large radius tracking (LRT) [ATL-PHYS-PUB-2017-014]
 - Similar to standard tracking, but loosen requirements on impact parameters
 - Computationally expensive, run in reco step (DRAW)
- 2) Secondary vertexing [ATL-PHYS-PUB-2019-013]
 - Run in derivation step (SUSY15)
 - Input: standard AND LRT tracks
 - Algorithm:
 - 1) Form 2-trk seed vertices with high-quality tracks
 - 2) Merge to form N-trk vertices
 - 3) Lower-quality tracks attached to vertices

SRs and Event Selections

Two cut-and-count signal regions:

- High pT SR: Events must
 - Pass High-pT baseline jet selection
 - Contain ≥1 DV passing the DV selection
- Trackless SR: Events must
 - Pass Trackless baseline jet selection
 - Fail the High-pT baseline jet selection
 - Contain ≥1 DV passing the DV selection

Apply jet selections to offline-calibrated jets that are ~98% efficient wrt. Trigger and DRAW filters

DV and Track Selections

No SM process produces a high-mass DV

Final DV selection: $m_{DV} > 10 \text{ GeV}$, $N_{trk} \ge 5$, $N_{trk}^{sel} \ge 2$ # all tracks #non-attached tracks

Baseline DV selections:

- $\chi^2/N_{dof} < 5$
- R_{DV} < 300 mm and $|z_{DV}|$ < 300 mm \rightarrow (fiducial volume)
- > 4 mm from any PV in the event ——— (displaced)
- Pass strict material veto

(good quality)

(not in detector material [removes 48% of fiducial volume])

DV-trks must pass a track cleaning to be counted at all:

Depends on r_{DV} and whether or not track is attached

- $p_T > 2-4 \text{ GeV}$
- d_0 -significance > 10-15
- Angular requirements
- Hit pattern requirements

Chosen to reduce background to ~1 event in each SR

Summary of Regions

MC No Event Selection

Data High pT

Data Trackless

(Inside/outside refers to inside/outside detector material according to a material map veto) (VR shown is only the blinded VR. Various other regions used as unblinded VRs)

Material Map

This shows DVs vetoes by the map

Inclusive Background Estimation Validation

- The blue error bands includes all systematic uncertainties.
- The uncertainty based on observed non-closure in the Inside material VR is separately shown in red.

Results

Colour is signal yield, number is actual data number

Cleanings and Selections

	Region	$\mid 0 < R_{\mathrm{DV}} < 25 \mathrm{\ mm}$	$25 < R_{\mathrm{DV}} < 145~\mathrm{mm}$	$R_{\mathrm{DV}} > 145 \ \mathrm{mm}$	
Attached tracks	Track $p_{\rm T}$ [GeV] Track d_0 -significance	> 2 > 10	$> 3^\dagger \\ > 15$	> 4	
	$\Delta \phi_{\mathrm{PV-DV}}$ Upstream veto	$<\pi/2$ No hits allowed with $R < R_{\rm DV}$			
Selected tracks	Track $p_{\rm T}$ [GeV] Track d_0 -significance	> 2 > 10	> 2 [†] -	> 2 > 10	
	Upstream veto	No hits allowed with $R <$		OV	

^{†:} the requirement is tightened to $p_{\rm T} > 4$ GeV for tracks with $\Delta \phi_{\rm PV-DV} < 0.2$

Signal Region	High- $p_{\rm T}$ jet SR	Trackless jet SR
Jet selection	$n_{\text{jet}}^{250} \ge 4 \text{ or } n_{\text{jet}}^{195} \ge 5 \text{ or } $ $n_{\text{jet}}^{116} \ge 6 \text{ or } n_{\text{jet}}^{90} \ge 7$	$ \begin{array}{c} \text{Fail high-}p_{\text{T}} \text{ jet selection,} \\ n_{\text{jet}}^{137} \geq 4 \text{ or } n_{\text{jet}}^{101} \geq 5 \text{ or} \\ n_{\text{jet}}^{83} \geq 6 \text{ or } n_{\text{jet}}^{55} \geq 7, \\ n_{\text{trackless jet}}^{70} \geq 1 \text{ or } n_{\text{trackless jet}}^{50} \geq 2 \end{array} $
DV pre-selection	$\min(\vec{r}_{DV} - \vec{r}_{PV})$	mm, $ z_{\rm DV} < 300$ mm, $ z_{\rm DV} < 300$ mm,
$n_{ m Tracks}^{ m DV}$ $m_{ m DV}$		≥ 5 >10 GeV

Background Estimates

Signal Region	Observed	Expected	$S_{ m obs}^{95}$	$S_{\rm exp}^{95}$	$\langle \sigma_{\rm vis} \rangle_{\rm obs}^{95} [{\rm fb}]$
$\operatorname{High-}p_{\mathrm{T}}$ jet SR	1	$0.46^{+0.27}_{-0.30}$	4.5	$4.0^{+0.7}_{-1.4}$	0.032
Trackless jet SR	0	$0.83^{+0.51}_{-0.53}$	3.3	$4.4^{+0.6}_{-0.4}$	0.024

Region	Merged vertices	Hadronic interactions	Accidental crossings	Combined
$\operatorname{High-}p_{\mathrm{T}}$ jet SR	0.79 ± 0.66	0.006 ± 0.018	0.28 ± 0.21	1.08 ± 0.69
Trackless jet SR	1.5 ± 1.1	0.248 ± 0.077	0.32 ± 0.24	2.1 ± 1.1

Background Uncertainties

- "CR statistical": propagation of statistical variations from CR->SR
- "Non-linearity": residual dependence of jet-DV probability on amount of jet activity in event
- "VR non-closure": from inside of material validation regions.
- "Pileup": reweighting events in CR to match SR pileup distribution

Region	Uncertainty source			
	CR statistical	Non-linearity	VR non-closure	Pileup
High- p_{T} jet SR	$\pm~58\%$	$^{+10\%}_{-27\%}$	± 4%	\pm 5.9%
${\it Trackless jet SR}$	$\pm~58\%$	$^{+6.3\%}_{-17\%}$	-	$\pm~20\%$

Source of uncertainty		pact signal yield [%] Electroweakino pairs
Total	17-20	20-31
Tracking and vertex reconstruction ISR modeling in MC simulation	14-17 < 1 1-24	
Jet energy scale and resolution Integrated luminosity of dataset	1	10 1.7

Inclusive Estimate Procedure (1)

1. Measure jet-DV correlations in low n-jet control region of data (single photon trigger, fail jet requirements of SR)

In control region of data, match each DV to closest track jet:

$$\Delta R = \sqrt{(\Delta \phi)^2 + (\Delta \eta)^2}$$

Calculate Prob(DV | track jet) as a function of track jet properties

$$P = \frac{N_{DV}}{N_{j}}$$
 Number of jets

Inclusive Estimate Procedure (2)

- 1. Measure jet-DV correlations in low n-jet control region of data (single photon trigger, fail jet requirements of SR)
- 2. Use track jets in events passing SR jet requirements to estimate expected background:

Prob (DV | jet)

Events passing SR jet selection

$$N_{DV}^{SR} = f \cdot \sum_{bins} P(DV|jet) \cdot N_{jets,bin}$$

$$f = \frac{N_{\text{Event}}(m > 10 \text{ GeV}, N_{\text{track}} > 4)}{N_{\text{Event}}(m > 5 \text{ GeV}, N_{\text{track}} > 3)} \text{ in CR}$$

Inclusive Estimate Uncertainties

Sources of systematic uncertainty:

- 1. Statistical variations of jet-DV probability and f-factor (58%)
- 2. Non-linear dependence of jet-DV probability on amount of jet activity in event (+10-27% High pT / +6.3-17% Trackless)
- 3. Non-closure inside material regions (4% in High-p_⊤ SR only)
- 4. Pileup difference in control and signal regions (5.9% High pT / 20% Trackless)
 - Obtained from difference in jet-DV probability when reweighting to match pileup distribution
 - Reweighted is taken as nominal background estimate, difference is taken as uncertainty

Inclusive Estimate Uncertainties

Sources of systematic uncertainty:

- 2. Non-linear dependence of jet-DV probability on amount of jet activity in event (+10-27% High pT / +6.3-17% Trackless)
 - Fraction of CR jets matched to SR-like DV vs # track jets in event
 - Value of fit at each bin is used to create an alternate jet-DV probability and multiplied by normalized # of track jets in that bin in CR and SR -> difference is uncertainty
 - Repeated with variations of fit where anti-correlated params varied within 1 σ, largest difference becomes asymmetric uncertainty

Updated HI Estimate

- HI generally follows the shape
- (start with straight ascending line at low mass, exponential decay in high mass after peak)
- #DVs = $\frac{1}{\frac{1}{C(x-b)} + \frac{1}{e^{-\frac{(x-B)}{l}}}}$

- Fit in $m_{DV} < 10~{
 m GeV}$ and extrapolate to $m_{DV} > 10~{
 m GeV}$
- However there is a secondary component of HI with a shallower exponential tail present
- This is due to "elastic" HI where most of the mass comes from a single high-momentum track collinear with the PV-DV vector
- There are unfortunately too few stats for us to properly characterize this component

Updated HI Estimate

- Assuming effect of MC->data and event selections are similar with primary and secondary components:
 - Fit secondary exponential in MC full range
 - Propagate ratio between components from MC to data
- We do not have enough stats to prove/disprove these assumptions
- Uncertainties on our knowledge of secondary component behaviour (i.e. MC) propagated to final template
- "Fixed" templates close within uncertainties

MV Estimate

- Merging in vertexing algorithm is only possible if pairs of DVs have distance significance (S) < 10 σ
- Get mass template shape by merging pairs of DVs
- Get merging rate from comparing S of sameevent pairs and different-event pairs
- Uncertainties:
 - 7-13%/30-50% (trackless/high pT) from statistical uncertainty on merging rate
 - 70% from MC non-closure

AX Estimate

- Get mass template shape by randomly attaching tracks to DVs in data
- Get crossing rate from fraction of $K_s^0 \to \pi^+\pi^-$ decays reconstructed with extra track

Uncertainties:

- 25% from crossing rate
- 70% from MC non-closure

MC Signal Uncertainties

Standard:

JES/JER → negligible for Strong RPV (set 1% flat), ≤ 10% for EWK RPV

Custom:

- JES/JER vs. displacement (we checked for trackless jets) → negligible
- \circ Large radius tracking / secondary vertexing ightarrow up to 15% for low m_χ , long lifetime
 - \circ Compare number of reconstructed K_S^0 in data vs dijet MC
 - Calculate per-track uncorrelated uncertainty
 - Translate to signal efficiency by seeing difference when randomly killing tracks in a DV
- Pileup reweighting → insignificant compared to statistical uncertainty
 - Apply pileup reweighting by hand from MC/data distribution difference
 - Currently being finalized

Extra Stuff

Analysis Overview and Selections

- Full Run-2 dataset: 139 /fb
- Multi-jet trigger
- 2 SRs: High pT Jet and Trackless Jet SRs (if jet is trackless, can lower jet pT req.)
- DVs must:
 - lie outside of detector material,
 - have 5+ tracks,
 - invariant mass $m_{DV} > 10 \text{ GeV}$

Reminder of Toy Model and Method

No Evsel (MC)

With Evsel (Data)

Inside

$$e^{-\frac{x-c}{m_1}} + e^{-\frac{x-t}{m_2}}$$

$$Se^{-\frac{x}{s}}e^{-\frac{x-c}{m_1}} + Se^{-\frac{x}{s}}e^{-\frac{x-t}{m_2}}$$

Outside

$$Ae^{-\frac{x-c}{m_1}} + Ae^{-\frac{x-t}{m_2}}$$

$$ASe^{-\frac{x}{s}}e^{-\frac{x-c}{m_1}} + ASe^{-\frac{x}{s}}e^{-\frac{x-t}{m_2}}$$

Reminder of Toy Model and Method

- Since errors would be dominated by bad stats in MC:
- Errors will be maximum of:
 - Data nominal propagated statistical errors
 - HI MC Inside poissonian errors scaled by the new data estimate divided by the full HI MC inside fit.
 - 0 bins instead of HI MC Inside poissonian errors will be 1.832 times the average HI MC weight inside

Name	Selection	Region	DV track type
Transverse momentum	$p_{\mathrm{T}} > 2 \text{ GeV}$ $p_{\mathrm{T}} > 3 \text{ GeV}$ $p_{\mathrm{T}} > 4 \text{ GeV}$	all outside beampipe outside last pixel layer	both attached only attached only
d_0 -significance = $ d_0 /\sigma(d_0)$	d_0 -sig > 10 d_0 -sig > 15 d_0 -sig > 10	within beampipe within last pixel layer outside last pixel layer	both attached only core only
Small angle, low- $p_{\rm T}$	$\Delta \alpha ({ m track}, r_{ m DV-PV}) > 0.2$ or $p_{ m T} > 4~{ m GeV}$	outside beampipe	both
Backwards-going tracks	$\Delta \alpha(\text{track}, r_{\text{DV-PV}}) < \pi/2$	all	attached only
Upstream hit veto	Cannot have hits on tracking layers at $r < r_{DV}$	all	both

Table 6.3: Summary of DV-track cleaning.

Motivation for Deeper Truth Studies

 Is this an AX? Using only info in NTUP we might naively think so!

Motivation for Deeper Truth Studies

- Is this an AX? Using only info in NTUP we might naively think so!
- Digging into the DAOD and looking at the decay tree:
 - → more accurate to call this HI
- Tracks can undergo decays or HI later in the detector
- Any of these descendant tracks (that point back to the DV) can be reconstructed as "the track"
 - →distance between truth origins not what we think!
- Therefore it is essential that we know the truth parentage history of the tracks in order to determine what our categories should look like in MC truth!

Defining the "Originating SM LLP" (OSMLLP)

- Motivated by distinguishing "real process" DVs (like SM or HI) from DVs that involve tracking (AX) or vertexing (MV) effects
- Trace ancestry or reconstructed tracks back to the originating particle that begun at the PV and the travelled out into the detector displaced
- Allows us to categorize background in truth as:
 - Single-Process DVs (SM or HI)
 - Single-Process DVs + Other Track (AX, or MV*)
 - Possible MV
 - Other

Turns out there are 4 types of AX with distinct behaviours

Dominant in low m

- **Crossed by track** from other ppinteraction (True-PU)
- Collimated with DV tracks Distribution of angle with DV tracks is more broad
 - Tends to have a much broader tail extending to high m

