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4.4 The (ḡ3, f̄3, h̄3) space 32
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1 Introduction and summary

There has been a lot of new progress in the non-perturbative S-matrix bootstrap, driven by
the development of efficient numerical tools, see [1–34].1

In this paper we focus on 4 space-time dimensions. We consider a class of theories which
have a single photon-like particle, namely a massless particle with spin one. We denote this
particle by γ. The goal of this paper is to study the 2-to-2 scattering amplitudes of the process

γ(λ1)γ(λ2)→ γ(λ3)γ(λ4) , (1.1)

where λi is the helicity of the in/out particles. We are agnostic about the high energy
behaviour of the theory apart from the requirement that the 2-to-2 scattering amplitude must
obey the usual S-matrix bootstrap principles: Lorentz invariance, unitarity and analyticity.

Scattering amplitudes of particles with spin in 4d was reviewed systematically in [19].2

We will use their language in this work. Each photon in (1.1) has two helicities, as a result
there are 16 scalar amplitudes which fully describe the process (1.1). For simplicity we
assume parity invariance in this work.3 Taking into account the fact that the particles under
consideration are also identical we are left with only 5 different amplitudes:

++→ ++, ++→ −−, +− → +−, +− → −+, ++→ +−, (1.2)

where ± correspond to the helicities of the particles in (1.1). We denote the corresponding
amplitudes in the center of mass frame by

Φ1(s, t, u), Φ2(s, t, u), Φ3(s, t, u), Φ4(s, t, u), Φ5(s, t, u), (1.3)

where s, t and u are the Mandelstam variables describing the scattering process and obeying
the standard relation

s+ t+ u = 0. (1.4)

Due to crossing equations only the Φ1, Φ2, and Φ5 amplitudes are independent, the rest
can be related to these as

Φ3(s, t, u) = Φ1(u, t, s), Φ4(s, t, u) = Φ1(t, s, u). (1.5)
1For an overview of recent results and discussion of some future directions, see [35].
2This problem was studied in the 60s by many authors [36–39], see the older review [40] for a more

comprehensive list. See also [41, 42] for more recent discussions.
3Due to CPT symmetry in the case of neutral identical particles (as in this paper) parity invariance implies

time-reversal invariance.
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Moreover, crossing also implies that Φ1(s, t, u) is symmetric under t − u permutation and
the amplitudes Φ2(s, t, u) and Φ5(s, t, u) are fully symmetric under permutations of their
arguments. We give the precise definition of the amplitudes (1.3) in appendix A. There
we also derive their crossing equations and unitarity constraints. For completeness we also
explain how to define the amplitudes via tensor structures in appendix B both in vector
and spinor formalisms.

Non-perturbative observables. At low energy, the amplitudes Φ1, Φ2 and Φ5 have the
following expansion:4

Φ1(s, t, u) = g2s
2 + g3s

3 + g4s
4 + g′4s

2tu+ L1(s|t, u) +O(s5),
Φ2(s, t, u) = f2(s2 + t2 + u2) + f3stu+ f4(s2 + t2 + u2)2

+ L2(s, t, u) +O(s5),
Φ5(s, t, u) = h3 stu+O(s5) .

(1.6)

The two functions L1(s, t, u) and L2(s, t, u) are fixed by unitarity in terms of the polynomial
terms in (1.6), see appendix C:

L1(s|t, u) ≡ s2
(
β1,1s

2 + β1,2tu
)
log (−s√g2) + β1,3s

2
(
t2 log (−t√g2) + u2 log (−u√g2)

)
,

L2(s, t, u) ≡ β2
(
s4 log (−s√g2) + t4 log (−t√g2) + u4 log (−u√g2)

)
, (1.7)

where the coefficients β read as

β1,1 = −
14f22 + 5g22

160π2 , β1,2 =
f22

240π2

β1,3 = −
g22

80π2 , β2 = −
5f2g2
48π2 .

(1.8)

Equations (1.6)–(1.8) follow from a few simple assumptions, which are compactly encoded
by an effective field theory (EFT), to be discussed below.5 For now, it suffices to know
that the main ingredient is the absence of other massless degrees of freedom beyond the
spin one particle γ.

We refer to the real parameters gn, fn and hn in (1.16) as non-perturbative observables.
Our notation is almost identical to the one of [43, 44]6 apart from the fact that we take
into account the logarithmic branch cuts associated to intermediate massless particles. As

4Let us emphasize that even though we write O(sn), the expansion is at small s ∼ t ∼ u and n is the total
power of s, t, u.

5The amplitudes (1.6) can also be derived from softness, unitarity, crossing symmetry and kinematical
constraints. Softness is the assumption that the 2-to-2 amplitude scales like (energy)4, and that the 2-to-(n ≥ 3)
amplitude scales at least like (energy)6 at low energy. Then unitarity fixes the coefficient of the log terms
as in (1.8), see appendix C. Crossing symmetry restricts the polynomials of s, t and u that can appear
in (1.6). Finally, the kinematical constraints discussed in [19] (see eq. (2.139)), imply that Φ3 = u2(. . .) and
Φ5 = stu(. . .).

6The difference between our observables (in black) and the ones of [43, 44] (in blue) is the coefficients g4

and g′4 which are related to their g4,1 and g4,2 as follows

g4 = g4,1 + 2g4,2, g′4 = −2g4,2.
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it will be shown, the parameter g2 is always non-negative, thus the object √g2 entering
inside the log terms is unambiguous.

For complete clarity, let us emphasize that the observables gn, fn and hn are well defined
and measurable in terms of derivatives of the non-perturbative scattering amplitude. At
the n ≤ 3 level we have

g2 =
1
2∂

2
sΦ1(0, 0, 0), g3 =

1
3!∂

3
sΦ1(0, 0, 0), (1.9)

together with

2f2 =
1
2∂

2
sΦ2(0, 0, 0), −f3 =

1
2∂

2
s∂tΦ2(0, 0, 0), −h3 =

1
2∂

2
s∂tΦ5(0, 0, 0). (1.10)

At the n = 4 level we have instead

g4 = lim
t→0

lim
s→0

1
4!∂

4
s (Φ1(s, t,−s− t)− L1(s|t,−s− t)) ,

−g′4 = lim
t→0

lim
s→0

1
3!∂

3
s∂t (Φ1(s, t,−s− t)− L1(s|t,−s− t)) ,

4f4 = lim
t→0

lim
s→0

1
4!∂

4
s (Φ2(s, t,−s− t)− L2(s, t,−s− t)) .

(1.11)

We choose g2 to define an energy scale. It is then convenient to define the following
dimensionless observables

f̄2 ≡
f2
g2
, f̄3 ≡

f3

g
3/2
2

, ḡ3 ≡
g3

g
3/2
2

, h̄3 ≡
h3

g
3/2
2

, f4 ≡
f4
g22
, g4 ≡

g4
g22
, g′4 ≡

g′4
g22
. (1.12)

Effective field theory. From the QFT perspective there is only one consistent way to
describe a massless spin one particle, namely as a U(1) gauge theory. We use this fact to
construct an effective field theory (EFT) Lagrangian density that can be used to describe
the process (1.1) at low energies. This is given by summing all possible linearly independent
Lorentz invariants built out of the electromagnetic tensor Fµν with some generic coefficients.
The most general form of such a Lagrangian density reads as

LEFT = −1
4FµνF

µν + L6 + L8 + L10 + L12 + . . . , (1.13)

where Ln denotes terms with mass dimension n. Explicitly they read as7

L6 =0,
L8 = c1(FµνF

νµ)(FαβF
βα)+c2(FµνF

νρFρσF
σµ), (1.14)

L10 = c3(Fαβ∂
βFµν∂

αF νρFρ
µ)+c4(∂αFµν∂

αF νµ)(FρσF
σρ)+c5(∂αFµνF

νρ∂αFρσF
σµ),

L12 = c6(∂νFαρ∂
αF νσ∂δF βρ∂βFδσ)+c7(Fρβ∂αFσγ∂

βF σδ∂δ∂
γF ρα)+c8(FαβFσγδ

αδρF
γδ∂β∂δF

ρσ).

The EFT description is valid up to some cut-off scale which we denote by M . The real
dimensionful coefficients ci are called Wilson coefficients. They have the following mass
dimensions

[c1] = [c2] = −4, [c3] = [c4] = [c5] = −6, [c6] = [c7] = [c8] = −8. (1.15)

Some recent experimental bounds on some of these Wilson coefficients can be found in [45–49].
7We do not include terms with more than four factors of Fµν because these do not contribute to the

process (1.1) to the order in s, t, u we are considering.
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−t
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Figure 1. Analytic structure of the full non-perturbative amplitudes Φi(s, t, u) in the complex plane
s at a fixed value of t < 0. There are two branch cuts along the real axis, namely, for s > 0 and for
u = −s− t > 0. The EFT amplitudes are good approximations of the full non-perturbative amplitude
inside the grey region corresponding to |s| ≲ M2. The full non-perturbative amplitude may have
other branch points on the real axis. For example, in QED there are branch points at s = 4m2

e and
u = 4m2

e associated with the threshold for electron-positron production.

Using the EFT Lagrangian density we can compute scattering amplitudes of massless
particles Φi(s, t, u). We denote them by ΦEFT

i (s, t, u). The details of this computation, to 1-
loop order, are provided in appendix D. The amplitudes ΦEFT

i (s, t, u) are good approximations
of the full non-perturbative amplitudes Φi(s, t, u) in the regime |s| ≲ M2, namely

i = 1, 2, 5 : Φi(s, t, u) ≈ ΦEFT
i (s, t, u), |s| ≲M2. (1.16)

This is depicted in figure 1. The amplitudes ΦEFT
i (s, t, u) will have precisely the same form

as in (1.6) given the relations

g2 = 2(4c1 + 3c2), f2 = 2(4c1 + c2),

g3 = 4c4, f3 = 6(c3 + 2c4 − c5), h3 =
3
2c3,

g4 =
1
4(−3c6 + 2c7), g′4 =

1
2(3c6 − 2c7 − c8), f4 = −

c6
8 .

(1.17)

In the computation above we used dimensional regularization and we have chosen our
renormalization scale µ to be µ2 = 1√

g2
.

Partial amplitudes and unitarity. Given the scattering amplitudes (1.3) one defines
partial amplitudes as follows

Φℓ
i(s) ≡

1
32π

∫ π

0
dθ sin θ d ℓ

λ12,λ34(θ) Φi (s, t(s, θ), u(s, θ)) (1.18)

where the scattering angle θ is related to the Mandelstam variables as

t = −s2(1− cos θ), u = −s2(1 + cos θ). (1.19)

The small Wigner d-matrix is defined in (A.27). The differences of helicities are defined as

λ12 ≡ λ1 − λ2, λ34 ≡ λ3 − λ4. (1.20)

The values of helicities for the amplitudes Φi(s, t, u) are given in (1.2).

– 5 –
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Using partial amplitudes we can write full non-linear unitarity constraints in simple
positive semi-definite form as  I S†(s)

S(s) I

 ⪰ 0, (1.21)

where I is the (appropriate) identity matrix and

S(s) =



1 + i(Φ0
1(s) + Φ0

2(s)), ℓ = 0,
1 + i(Φℓ

1(s)− Φℓ
2(s)), ℓ ≥ 0 (even),

1 + 2iΦℓ
3(s), ℓ ≥ 3 (odd),1 0

0 1

+ i

Φℓ
1(s) + Φℓ

2(s) 2Φℓ
5(s)

2Φℓ
5(s) 2Φℓ

3(s)

 , ℓ ≥ 2 (even).

(1.22)

These conditions hold in the physical regime s ≥ 0. The linear combination Φℓ
1(s)− Φℓ

2(s)
describes the scattering of parity odd states, whereas Φℓ

1(s)+Φℓ
2(s), Φℓ

3(s) and Φℓ
5(s) describe

the scattering of parity even states. We refer the reader to A.3 for a detailed derivation.
There is a simpler subset of the above constraints (called positivity) given by

ImF(s) ⪰ 0, (1.23)

where F is defined via S as follows

S = I+ iF . (1.24)

A subset (the linear part) of these positivity constraints read as

ℓ ≥ 0 (even) : Im(Φℓ
1(s) + Φℓ

2(s)) ≥ 0,
ℓ ≥ 0 (even) : Im(Φℓ

1(s)− Φℓ
2(s)) ≥ 0,

ℓ ≥ 2 : ImΦℓ
3(s) ≥ 0.

(1.25)

Goal of the paper. In this paper we study bounds on the dimensionless observables (1.12)
coming from full non-linear unitarity (1.21).

Bounds from positivity. Using dispersion relations it is relatively easy to incorporate the
positivity constraints (1.25) and obtain analytic bounds on the observables. This is addressed
in section 2. Here we briefly summarize the results from that section.

For the observables g2 and f2 we obtain the following rigorous bounds

−1 ≤ f2
g2
≤ 1, g2 ≥ 0. (1.26)

We could not derive any bound on g3, f3 and h3 using dispersion relations and positivity.
There are simple dispersion relations for g4 and f4, however due to the presence of log terms
in (1.6) we cannot derive bounds on these observables. More precisely, we find

ḡ4 ± 2f̄4 ≥ 0 + 42f̄22 ± 50f̄2 + 21
480π2︸ ︷︷ ︸

>0

log(ŝ√g2) +O(ŝ
√
g2) , (1.27)

– 6 –
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Figure 2. Lower bound on the observable ḡ4 as a function of f̄2. The allowed region is shaded in
light blue. The estimated error is indicated by dark blue.

where 0 < ŝ ≲ M2. The first (zero) term in the right-hand side of (1.27) was obtained
in [43, 44] neglecting the branch cuts from photon loops. The second term in these expressions
is a novel result obtained by taking into account the log terms. We would like to consider
ŝ → 0 to drop the error term. However, in this limit, the bound (1.27) is useless because
the log terms diverge.

More bounds similar to these can be derived — see for example [18, 50, 51] for bounds
including IR logs. For bounds on EFTs from positivity derived in various other contexts,
see [43, 44, 52–61].

Bounds from full non-linear unitarity. We use the primal numerical approach of [3, 9] to
bound the observables (1.12) using full non-linear unitarity (1.21). This is done in section 3.
We briefly summarize our results here.

First, we found numerically that the bound on f̄2 is identical to (1.26) which was found
by using positivity only. Second, we found that neither upper nor lower bounds exist on
the observables ḡ3, f̄3 and h̄3. Finally, we discovered that there exists a lower bound on
ḡ4. The bound is presented in figures 2–4. There the lower bound on ḡ4 is constructed as
a function of f̄2, f̄4 and ḡ′4 respectively.

All our numerical data can be downloaded from https://doi.org/10.5281/zenodo.7308006.

The absence of bounds. As stated in the previous paragraph, we often see that there is
no bound on a given observable. We explain this fact in section 4 by explicitly constructing
weakly coupled theories which satisfy all our assumptions and have unbounded observables.
For instance we show analytically that no bounds exist on ḡ3, f̄3 and h̄3.

– 7 –
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Figure 3. Lower bound on the ḡ4 observable as a function f̄4 for a given value of f̄2. The allowed
region lies above the colored lines. The dashed line described by ḡ4 = 2|f̄4| is placed for reference.
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Figure 4. Lower bound on the ḡ4 observable as a function ḡ′4 for a given value of f̄2. The allowed
region lies above the colored lines.
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2 Bounds from positivity and constraints on EFTs

In this section we will write relations which allow to express the observables (1.12) or (5.1)
as integrals of the amplitudes Φi(s, t, u). These relations are called dispersion relations. For
simplicity we will work in the forward limit t = 0. Combining dispersion relations with
positivity (1.25) allows us to bound our observables. In what follows we will focus only
on g2, f2, g4 and f4.

Positivity constraints. Positivity constraints were given in (1.25) in terms of partial
amplitudes. These constraints can be equivalently translated into amplitudes in the forward
limit using the inverse of (1.18). We get then

Im(Φ1(s)± Φ2(s)) ≥ 0, ImΦ3(s) ≥ 0. (2.1)

We independently derive these constraints also in appendix A.4. Here and in the rest of this
section we use the following short-hand notation for the forward amplitudes

Φi(s) ≡ Φi(s, t = 0, u = −s). (2.2)

Dispersion relations. Let us start by defining the following functions

V ±
n (s) ≡ Φ1(s)± Φ2(s) + Φ3(s)

sn+1 (2.3)

in the s complex plane. The functions V ±
n (s) have an analytic structure inherited from the

functions Φi(s, t, u) as depicted in figure 1 and an additional pole at s = 0. The functions
V ±

n (s) obey V ±
n (−s) = −V ±

n (s) for even n due to s−u crossing symmetry in equation (1.5) and
the discussion below it. Finally, the imaginary part of the functions V ±

n (s) is non-negative
due to positivity constraints (2.1) for s > 0.

Integrating V ±
n (s) over a closed contour as depicted in figure 5 we get∮

dsV ±
n (s) = 0 (2.4)

since V ±
n (s) are analytic inside this contour of integration. The contour has several pieces:

the small arc with radius ŝ denoted by γ, the big arc with infinitely large radius denoted by
Γ and two horizontal stretches. Splitting the integral in (2.4) into these pieces we get∫ ŝ

∞
dsV ±

n (s) +
∫ −∞

−ŝ
dsV ±

n (s) +
∫

γ
dsV ±

n (s) +
∫
Γ
dsV ±

n (s) = 0. (2.5)

Assuming the analogue of the Martin-Froissart bound for spin one massless particles8 we get

lim
|s|→∞

s V ±
n (s) = 0 , for n ≥ 2 (2.6)

As a result the integral over the large arc Γ vanishes∫
Γ
dsV ±

n (s) = 0. (2.7)

8For a recent discussion of the Froissart bound in the case of massless spin two particles see [62].

– 9 –
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γ

Γ

s

ŝ
•

Figure 5. Integration contour of the analytic functions V ±
n defined in (2.3) in the s complex plane.

The functions V ±
n have the same analytic structures as in figure 1. Compared to figure 1 they have

however an additional pole at s = 0 indicated by a green dot.

Using s − u crossing symmetry we get9

−
(∫ ŝ

∞
dsV ±

n (s) +
∫ −∞

−ŝ
dsV ±

n (s)
)

= 2i
∫ ∞

ŝ
ds ImV ±

n (s). (2.8)

In order to evaluate the third integral in (2.5) we use the representation (1.6) of the amplitudes
which is valid for |s| ≲ M2. Performing the change of variables s = ŝ cosϕ, where ϕ ∈
[0;π], we get∫

γ
dsV ±

2 (s) = πi 2(g2 ± f2) +O(ŝ2/M8),∫
γ
dsV ±

4 (s) = πi 2 (g4 ± 2f4 + (β1,1 + β1,3 ± β2) log (ŝ
√
g2)) +O(ŝ/M10) ,

(2.9)

where we estimated the error using the expected EFT scaling of Wilson coefficients with
the cutoff scale M .

Plugging equations (2.7)–(2.9) into (2.5) we finally obtain the following dispersion re-
lations

g2 ± f2 +O(ŝ2/M8) = 1
π

∫ ∞

ŝ
ds

Im[Φ1(s)± Φ2(s) + Φ3(s)]
s3

, (2.10)

together with

g4 ± 2f4 + (β1,1 + β1,3 ± β2) log (ŝ
√
g2) +O(ŝ/M10)

= 1
π

∫ ∞

ŝ
ds

Im[Φ1(s)± Φ2(s) + Φ3(s)]
s5

. (2.11)

9The first integral is evaluated slightly above the right branch cute. By crossing symmetry, the left integral
is related to the integral slightly below the right branch cut. The sum of the two terms gives a discontinuity
which in turn is related to the imaginary part of the amplitude.
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Bounds on g2 and f2. Consider the dispersion relation (2.10) and take the limit ŝ→ 0.
In this limit the combination g2 ± f2 is related to a certain integral of the amplitudes. Due
to positivity in the form (2.1) this integral is non-negative and we obtain the following
rigorous inequalities

g2 ≥ 0, −1 ≤ f2
g2
≤ 1. (2.12)

Bounds on g4 and f4. Consider now the dispersion relation (2.11). Naively it is impossible
to take the limit ŝ→ 0 because there is a log term in the left-hand side which diverges in
this limit. Nevertheless, using positivity conditions (2.1) we arrive at

g4 ± 2f4 + (β1,1 + β1,3 ± β2)︸ ︷︷ ︸
<0

log (ŝ√g2) +O(ŝ/M10) ≥ 0. (2.13)

This relation holds for any ŝ in the range ŝ ≲ M2. Unfortunately this relation is not very
useful because either the error term is large (for ŝ large but still below the cutoff scale M2) or
the log term is large (for ŝ small). Dividing by g22 , we obtain a dimensionless version of (2.13):

ḡ4 ± 2f̄4 ≥ 0 + 42f̄22 ± 50f̄2 + 21
480π2︸ ︷︷ ︸

>0

log(ŝ√g2) +O(ŝ
√
g2) , (2.14)

which we quoted in the introduction. Here we further assumed that g2 ∼M−4 to simplify
the error term.

It is actually possible to take the limit ŝ → 0 inside (2.11). To this end, consider the
following representation of the logarithm

log(x) =
∫ ∞

x
dy

−1
y(1 + y) +O(x). (2.15)

It allows to bring the result (2.11) into the following form

g4±2f4 =
1
π

∫ ∞

ŝ
ds

(
Im[Φ1(s)± Φ2(s) + Φ3(s)]

s5
+ π(β1,1 + β1,3 ± β2)

s(1 + s
√
g2)

)
+O(ŝ/M10). (2.16)

The integrand here is well-defined at ŝ→ 0 since the divergence of the first term governed
by (1.6) cancels the divergence of the second term. We can thus write an explicit integral
form of g4 ± 2f4 as

g4 ± 2f4 =
1
π

∫ ∞

0
ds

(
Im[Φ1(s)± Φ2(s) + Φ3(s)]

s5
+ π(β1,1 + β1,3 ± β2)

s(1 + s
√
g2)

)
. (2.17)

Let us now notice that

β1,1 + β1,3 ± β2 < 0. (2.18)

This means that the second term in the integrand in (2.17) is negative whereas the first term
in the integrand is non-negative due to positivity. As a result the integrand in (2.17) does not
have definite sign and no positivity bound can be deduced on the simple combination g4±2f4.
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3 Bounds from full non-linear unitarity

In this section we present our numerical bounds. We start in subsection 3.1 by explaining
our numerical setup. We will then use it to bound the coefficient f̄2 in subsection 3.2.
We will explore bounds on ḡ3, f̄3 and h̄3 in subsection 3.3. We will study bounds on ḡ4,
ḡ′4 and f̄4 in subsection 3.4. In subsection 3.5 we show in all generality that parameters
appearing linearly in a scattering amplitude are subject at most to one-sided bounds in
the non-perturbative S-matrix bootstrap. Finally, in subsection 3.6 we test the low spin
dominance conjecture using our data.

We make our numerical data public. It can be downloaded from
https://doi.org/10.5281/zenodo.7308006.

3.1 Numerical setup

We consider the following non-perturbative ansatz for the three independent amplitudes10

Φ1(s, t, u) = χ2
s

Nmax∑
a,b,c=0

α1
abcρ

a
sρ

b
tρ

c
u + L1(s|t, u),

Φ2(s, t, u) =
Nmax∑

a,b,c=0
α2

abcρ
a
sρ

b
tρ

c
u + L2(s, t, u),

Φ5(s, t, u) = (−χsχtχu)
Nmax∑

a,b,c=0
α5

abcρ
a
sρ

b
tρ

c
u.

(3.1)

Here αi
abc are real dimensionless parameters. Due to crossing symmetry α1

abc = α1
acb and α2

abc,
α5

abc are fully symmetric in their indices. The ρ-variable is defined as

ρs ≡
√
−s0 −

√
−s√

−s0 +
√
−s

. (3.2)

where s0 < 0 is a free real parameter. The χ-variable is defined as

χs ≡
1
4(ρs − 1)2 − 1

4(ρs − 1)3 = s

s0
− 3

(
s

s0

)2
+O(s5/2). (3.3)

This variable was introduced in [18], and it is built in such a way that it becomes a constant
at high energy. It is also convenient to define the following object

P ≡ 1
8(1 + ρs)(1 + ρt)(1 + ρu). (3.4)

At fixed scattering angle θ (defined using the Mandelstam variables in (A.13)) and small
value of s it behaves as 1 and at fixed angle and large value of s it decays as O(s−3/2).
Finally the functions L1 and L2 are defined as11

L1(s|t, u) ≡ s40 P χ2
s

[
β1,1χ

2
s logχs + β1,2χtχu logχs + β1,3(χ2

t logχt + χ2
u logχu)

]
,

L2(s, t, u) ≡ s40 P β2(χ4
s logχs + χ4

t logχt + χ4
u logχu).

(3.5)

10The prefactors in front of Φ1 ,Φ5 use the variable χ defined below (3.3). They are included so that at low
energy, the prefactors become those of the spinor-helicity amplitudes (B.112).

11The prefactor P is introduced here in order to make the functions L1(s|t, u) and L2(s, t, u) decay fast
enough at large values of s. This allows to use the large energy constraints derived in appendix H.2.
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These functions have the following low energy expansion:

L1(s|t,u)= s2
[
β1,1s

2 log(s/s0)+β1,2tu log(s/s0)+β1,3(t2 log(t/s0)+u2 log(u/s0))
]
+O(s5),

L2(s, t,u)=β2(s4 log(s/s0)+ t4 log(t/s0)+u4 log(u/s0))+O(s5).

Comparing them with (1.7) we conclude that

L1(s|t, u) = L1(s|t, u)− s2
[
β1,1s

2 + β1,2tu+ β1,3(t2 + u2)
]
log(−s0

√
g2) +O(s5), (3.6a)

L2(s, t, u) = L2(s, t, u)− β2(s4 + t4 + u4) log(−s0
√
g2) +O(s5). (3.6b)

As was discussed in the introduction, scattering amplitudes of any massless spin one
particles in the vicinity of s = 0 have the representation (1.6). We, thus, need to expand (3.1)
around s = 0 taking into account (3.6) and match the result with (1.6). This procedure
will generate a set of linear constraints on the parameters of the ansatz α. Solving these
constraints and plugging the solution back into (3.1) we obtain the final form of the ansatz
which depends on the following parameters

{s0; g2, g3, g4, g′4, f2, f3, f4, h3, rest of αs}. (3.7)

All the coefficients in this list enter the ansatz linearly except for s0, g2 and f2. Squares of g2
and f2 multiply the log terms. The former also enters inside the log terms.

The ansatz (3.1) has a finite number of terms controlled by the parameter Nmax. All the
numerical results depend on this parameter. The true bound is obtained by extrapolating
the numerical results to Nmax = ∞.

In order to impose non-linear unitarity we first compute partial amplitudes by plug-
ging (3.1) into the definition (1.18). The integrals are evaluated numerically in Mathematica.
They will depend on the set of parameters (3.7). Plugging them into (1.21) we obtain
a set of unitarity constraints. We impose these constraints for a finite number of spins
ℓ = 0, . . . , Lmax. All the numerical results also depend on the parameter Lmax and thus
require an extrapolation to Lmax =∞. We carefully discuss the extrapolation procedure for
both Nmax and Lmax in subsection 3.4.1. In order to improve the convergence with Lmax, we
add the unitarity constraints in the limit Lmax =∞. This is discussed in appendix H.1. The
convergence is also improved by adding the amplitude positivity constraint in the forward
limit (A.61). As Lmax →∞, these constraints are included in the full unitarity constraints
imposed numerically (1.21) via the positivity (1.25). However, for any finite Lmax, (A.61)
contains more information.

The unitarity constraints (1.21) should be imposed for all s ≥ 0. In practice we pick a
finite grid of s values where we impose unitarity. The points are chosen using the Chebyshev
distribution in the ρs variable (see e.g. footnote 34 in [19]). The number of points in this
grid is denoted by Ngrid. In all the calculations we use Ngrid = 200 for unitarity constraints
with spins ℓ ≤ 50 and Ngrid = 50 for unitarity constraints with spins ℓ > 50. We also
include analytic constraints at s =∞, for details see appendix H.2. On top of the unitarity
constraints (1.21) we also impose the positivity constraints (2.1) at Ngrid = 200 values of s.
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The amplitudes in d = 4 are dimensionless. We can thus rewrite the ansatz (3.1) in
terms of dimensionless quantities only. This is done by using g2 as a scale and defining

s̄ ≡ √g2 s, t̄ ≡ √g2 t, ū ≡ √g2 u. (3.8)

Identical definitions are understood to hold for s0. With these definitions the explicit
dependence on g2 completely disappears in (3.1) and the parameters we are left with are
precisely the ones given in (1.12). In other words the ansatz depends only on the following
coefficients

{s̄0; ḡ3, ḡ4, ḡ′4, f̄2, f̄3, f̄4, h̄3, rest of αs} (3.9)

and g2 is not a free variable. We can chose the parameter s̄0 at our will. A particular choice
does not play any role for significantly large values of Nmax. It can happen however that for
some values of these parameters the numerics converge better and it is desirable to search for
their optimal values. In practice, this search is unfeasible since we do not want to numerically
evaluate the partial amplitudes for different choices of s̄0.

There is however a trick which allows to keep a tunable parameter in the numerical setup.
To achieve that, we keep the ansatz in the form where g2 enters explicitly. We then set

s0 = −1. (3.10)

This sets the scale of the problem which makes all the other variables and parameters (like s
or g2) effectively dimensionless. The parameter g2 is now free and can be set to any value.
The bounds on (3.9) do not depend on this choice in the limit Nmax = ∞. However, for
a particular value of g2 the numerics will converge faster. Faster convergence means in
practice that at a fixed Nmax there is some value of g2 which leads to a better result (e.g.
if we look for a minimal value of some parameter, better result means lower minimum of
this parameter). For each optimization problem, we always perform a scan in g2 first. This
strategy was already used in [18] and [24].12 The explicit details of this scan are explained
below. Scanning over s̄0 and scanning over g2 given (3.10) is equivalent. This can be seen
by using the definition (3.8) and (3.10) which lead to

s̄0 = −
√
g2. (3.11)

We solve the following optimization problem: find the values of parameters (3.9) such
that the unitarity conditions (1.21) are satisfied and one of the parameters in (3.9) has a
minimal or maximal value. We construct optimization problems in Mathematica. For solving
the optimization problems we use SDPB [63, 64]. The summary of the parameters used
in our numerics can be found in table 1.

3.2 Bounds on f̄2

The very first optimization problem we would like to address is: what are the maximal and
minimal allowed values of the observable f̄2. For solving this optimization problem, we set the

12We thank Andrea Guerrieri for emphasizing this idea.

– 14 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

SDPB precision 832 (binary)
dualityGapThreshold 10−8

integral precision 35 (decimal)
mathematica internal precision 200 (decimal)

Ngrid

200 ℓ ≤ 50
50 ℓ > 50

Table 1. Parameters in the numerical setup.

β’s as free linear parameters of our ansatz (3.5).13 The numerical solution of this optimization
problem at a fixed value Nmax = 20 and several values of g2 is presented in table 2. Here we
choose Lmax = 50. The numerics converges extremely fast for this run and no extrapolation
to Nmax → ∞ and Lmax → ∞ is needed. From table 2 we conclude that

−1 ⪅ f̄2 ⪅ +1, (3.12)

which is in perfect agreement with the positivity bound (2.12). The solution is very stable
and depends weakly on g2. Nevertheless, we see that when g2 → 0 we get slightly better
results (smaller minimum and greater maximum). This suggests that the extremal values of
the bound f̄2 = ±1 are saturated by free theories, which have g2 = 0.14

Notice that the solution presented in table 2 is symmetric under the f̄2 ↔ −f̄2 exchange.
This comes from the fact that the unitarity constraints (1.21) are symmetric under Φ2 ↔ −Φ2
when Φ5 = 0. Investigating the solution leading to table 2 we indeed see that Φ5 ≈ 0
numerically. For further discussions of the symmetries of the unitarity constraints, see the
last paragraph of appendix A.3.

The result obtained here can be seen as a non-trivial check of our numerical setup.
Interestingly, using full unitarity we do not get stronger bounds on f̄2 than equation (2.12),
which follows from positivity only. This is easy to understand in light of the observation
above: the bounds are saturated by the free limit of weakly coupled theories, for which the
constraints coming from full non-linear unitarity are irrelevant. We review the free theories
saturating this bound in subsection 4.3.

3.3 Bounding the (ḡ3, f̄3, h̄3) space

Let us now study the upper and lower bounds on the ḡ3, f̄3 and h̄3 observables.
Recall that our ansatz has log terms encoded into the objects L1(s|t, u) and L2(s, t, u)

defined in (3.5). The coefficients β in these expressions depend on g2 and f2 quadratically
according to (1.8). Notice however that we can use our numerical procedure to determine

13One may think that including the constraints (1.8) can lead to stronger bounds on f̄2. However, the
extremal amplitudes that give f̄2 → ±1 are very weakly coupled and therefore the 1-loop log terms are
irrelevant.

14Strictly speaking, the amplitude vanishes in free theory, and there is no meaning for the observables (1.12).
What we mean by “free theories” in this section is, more precisely, the free limit of weakly coupled amplitudes,
for which ratios of Wilson coefficients can have well defined limits.

– 15 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

g2 min(f̄2) max(f̄2)
10−2 −0.998710 0.998710
1 −0.998619 0.998619
102 −0.991237 0.991237

Table 2. Minimal and maximal allowed values of the f̄2 observable for different choices of g2. These
results are obtained with Nmax = 20 and Lmax = 50.

f̄2 = 0 f̄2 = 3/10
g2 min(ḡ3) max(ḡ3) min(ḡ3) max(ḡ3)

10−2 −546.9 470.5 −390.2 466.4
1 −54.67 47.00 −39.00 46.59
102 −5.397 4.628 −3.840 4.585

Table 3. Minimal and maximal allowed values of ḡ3 at a fixed value of f̄2 for different choices of g2.
These results are obtained with Nmax = 20 and Lmax = 50.

only observables entering linearly in our ansatz. The terms with g22 are not a problem since
we always fix the value of g2. However, we need to take some care of terms containing f22 .
One option is to simply set L1(s|t, u) = 0 and L2(s, t, u) = 0 in the ansatz since these terms
only become important for bounding ḡ4, ḡ′4 and f̄4. Another option is to also fix the value of
f2 or equivalently the value of f̄2.15 We have realized both options in practice, in this section
we present only the results of the second one. It is important to notice, though, that these
options are inequivalent in principle. We will comment on this fact in subsection 3.5.

Let us now look for the minimal and maximal values of the ḡ3 observable at some fixed
value of f̄2. Concretely, we will use two values f̄2 = 0 and f̄2 = 3/10. We work at Nmax = 20
and Lmax = 50, and do not perform any extrapolation in these parameters. The solution of
this optimization problem is presented in table 3 for different values of g2. From this table
we see that the optimal value of g2 is at g2 = 0 (when g2 → 0 we get the lowest minimum
and the highest maximum). The results of table 3 suggest that the optimal solution is a
free theory (because g2 = 0) with

−∞ ≤ ḡ3 ≤ +∞. (3.13)

Exactly the same conclusion holds for f̄3 and h̄3. We will confirm this finding by analytically
constructing free theories with g2 = 0, ḡ3 = ±∞, f̄3 = ±∞ and h̄3 = ±∞ in subsection 4.4.

3.4 Bounding the (ḡ4, ḡ′
4, f̄4) space

Let us finally study bounds on the observables ḡ4, ḡ′4 and f̄4. As explained in the previous
subsection, all the bounds are obtained at some fixed values of f̄2. In subsection 3.4.1 we
present our numerical results for the lower bound on ḡ4 as a function of f̄2. In subsection 3.4.2
we present our lower bound on ḡ4 as a function of f̄2 and f̄4. Finally, in subsection 3.4.3 we

15Yet another option is to keep β as free linear parameters of the ansatz (3.5).
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min(ḡ4)
g2 f̄2 = 0 f̄2 = 3/10 f̄2 = 6/10 f̄2 = 9/10

10−2 1.068 1.176 1.839 11.41
1 0.02478 0.03205 0.05527 0.2837
10 0.01711 0.02142 0.03974 0.1706
100 0.01588 0.01993 0.03646 0.1581
200 0.01583 0.01995 0.03645 0.1631
1000 0.01589 0.02025 0.03947 0.3270

Table 4. Lower bound on ḡ4 at different values of g2 and f̄2. The optimal lowest minimum is achieved
at g2 ∼ 100. The results are obtained with Nmax = 20 and Lmax = 50.

present our lower bound on ḡ4 as a function of f̄2 and ḡ′4. No upper bound exists on ḡ4 and
ḡ′4, and from the results below one can conclude that neither upper nor lower bounds exist
on f̄4, as in the case of the ḡ3, f̄3 and h̄3 observables studied in the previous subsection. As
for the lower bound on ḡ′4, the numerics in that region converge poorly, so no conclusion can
be drawn. We will partly explain the presence of unbounded directions in subsection 4.5, by
explicitly constructing free theories with infinitely large values for the Wilson coefficients. In
particular, we will also show that ḡ′4 cannot be bounded from below.

3.4.1 min ḡ4 vs. f̄2

We start by minimizing ḡ4 at several fixed values of f̄2. The results of the numerical
optimization are given in table 4. This data is computed using Nmax = 20 and Lmax = 50. It
is clear from the table that the best convergence is achieved at g2 ∼ 100, since this value of
g2 gives the lowest minimum. In the remainder of subsection 3.4 we will always use g2 = 100.

In practice our bounds depend on the parameters Nmax and Lmax. The correct bound
is obtained only in the limit Nmax →∞ and Lmax →∞. Let us carefully discuss how one
can estimate the correct lower bound on ḡ4 in this limit.

Let us begin by using the strategy employed in [24]. In figure 6 we study the dependence
of the ḡ4 bound on Lmax at fixed values of Nmax. For concreteness we take f̄2 = −3/11
which is the value in QED at leading order in the coupling. The numerical data is indicated
by colored dots. In the left plot of figure 6 we see that the bound gets stronger when we
increase Lmax. For Nmax = 20 the bound stabilizes around Lmax = 30 and diverges around
Lmax = 100. In the interval Lmax ∈ (30, 100) the bound is linear. We refer to this interval
as the plateau. For larger values of Nmax the divergence of the bounds begins at larger
values of Lmax. This can be explained as follows - for a fixed finite Nmax, as we increase
Lmax, the number of unitarity constraints that the ansatz has to satisfy increases. At some
point, the ansatz is not big enough to satisfy all of these constraints and therefore the bound
that we get diverges. But if we then increase Nmax, the ansatz is now bigger and therefore
it can satisfy unitarity constraints for larger values of Lmax. Nevertheless, even with this
bigger Nmax and hence a bigger ansatz, the bound will still diverge at some (larger) Lmax
and we must disregard the data after this point.
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The precise origin of the divergence in Lmax and the way it can be circumvented is
carefully discussed in section 3.3 in [65]. In this paper we will, however, accept the presence of
this divergence and simply focus our attention on the plateau where the numerical results can
be trusted.16 We could then use linear extrapolation in 1/Lmax to obtain the lower bound of
ḡ4 at Lmax →∞ for fixed values of Nmax. The extrapolations are indicated by solid lines in
figure 6. The right plot in figure 6 is a zoomed-in version of the left plot. The circles around
the numerical data there indicate the points which were included in the plateau.

Once we obtain the extrapolated bounds at Lmax →∞ we also do a linear extrapolation
in 1/Nmax. The result is depicted in figure 7 in black. Black dots indicate extrapolated
Lmax → ∞ values. Black lines indicate linear extrapolation in 1/Nmax. From previous
experience we expect the numerical data to be linear in 1/Nmax starting from Nmax ∼ 20.
This is compatible with the results depicted in figure 7.

Performing the above extrapolation in Lmax and Nmax is computationally very expensive
since it requires obtaining a lot of numerical data. Let us explore a cheaper alternative. One
could compute bounds at various values of Nmax with

Lmax = aNmax − b, (3.14)

with a and b some integer numbers. Once the data with this Lmax is obtained, we can
perform a linear extrapolation in 1/Nmax to Nmax →∞. In figure 7 we make several choices
of a and b. All the resulting extrapolations lie very close to the one obtained by using the
previous approach. Notice, however, that the choice of a and b cannot be completely arbitrary,
the values of Lmax should always be inside the plateau. In figure 7 we also indicate the
extrapolation using the points on the plateau right before the divergence. We denote this
choice by “End of plateaus”. In the rest of this section, we shall use

Lmax = 5Nmax − 50 , (3.15)

to perform extrapolations to Nmax → ∞. From now on, we assume that (3.15) is a good
choice for other values of f̄2 and all the other bounds computed below.

We are finally in a position to present our lower bound on ḡ4 as a function of f̄2. It
is given in figure 8. The numerical data for different Nmax is depicted by colored dots.
The extrapolated values are given by black bars which also reflect a rough error of the
extrapolation.17 Figure 2 presented in the introduction is obtained from 8 by using only
the extrapolated results and connecting the points.

The lower bound on ḡ4 is symmetric under f̄2 → −f̄2 as a consequence of the Φ2 ↔ −Φ2
symmetry in the unitarity constraints (1.21) when Φ5 = 0. Indeed, we observe that the
optimal solution leads to Φ5 ≈ 0 and thus the numerical solution is Φ2 ↔ −Φ2 symmetric.
The same remains true in subsections 3.4.2 and 3.4.3. The absolute minimum of the bound
in figure 2 is achieved at f2 = 0 and is given by

ḡ4 ≥ 0.0138± 0.0003. (3.16)
16We find the plateau using the discrete derivative dDer(1/Lmax). Then, we select points such that

dDer(1/Lmax) ≤ X · min(dDer), where X is a factor that can be chosen. In practice we chose X = 3.
17To estimate the error on the extrapolated bound, we perform a linear interpolation using Nmax ≥ N∗

where 18 ≤ N∗ ≤ 24 and compute the maximal difference between interpolated values. Therefore, this error
indicates if the linear interpolation is a reasonable extrapolation of the bound to Nmax → ∞.
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Figure 6. Lower bound on ḡ4 at fixed f̄2 = −3/11 (QED point). Colored dots indicate the numerical
data. Solid lines indicate linear extrapolations in 1/Lmax. The right plot is a zoomed version of the
left one. The circles around the numerical data indicate where the data is linear in 1/Lmax. The linear
regions are called the plateaus. The linear extrapolation is performed only within each plateau.
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Figure 7. Lower bound on ḡ4 at fixed f̄2 = −3/11 (QED point). Colored dots denote the numerical
data obtained at various fixed values of Lmax. Black dots are obtained instead by performing Lmax →∞
extrapolation in figure 6. Dashed lines indicate linear extrapolations in 1/Nmax to Nmax →∞.
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Figure 8. Lower bound on ḡ4 as a function of f̄2. Colored dots represent the numerical data obtained
with Lmax defined in (3.15) and various values of Nmax. Black bars represent the extrapolation of the
numerical results to Nmax →∞ and indicate the estimated errors.

Provided the renormalization scheme chosen in (1.6), this is the absolute minimum of ḡ4, and
is an intrinsically nonperturbative result. In particular, (3.16) implies that ḡ4 cannot be zero.

For larger values of f̄2 the errors quickly increase. In order to understand this, recall
from subsection 3.2 that the boundary values f̄2 = ±1 are saturated by free theories with
g2 = 0. Moreover, we shall prove in subsection 4.3 that free theories are in fact the only
theories with f̄2 = ±1. In order to efficiently obtain bounds in this region we would need
to keep g2 ≈ 0, while in the present section we fix g2 = 100. This leads to bad convergence
when we approach f̄2 = ±1.

3.4.2 min ḡ4 vs. f̄2 and f̄4

The lower bound on ḡ4 as a function of f̄4 at two fixed values f̄2 = 0 and f̄2 = 0.3 are
shown in figures 9 and 10. The colored lines indicate the numerical data for various values
of Nmax. The gray line indicates the extrapolated bound. The width of this line represents
the extrapolation error.

As we can see from figures 9 and 10, the extrapolated bound has exactly the same
behavior as the finite Nmax one and lies very close to it. In what follows we will focus on
Nmax = 20 and Lmax = 50 in order to reduce the cost of our numerical computation. This
allows us to scan over more values of f̄2. In figures 11 and 12 we present the lower bound
on ḡ4 at f̄2 = n/10, n = 0, 1, . . . 9. Using the Φ2 ↔ −Φ2 symmetry discussed above we
automatically obtain the bound also for n = −9, . . . − 1.

It is interesting to notice that all our bounds in figures 9–10 satisfy the naive condition

ḡ4 ± 2f̄4 ≥ 0 (3.17)
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Figure 9. Lower bound on ḡ4 as a function of f̄4 at the fixed value f̄2 = 0. Colored lines represent
the numerical data obtained with Lmax defined in (3.15) and various Nmax. The gray line represents
the extrapolated bound to Nmax → ∞. The width of the gray line represents the estimated error.
The extrapolated bound has the form ḡ4 ≥ (0.0129± 0.0001) + (1.999± 0.001)|f̄4|. The dashed line is
drawn for reference.
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Figure 10. Lower bound on ḡ4 as a function of f̄4 at the fixed value f̄2 = 0.3. The extrapolated bound
to the right of the minimum has the form ḡ4 ≥ (0.0055±0.0001)+(2.000±0.001)f̄4. The extrapolated
bound to the left of the minimum has the form ḡ4 ≥ (0.0240± 0.0001) + (−1.997± 0.002)f̄4 .

which is obtained from (1.27) by dropping the log terms. We indicate this condition by
a gray dashed line.
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Figure 11. Lower bound on ḡ4 as a function of f̄4 at fixed values of f̄2. This bound is constructed at
Nmax = 20 and Lmax = 50.

Figure 12. Lower bound on ḡ4 as a function of f̄4 and f̄2. The transparent gray V-shape represents
ḡ4 = 2f̄4, it is reported for reference. The color gradient indicates places with the same values of f̄2
and is equivalent to the one used in figure 11. The solid lines indicate places with the same values of
ḡ4. The bound is constructed at Nmax = 20 and Lmax = 50.
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3.4.3 min ḡ4 vs. f̄2 and ḡ′
4

The lower bound on ḡ4 as a function of ḡ′4 at two fixed values f̄2 = 0 and f̄2 = 0.3 are shown
in figures 13 and 14. The colored lines indicate the numerical data for various values of
Nmax. The gray line indicates the extrapolated bound. The width of this line represents
the extrapolation error. On these plots, we observed that for negative values of ḡ′4 the
extrapolation error grows very quickly. As a result, the extrapolation cannot be trusted
in this region. A quick investigation shows that in this case there is no plateau in Lmax
analogous to figure 6. Further work is needed in order to understand the issue.

Fixing Nmax = 20 and Lmax = 50 allows us to scan over more values of f̄2. As in
the previous subsection, exactly the same bounds hold when f̄2 → −f̄2. We present our
results in figures 15 and 16. There, we focus on the region where one could have performed
a controlled extrapolation.

3.5 Linear constraints and the numerical bounds

Let us now make a general remark on a limitation specific to convex optimization, when it
comes to bounding observables like the ones in (1.12). For simplicity, consider the simplified
setting of a single amplitude T (s), function of a single Mandelstam invariant — for instance,
a scalar 2-to-2 amplitude in two dimensions. Given an amplitude which satisfies unitarity
and crossing, it is easy to see that the one parameter family

Tλ(s) = λT (s) , λ ∈ [0, 1] , (3.18)

does as well. This simple fact implies that no two-sided bound is possible for dimensionless
ratios of coefficients of different mass dimension, if they appear linearly in the amplitude.18

Concretely, suppose that the amplitude has a low energy expansion of the form

T (s) = g2s
2 + g3s

3 + . . . . (3.19)

Then, equation (3.18) generates a one-parameter family of allowed values for the dimen-
sionless ratio:

ḡ3(λ) =
g3(λ)

[g2(λ)]3/2 = 1
λ1/2

g3

g
3/2
2

. (3.20)

If g3 is positive (negative) in the original solution to unitarity and crossing, ḡ3 is unbounded
from above (below).

It is worth emphasizing that the argument above is not sufficient to forbid two-sided
bounds in physical EFTs: elastic unitarity imposes that Wilson coefficients appear nonlinearly
in the low energy expansion — see (1.6)–(1.8). Hence, if particle production happens at
some higher order in s, the reasoning must be modified. As mentioned in subsection 3.3,
we did add nonlinear terms in the ansatz, in particular involving g2, with the exception of
the runs to bound f̄2. However, as a matter of fact, in our numerical runs we only found

18Notice that with an extra mass scale M , such as a cutoff or the mass of an external particle, one can
define homogeneous ratios like g3M2

g2
, which may have two sided bounds.
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Figure 13. Lower bound on ḡ4 as a function of ḡ′4 at the fixed value f̄2 = 0. Colored lines (and
dots in the zoomed part) represent the numerical data obtained with Lmax defined in (3.15) and
various Nmax. The gray line (and black bars in the zoomed part) represent the extrapolated bound to
Nmax →∞. The width of the gray line represents the estimated error. The extrapolation to the left
of the minimum has an enormous estimated error and, thus, cannot be trusted.
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Figure 14. Lower bound on ḡ4 as a function of ḡ′4 at the fixed value f̄2 = 0.3. The gray line represents
the extrapolation to Nmax →∞.
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Figure 15. Lower bound on ḡ4 as a function of ḡ′4 at fixed values of f̄2. This bound is constructed at
Nmax = 20 and Lmax = 50.

Figure 16. Lower bound on ḡ4 as a function of ḡ′4 and f̄2. The color gradient indicates places with
the same values of f̄2 and is equivalent to the one used in figure 15. The solid lines indicate places
with the same values of ḡ4. The bound is constructed at Nmax = 20 and Lmax = 50.

two-sided bounds precisely for f̄2. The latter is a ratio of coefficients with the same mass
dimension, and does not scale with the parameter λ.

This raises the question whether the absence of two-sided bounds is indeed a hallmark
of Wilson coefficients of any EFT. In a certain region of parameter space, the answer is
affirmative, as we shall see in detail in the next section. Indeed, weakly coupled theories
precisely come equipped with a small parameter λ, and the low energy Wilson coefficients
are linear in it at leading order — see table 9. Elastic unitarity is perturbatively satisfied
order by order in λ, hence one can consider these theories — if they can be UV completed

— as a non-linear completion of the example in (3.18). We will indeed use weakly coupled
theories to explain some features of the plots presented in this section.
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3.6 Numerical tests of low spin dominance

In this subsection, we test low spin dominance which was conjectured in [66].19 Consider
the observables

⟨ρ+ℓ ⟩k ≡ 16(ℓ+ 1)
∫ ∞

0

Im
(
Φℓ
1(s) + Φℓ

2(s)
)

sk+1 ds ,

⟨ρ−ℓ ⟩k ≡ 16(ℓ+ 1)
∫ ∞

0

Im
(
Φℓ
1(s)− Φℓ

2(s)
)

sk+1 ds ,

⟨ρ3ℓ ⟩k ≡ 16(ℓ+ 1)
∫ ∞

0

Im
(
Φℓ
3(s)

)
sk+1 ds .

(3.21)

In our case, only the k = 2 integrals converge because for higher values of k, the logarithms
in (1.6) spoil convergence. Note that in terms of these positive observables, the sum rules (2.10)
can be written (after taking the limit ŝ → 0 there) as

g2 + f2 =
∑

l=0,2...

⟨ρ+ℓ ⟩2 +
∑

l=2,3...

⟨ρ3ℓ ⟩2 ,

g2 − f2 =
∑

l=0,2...

⟨ρ−ℓ ⟩2 +
∑

l=2,3...

⟨ρ3ℓ ⟩2 .
(3.22)

The weak version of low spin dominance states that in each channel, the contribution of
the lowest spin dominates over all the higher spins i.e.

⟨ρ+0 ⟩2
⟨ρ+ℓ>0⟩2

≥ 1, ⟨ρ−0 ⟩2
⟨ρ−ℓ>0⟩2

≥ 1, ⟨ρ30⟩2
⟨ρ3ℓ>0⟩2

≥ 1 . (3.23)

The strong version of low spin dominance instead states that in fact the contribution from
the lowest spin is much larger than the other spins

⟨ρ+0 ⟩2
⟨ρ+ℓ>0⟩2

≥ α, ⟨ρ−0 ⟩2
⟨ρ−ℓ>0⟩2

≥ α, ⟨ρ30⟩2
⟨ρ3ℓ>0⟩2

≥ α , (3.24)

with α ∼ 100 in [66]. In our work, since we construct scattering amplitudes, we test this
conjecture and find that the weak version of low spin dominance seems to always be true,
however the strong version need not be. More precisely we find amplitudes where α < 10.
We illustrate this by considering two points from figure 9 in tables 5 and 6. Note that in
this subsection we analyzed the data at Nmax = 26 and Lmax = 80 and checked that the
behavior is stable as we change Lmax and Nmax. In table 5 which is the absolute minimum
value of ḡ4, we see that20

f̄2 = 0 , f̄4 = 0 : ⟨ρ+0 ⟩2
⟨ρ+ℓ>0⟩2

= 5.7, ⟨ρ30⟩2
⟨ρ3ℓ>0⟩2

= 6.3 , (3.25)

which indicates some low spin dominance but not the strong form. We contrast this in
table 6 with the point f̄2 = 0 and f̄4 = 0.05 which lies to right hand side of the minimum

19See also [32, 67] where low spin dominance was shown to follow from locality in tree level EFTs.
20Note that when f̄2 = 0 and f̄4 = 0, the amplitude Φ2 = 0 and therefore Φ−

ℓ = Φ+
ℓ .
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f̄2 = 0, f̄4 = 0, ḡ4 ≈ 0.015
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 20

∑
ℓ

⟨ρ+ℓ ⟩2 27.9 4.90 1.62 0.03 36.1
⟨ρ−ℓ ⟩2 27.9 4.90 1.62 0.03 36.1
⟨ρ3ℓ ⟩2 50.4 8.04 2.86 0.01 63.9

Table 5. Sum rules for the minimum point on the boundary of allowed region in figure 9. Note that
at this point, the amplitude Φ2 = 0 and therefore Φ+ = Φ−. The last column is the sum of partial
wave contributions up to spin ℓ = 20 and we see that (3.22) is saturated already, keeping in mind that
g2 = 100 and f2 = 0.

f̄2 = 0, f̄4 = 0.05, ḡ4 ≈ 0.11
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 20

∑
ℓ

⟨ρ+ℓ ⟩2 40.6 1.85 0.46 0.01 43.4
⟨ρ−ℓ ⟩2 25.3 7.69 5.12 0.02 43.4
⟨ρ3ℓ ⟩2 47.8 5.42 1.51 0.02 56.6

Table 6. Sum rules for a point on the boundary of the allowed region in figure 9. The last column is
the sum of partial wave contributions up to spin ℓ = 20 and we once again see that (3.22) is saturated
already, since g2 = 100 and f2 = 0.

where the bound between f̄4 and ḡ4 appears to be linear. Here we observe much stronger
low spin dominance, albeit only in the ρ+ℓ channel:

f̄2 = 0 , f̄4 = 0.05 : ⟨ρ+0 ⟩2
⟨ρ+ℓ>0⟩2

= 21.9, ⟨ρ−0 ⟩2
⟨ρ−ℓ>0⟩2

= 3.3, ⟨ρ30⟩2
⟨ρ3ℓ>0⟩2

= 8.8 . (3.26)

We also display two points from figure 10 in tables 7 and 8 where we observe similar
phenomena. In particular notice in table 8 that at the point f̄2 = 0.3 and f̄4 = 0.05
which lies in the linear region, the ρ+ℓ channel has strong low spin dominance while the
ρ−ℓ channel is opposite.

f̄2 = 0.3 , f̄4 = 0.0045 : ⟨ρ+0 ⟩2
⟨ρ+ℓ>0⟩2

= 4.7, ⟨ρ−0 ⟩2
⟨ρ−ℓ>0⟩2

= 12.9, ⟨ρ30⟩2
⟨ρ3ℓ>0⟩2

= 8.7 ,

f̄2 = 0.3 , f̄4 = 0.05 : ⟨ρ+0 ⟩2
⟨ρ+ℓ>0⟩2

= 53.1, ⟨ρ−0 ⟩2
⟨ρ−ℓ>0⟩2

= 2.2, ⟨ρ30⟩2
⟨ρ3ℓ>0⟩2

= 9.4 .
(3.27)

We also remark that if we instead consider points with negative values of f̄4, say f̄4 = −0.05,
we find that it is now the ρ−ℓ channel which has strong low spin dominance while the ρ+ℓ
channel has weaker low spin dominance.

4 Allowed amplitudes from perturbation theory

In the first part of this work, we saw how to explore the space of Wilson coefficients using
the numerical S-matrix bootstrap. This section is dedicated to answering the following
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f̄2 = 0.3, f̄4 = 0.0045, ḡ4 ≈ 0.02
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 20

∑
ℓ

⟨ρ+ℓ ⟩2 50.5 10.8 5.05 0.03 70.7
⟨ρ−ℓ ⟩2 9.33 0.72 0.27 0.02 10.7
⟨ρ3ℓ ⟩2 49.8 5.72 2.01 0.02 59.3

Table 7. Sum rules for the minimum point on the boundary of figure 10. The last column is the sum
of partial wave contributions up to spin ℓ = 20 and we see that (3.22) is saturated already, keeping in
mind that g2 = 100 and f2 = 30.

f̄2 = 0.3, f̄4 = 0.05, ḡ4 ≈ 0.11
ℓ = 0 ℓ = 1 ℓ = 2 ℓ = 3 ℓ = 4 ℓ = 20

∑
ℓ

⟨ρ+ℓ ⟩2 86.5 1.63 0.37 0.01 88.9
⟨ρ−ℓ ⟩2 14.6 6.66 4.06 0.02 28.8
⟨ρ3ℓ ⟩2 34.9 3.70 1.00 0.02 41.1

Table 8. Sum rules for a point on the boundary of the allowed region in figure 10. The last column is
the sum of partial wave contributions up to spin ℓ = 20 and we once again see that (3.22) is saturated
already, keeping in mind that g2 = 100 and f2 = 30.

question: how much of this space can be understood analytically? Our main tool will be a
set of effective field theories which are under perturbative control, and which will be used to
populate the space of Wilson coefficients. Most of the models we consider were shown in [43]
to be compatible with analytic positivity bounds, however we also discuss two cases which are
in tension with the same bounds. These theories are obtained by weakly coupling the photon
to a heavy particle at tree level (Yukawa-like theories) or at one loop (QED-like theories).
The resulting theories have the following feature: they all have a dimensionless parameter λ,
such that at the point λ = 0 the heavy particle decouples and the photons are free. These
theories are not necessarily UV complete on their own when λ ̸= 0, but for some of them one
can exhibit explicit UV completions.21 Furthermore, they all obey the classical Regge growth
conjecture [68], which states that the growth of the amplitude should be bounded by s2 at
fixed t. The non-perturbative version of the bound is not known in the case of massless spin
one particles, but the same statement was recently proven for graviton scattering [62], and
we shall assume that it holds for photons as well. Even when we do not exhibit an explicit
UV completion, we take the Regge boundedness as a reason to trust in its existence.

The rest of the section is organized as follows. In subsection 4.1, we gather the Wilson
coefficients of interest, while a detailed analysis of the theories that produce them is relegated
to appendix E. The following subsection is dedicated to explaining which linear combinations
of the basis of amplitudes are compatible with unitarity. In the three subsections 4.3, 4.4, 4.5,
we rule in portions of the space of physical observables defined in (1.12).

21More precisely, what one can concoct is a renormalizable action with marginal couplings. This still leaves
open the possibility of a Landau pole, see appendix F.
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g2 f2 g3 f3 h3 g4 g′4 f4

Spin 0

scalar λ2

m4
λ2

m4
λ2

m6
3λ2

m6 0 λ2

m8 0 λ2

2m8

axion λ2

m4 − λ
2

m4
λ2

m6 −3λ2

m6 0 λ2

m8 0 − λ2

2m8

Spin 2

parity even I λ2

m4
λ2

m4
λ2

m6 0 0 λ2

m8 −6λ2

m8
λ2

2m8

parity even II λ2

m4 0 − λ
2

m6 0 0 λ2

m8 −2λ2

m8 0

parity odd λ2

m4 − λ
2

m4
λ2

m6 0 0 λ2

m8 −6λ2

m8 − λ2

2m8

One loop

scalar QED 2λ2

45m4
λ2

30m4
λ2

210m6
λ2

63m6
λ2

630m6
11λ2

9450m8 − λ2

3780m8
λ2

1890m8

spinor QED 11λ2

45m4 − λ2

15m4
4λ2

315m6 − 2λ2

63m6 − λ2

315m6
13λ2

2700m8 − λ2

378m8 − λ2

945m8

vector QED 14λ2

5m4
λ2

10m4 − 47λ2

630m6
λ2

21m6
λ2

210m6
131λ2

3150m8 − 23λ2

420m8
λ2

630m8

Table 9. Wilson coefficients of photons EFTs obtained by integrating out particles at tree level or
one loop.

4.1 Wilson coefficients of models with a small parameter

As mentioned above, the class of theories we consider are obtained by integrating out a
particle at tree level or at one-loop. At tree level, we consider resonances of spin bounded
by two. The criterion for this choice is the requirement of Regge boundedness discussed
above. In appendix E we give more details on the construction of these amplitudes, and in
subsections 4.3, 4.4 we will further comment on the case of a spin two resonance, which leads
to some subtleties. The second class of theories comprises the coupling of a photon to an
electrically charged particle: the particle is only created in pairs, and therefore contributes
to the photon EFT at one loop. We collect the Wilson coefficients in table 9, where λ is a
dimensionless parameter. In all cases, the coefficients are only correct to leading order in
λ, which should therefore be taken to be small. In the following, we shall often denote the
couplings by the dimension of the corresponding operators in the Lagrangian (1.13): (g2, f2)
are the dimension 8 Wilson coefficients, (g3, f3, h3) are the dimension 10 and (g4, g′4, f4) are
the dimension 12 coefficients.

4.2 The rules of the game

If the amplitudes in table 9 are to be treated as UV complete, their convex hull should
lie within the numerical bounds found in section 3. However, violations of unitarity only
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disappear in the λ→ 0 limit, in which case all the dimensionless observables defined in (1.12)
are pushed to infinity, with the exception of f̄2. For instance, the non-vanishing observables
associated with the first row of table 9 are

f̄2 = 1 , ḡ3 =
1
λ
, f̄3 =

3
λ
, ḡ4 =

1
λ2
, f̄4 =

1
2λ2 . (4.1)

We conclude that the amplitudes considered in this section mark unbounded directions in
the space of photon EFTs at dimension larger than 8.

In the rest of this section, we shall find such directions. A simplifying feature of the
problem is that the convex hull of these amplitudes degenerates into a cone in the weak
coupling limit. Indeed, let us define the vectors vi(λi), where the index i labels the rows of
table 9 and whose components are the Wilson coefficients:

v = (g2, f2 | g3, f3, h3 | g4, g′4, f4) = (v(2) | v(3) | v(4)) . (4.2)

The vectors spanning subspaces at each mass dimension are distinguished by the upper
index. The following obvious equality,∑

i

αivi(λi) =
∑

i

βivi(λ′i) , βi =
αi

(κi)2
, λ′i = λiκi , κi > 0 , (4.3)

makes the condition
∑

i αi = 1 irrelevant. In the λi → 0 limit, all linear combinations of the
amplitudes with coefficients βi > 0 are allowed. In other words, under the assumptions of this
section, amplitudes are only constrained by positivity rather than by full nonlinear unitarity.

A second simplification comes from the fact that we are allowed to take independent
linear combinations at dimension 8 and 10, or at dimension 8 and 12. This follows from the
freedom of choosing the mass of the exchanged particle, which introduces new dimensionless
parameters mi/mj . For instance, the following change of variables,

x = λ2

m4 , y = λ2

m6 , (4.4)

allows to write the Wilson coefficients at dimension 8 and 10 as linear functions of different
parameters. Referring to the definition (4.2),

v(2) = x v̂(2) , v(3) = y v̂(3) , v(4) = y2

x
v̂(4) , (4.5)

with hatted vectors being purely numerical. Then we can extend the observation (4.3) to∑
i

αivi(xi, yi) =
∑

i

(
β
(2)
i v

(2)
i (x′i) |β

(3)
i v

(3)
i (y′i) |β

(4)
i v

(4)
i (y′2i /x′i)

)
, (4.6)

β
(2)
i = αi

κ
(2)
i

, β
(3)
i = αi

κ
(3)
i

, β
(4)
i = αi

κ
(2)
i(

κ
(3)
i

)2 , x′i = xiκ
(2)
i , y′i = yiκ

(3)
i , κ

(2,3)
i > 0 .

This means that, for any choice of positive β(2)i , β
(3)
i , one can find an amplitude in the convex

hull of the perturbative theories defined by table 9 as λ→ 0.22 An analogous statement holds
for the subspace of dimension 8 and dimension 12 coefficients.

22Notice that instead β
(4)
i =

(
β

(3)
i

)2
/β

(2)
i .
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A simple consequence of this observation is that the asymptotic allowed values of the
dimension 10 or of the dimension 12 coefficients do not depend on f̄2.

More generally, we are lead to a simple recipe to find which directions are necessarily
unbounded in the space of couplings of each mass dimension:

Consider the vectors of Wilson coefficients in table 9, restricted to a given mass
dimension larger than 8. Set λ = m = 1. Compute the one-sided cone generated
by positive linear combinations of the numerical vectors thus obtained. The
intersection of this cone with the sphere at infinity marks the unbounded directions.

The basic technology to solve this kind of problems is reviewed in [69]. We shall only
report the results in the rest of the section.

4.3 The f̄2 space

The spin 0 exchanges in table 9 are sufficient to cover the space of couplings at dimension 8,
which is parametrized by |f̄2| ≤ 1. Indeed, the scalar amplitude has f̄2 = 1 and the axion
amplitude has f̄2 = −1. Their convex hull generates the whole allowed space.

The other amplitudes in table 9 all lie inside this interval. In the case of the spin
2 resonance, this fact deserves a comment. The exchange of a resonance determines the
amplitude uniquely only at the location of the pole. In particular, the amplitudes constructed
in appendix E are ambiguous up to the addition of a polynomial in the Mandelstam invariants,
of the kind showed in (1.6). Such polynomials correspond to contact interactions for the
photons, as explained in the introduction. A polynomial of degree two can be tuned so that
the Regge limit of the spin two resonance obeys (2.6), and, as a consequence, the dispersion
relation (2.10). This implies |f̄2| ≤ 1. Let us emphasize that (2.6) is strictly weaker than the
Regge bound mentioned in the previous subsection, since it only holds at t = 0, for a specific
linear combination of amplitudes. In fact, it is not possible to obtain a Regge limit strictly
slower than s2, for all values of t, by adding a finite degree polynomial.

Let us finally comment on the constraints imposed by dispersion relations and crossing
onto the amplitudes living at the boundary of the allowed region. We start from the boundary
f̄2 = 1. Equations (2.10) and (2.1) imply

Im (Φ1(s)− Φ2(s)) = 0 , ImΦ3(s) = 0 , (4.7)

where we recall that the notation means the amplitudes are evaluated at t = 0. Let us now
decompose (4.7) in partial waves, using (A.29). The small Wigner d−matrix are non negative
at θ = 0, as it is easy to verify from the definition (A.27). Together with the positivity
constraint (1.25), this means that (4.7) is valid at the level of partial waves:

Im
(
Φℓ
1(s)− Φℓ

2(s)
)
= 0 , ImΦℓ

3(s) = 0 . (4.8)

Furthermore, the unitarity constraints (A.44)–(A.47) force these combinations of partial
waves to vanish: (

Φℓ
1(s)− Φℓ

2(s)
)
= 0 , Φℓ

3(s) = 0 . (4.9)
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This is easily seen for the Φℓ
1(s)−Φℓ

2(s) combination, which obeys the usual spinless unitarity
constraint |1 + iT | < 1.23 With some more work, one can extract from (A.47) the following
necessary conditions valid for even spin:∣∣∣1 + i(Φℓ

1(s) + Φℓ
2(s))

∣∣∣ < 1 ,
∣∣∣1 + 2iΦℓ

3(s)
∣∣∣ < 1 ,

∣∣∣Φℓ
5(s)

∣∣∣ < 1 . (4.10)

The second of these conditions, together with (A.45), implies the third equality in (4.9).24

If we now plug (4.9) back into (A.47), we discover that also

Φℓ
5(s) = 0 . (4.11)

All in all, we found that the following amplitudes vanish if f̄2 = 1:

Φ1(s, t, u)− Φ2(s, t, u) = 0 , Φ3(s, t, u) = 0 , Φ5(s, t, u) = 0 . (4.12)

Using crossing — equation (1.5)—we conclude that in fact all the amplitudes must vanish.
A similar reasoning also leads to the same conclusion for the other boundary of the space
allowed by unitarity, f̄2 = −1.

Notice that this conclusion does not contradict the statement that scalar and pseudoscalar
resonances saturate these bounds. Indeed, as emphasized, the theories considered in this
section are only compatible with unitarity in the limit λ→ 0, i.e. precisely when they become
free. In other words, in any interacting UV completion of the EFT obtained integrating out
a scalar or an axion, the value of f̄2 is corrected at higher orders in λ.

4.4 The (ḡ3, f̄3, h̄3) space

In subsection 3.3, we saw that the numerics indicates the absence of bounds for the dimension
10 observables. Here, we show that the full space is in fact covered by (linear combinations
of) perturbative completions of the photon effective lagrangian. Following the recipe given in
subsection 4.2, we consider the cone generated by the following amplitudes: scalar, axion,
scalar QED, spinor QED and vector QED. One can easily see that the cone coincides with
the whole three-dimensional space spanned by g3, f3 and h3, thus proving that the sphere at
infinity in the normalized space (ḡ3, f̄3, h̄3) is populated by weakly coupled theories.

Notice that, since the unitarity constraints are convex, no lower bound on ḡ3, f̄3, h̄3 is
possible either. Let us emphasize that it was not necessary to include spin two resonances in
order to achieve this result. In other words, bounds on dimension 10 Wilson coefficients are
impossible already within amplitudes which grow slower than s2 in the Regge limit.

4.5 The (ḡ4, ḡ′
4, f̄4) space

The space of dimension 12 Wilson coefficients is the first one which is not fully covered by
(linear combinations of) weakly coupled amplitudes. This is in accordance with the results of
section 3, where we presented evidence of non-trivial bounds in the (ḡ4, ḡ′4, f̄4) space.

23Recall that t− u symmetry of Φ1 and Φ2 and the property dℓ
0,0(π− θ) = (−1)ℓdℓ

0,0(θ) make Φℓ
1(s) − Φℓ

2(s)
vanish for ℓ odd.

24Recall that Φℓ
3 = 0 for ℓ = 0, 1.
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Figure 17. A portion of the cone generated by positive linear combinations of the perturbative
amplitudes of table 9, restricted to the space of dimension 12 Wilson coefficients. The smaller cone
(yellow) only includes amplitudes which grow slower than s2 in the Regge limit. The wider cone
(purple) includes all the rows of table 9.

The boundaries of the cone generated by the perturbative amplitudes depend on which
portion of table 9 is included in the analysis. Let us begin by including all the rows of the
table. These vectors generate a cone bounded by the following four faces:

g4 − 2f4 ≥ 0 , g4 + 2f4 ≥ 0 , g′4 ≤ 0 , g′4 + 6g4 ≥ 0 . (4.13)

This implies in particular g4 ≥ 0. If instead we restrict to theories which grow slower than s2

at fixed t, i.e. we exclude the spin two resonances, we get the following inequalities:

−10f4 + 5g4 + 2g′4 ≥ 0 , −157f4 + 85g4 + 60g′4 ≥ 0 , g′4 ≤ 0 , 230f4 + 115g4 + 94g′4 ≥ 0 .
(4.14)

Again, only the half-space g4 ≥ 0 is populated. The two cones are shown in figure 17.
It is interesting to compare these findings with the amplitudes constructed numerically

in section 3, and with the analytic results obtained in [43, 44, 69]. The numerical results are
showcased in figures 9–12 and 13–16, for the (ḡ4, f̄4) and for the (ḡ4, ḡ′4) planes, respectively.
In particular, it is clear that the (ḡ4, f̄4) space is bounded at infinity by the two directions
ḡ4/f̄4 = ±2, for all values of f̄2. This matches both the wider and the narrower cones,
equations (4.13) and (4.14). The two boundaries are generated by the scalar and axion
amplitudes respectively (and also by the parity even I and by the parity odd amplitudes)
in table 9.

The status of the (ḡ4, ḡ′4) plane appears less clear. The bounds in figures 13–16 are
well converged only when ḡ′4 ≳ 0, while all the perturbative amplitudes we consider have
non-positive values for the same Wilson coefficient. The two plots are therefore hardly
comparable. It would be interesting to find a perturbative amplitude with positive g′4 that
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could explain our numerical results. For reference, the sections of the two cones in (4.13)
and (4.14) are bounded, respectively, as

−6 ≤ g′4
g4
≤ 0 , g4 ≥ 0 , (4.15)

and
−345
262 ≤

g′4
g4
≤ 0 , g4 ≥ 0 . (4.16)

The lower bound in the first equation is reached by the parity even I and parity odd spin
2 resonances. If those are excluded, smallest ratio belongs to vector QED. One can also
combine the numerical results to the weakly coupled theories to obtain a larger convex hull. In
particular, one can consider figure 13, and draw a line with slope −1/6 or −262/345 (depending
on the reader’s opinion about the spin 2 resonances) which intersects the ḡ′4 = 0 axis in
correspondence of the numerical lower bound. The region to the right of this line and above
the bound is populated by linear combinations of numerical and perturbative amplitudes.

Finally, in the (ḡ′4, f̄4) plane, the perturbative amplitudes cover the semi-circle at infinity
with ḡ′4 < 0. Therefore, their convex hull covers the whole half-plane (ḡ′4 < 0, f̄4). Again,
one can combine this knowledge with the numerical results. From figures 13 and 14 it is
clear that there is no upper bound on ḡ′4. Consider then an allowed point with ḡ′4 = x > 0
in the (ḡ′4, f̄4) plane. The convex hull of this point and the half plane ḡ′4 < 0 is the region
to the left of the line ḡ′4 = x. Now, since x can go to infinity, we conclude that there are
no bounds in the (ḡ′4, f̄4) plane.

In [43, 44], the space of Wilson coefficients was bounded analytically, by means of linear
positivity — see section 2—and tree level crossing, i.e. null constraints. Depending on how
many null constraints were imposed, the following bounds were found:

−18
7 ≤

ḡ′4
ḡ4
≤ 370

29 , g4 ≥ 0 , [43] , (4.17)

−12
5 ≤

ḡ′4
ḡ4
≤ 0 , g4 ≥ 0 , [44] . (4.18)

On the other hand, the paper [69] found the following bounds:

−6 ≤ ḡ′4
ḡ4
≤ 30

7 , g4 ≥ 0 . (4.19)

The bounds (4.18)–(4.19) are compared to the weakly coupled theories (4.15) and (4.16)
in figure 18, and to the numerical results in figure 19. It is interesting to notice that the
cone generated by our perturbative amplitudes extends beyond the bounds found in [43, 44].
This is not a contradiction, since the use of null constraints requires the Regge limit to be
strictly softer than s2 beyond the forward limit. Indeed, excluding the spin 2 exchanges we
get a convex hull squarely contained within their bounds. However, [43] did consider the
exchange of a massive graviton, finding it compatible with the analytic bounds. As we further
discuss in appendix E, the amplitude proposed in [43] coincides with our parity even II up to
operators of dimension 8 in the EFT. One can easily check that the Wilson coefficients of
dimension 10 and 12 in table 9 coincide with the ones reported in table 2 of [43]. At the level
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Figure 18. Comparison between (4.15), (4.16)—purple and orange solid lines respectively — and
the analytic bounds imposed by linear positivity and tree level crossing. The allowed region (a) was
derived in [69], (b) in [43] and updated by the same authors in [44] (c). Notice that part of the purple
region lies outside the bounds which rely on null constraints.
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Figure 19. Comparison between the numerical bounds obtained in section 3 and the analytic bounds
(a) [69], (b) [43] and (c) [44]. The allowed regions lie in the ḡ4 > 0 half-plane, and are delimited by
the dashed lines (notice that the blue and green left edges almost coincide in the picture).

of our analysis, which is based on the classical Regge bound, there is no reason to prefer this
combination to the other two spin 2 resonances: it would be interesting to understand if, in
some way, the other amplitudes are exonerated from the null constraints of [43, 44], while
this one must obey them. In appendix E, we offer a few additional comments on the status
of the parity even I and parity odd EFTs. Finally, let us emphasize that the list of weakly
coupled UV completion considered here is not exhaustive. One could of course also consider
other types of amplitudes such as the stu-pole [52] or stringy models [70].

5 Discussion

Photons are the particles of light. To the best of our knowledge, they are massless spin
one particles. Assuming four dimensional Lorentz invariance, quantum mechanics and the
absence of other massless particles, the low energy dynamics of photons must be described
by the EFT Lagrangian (1.13). Of course, we expect photons to also interact with gravitons,
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s

M2
•

−M2 − t
•

Figure 20. Analytic structure of the amplitudes Φi(s, t, u) assumed in the positivity study [43]. The
branch cuts associated to photon loops are neglected due to the assumption of weak coupling. The
beginning of the cut at s =M2 defines an energy scale M that is interpreted as the UV cutoff of the
photon EFT.

but this is a exceedingly small effect at reasonable energies.25 The Wilson coefficients ci in
the EFT Lagrangian (1.13) parametrize our ignorance about the high energy behavior of
the theory. Of course, in the real world we expect these to be dominated by QED effects.
Nevertheless, in this paper we asked ourselves what values can these numbers take compatible
with the S-matrix bootstrap principles of Lorentz invariance, unitarity and analyticity. Using
a numerical algorithm, we estimated several non-perturbative bounds as described in section 3.
QED seems to live well inside the allowed region. Some bounds are saturated by weakly
coupled amplitudes as we discuss in section 4 but others are not. For example, the amplitude
with minimal ḡ4 is strongly coupled. Is there a physical theory that realizes such a small
value of ḡ4? This is an open question for the future.

Let us comment on the bounds derived in [43] using positivity. In that work, the authors
assumed weak coupling below the scale M and neglected the branch cuts of the amplitude
from photon loops. More precisely, they assumed the analytic structure depicted in figure 20
and defined the scale M from the position of the branch point at s =M2. This assumption
makes it possible to derive bounds on new dimensionless quantities like

g3M
2

g2
,

g4M
4

g2
,

g′4M
4

g2
, . . . (5.1)

It would be interesting to derive similar bounds without completely ignoring the log terms
in (1.6). This requires a different definition of the scale M . For example, we may impose
that the discontinuity of the amplitude is bounded by (1.6) up to s = M2 and let it free
for s > M2 (still imposing unitarity). Such scenario can be easily studied with our primal
numerical methods (see [71] for a concrete implementation of a similar idea). We leave
this exploration for the future.

The primal numerical S-matrix bootstrap becomes very expensive in the presence of
massless particles. This has been noticed before in [18, 24] but it was more extreme in this
work. For this reason, we are in great need of more efficient numerical methods. Hopefully,
the dual methods of [25, 27] can be generalized to massless particles.

25For example, the exclusive cross section of two photons into two photons from 1-loop effects in QED is of
order σQED ∼ α4s3/m8

e and from tree-level graviton exchange is of order σgrav ∼ G2
Ns ∼ s/m4

P . Therefore,
the ratio σgrav/σQED ∼ m8

e/(m4
Pα

4s2) ∼ 10−58 (1 eV/√s)4 is tiny for visible (or higher frequency) photons.
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It would be very interesting to consider the joint system of scattering amplitudes between
photons and charged particles. However, this idea collides with the well known problem of IR
divergences in 4 space-time dimensions. The same applies to scattering amplitudes involving
photons and gravitons. These are also not well defined non-perturbatively in 4 dimensions.
Hopefully, better (inclusive?) observables can be constructed with properties amenable to a
bootstrap approach. In the meantime, one can extend the present S-matrix bootstrap study
in two main directions. Firstly, we can go to higher dimensions to avoid the IR divergences.
It would be very interesting to study photon-graviton scattering in higher dimensions in the
context of the weak gravity conjecture [44]. Secondly, we can consider photons as probes of
any QFT with a continuous global symmetry. In particular, we can study scattering of pions
and photons in QCD in order to probe the chiral anomaly, analogously to the use of dilatons
to probe the a-anomaly [33]. Furthermore, this system can be further simplified by working in
the planar limit of QCD as in [30]. In this case, non-linear unitarity is reduced to positivity.
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A Amplitudes, crossing and unitarity

In this appendix we define scattering amplitudes of spin one massless particles. Focusing
on the center of mass frame we will derive crossing equations and unitarity conditions they
must obey. For completeness, in appendix B we will study these amplitudes in a generic
frame and derive crossing equations also there. We will find that the results of the two
appendices are in perfect agreement.

In this paper we work in the mostly plus metric

ηµν = {−,+, . . . ,+,+} . (A.1)

Throughout our work we always focus on the case of d = 4 space-time dimensions except for
appendices B.3.1 and B.3.3 where we stay in general number of space-time dimensions d.
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A.1 Amplitudes for spin one massless particles

We start by defining scattering amplitudes in a general frame. We then focus on the center
of mass frame.

Scattering amplitudes in a general frame. Consider the 2-to-2 (in-out) scattering
process of massless spin one particles, schematically 12→ 34. It is described by the scattering
amplitude Sλ3,λ4

λ1,λ2
(p1, p2, p3, p4) defined via the following matrix element

(2π)4δ(4)(pµ
1 + pµ

2 − p
µ
3 − p

µ
4 )× S

λ3,λ4
λ1,λ2

(p1, p2, p3, p4) ≡ id⟨κ3, κ4|S|κ1, κ2⟩id. (A.2)

Here S is the scattering operator. The particles with 4-momenta p1 and p2 are incoming,
and the particles with momenta p3 and p4 are outgoing. We adopt the convention that
helicities of incoming particles are always placed downstairs, instead helicities of outgoing
particles are always placed upstairs. The two-particle state describing the system of two
identical massless particles is defined as

|κ1, κ2⟩id ≡
1√
2
(
|p⃗1;λ1⟩ ⊗ |p⃗2;λ2⟩+ |p⃗2;λ2⟩ ⊗ |p⃗1;λ1⟩

)
, (A.3)

where the symbol ⊗ stands for the ordered tensor product. By construction it obeys the
condition |κ1, κ2⟩id = |κ2, κ1⟩id. The

√
2 factor in the definition is part of our conventions.

The one-particle states entering (A.3) are denoted by

|p⃗;λ⟩ ≡ |m = 0, p⃗; j = 1, λ⟩. (A.4)

The right-hand side of (A.4) is standard notation for one-particle states, where m is the
mass of the particle, j is its spin, p⃗ is the spatial momentum and λ is the helicity. For
massless spin j = 1 particles helicity can only take two values λ = ±1. The normalization
of one-particle states is given by

⟨p⃗1;λ1|p⃗2;λ2⟩ = 2p1δ
λ2
λ1
× (2π)3δ(3)(p⃗1 − p⃗2) , (A.5)

where we defined pi = |p⃗i|.
Let us now define the interacting part of the scattering operator T as follows

S = 1 + iT. (A.6)

This leads to the definition of the interacting scattering amplitude T λ3,λ4
λ1,λ2

(p1, p2, p3, p4), namely

(2π)4δ(4)(pµ
1 + pµ

2 − p
µ
3 − p

µ
4 )× T

λ3,λ4
λ1,λ2

(p1, p2, p3, p4) ≡ id⟨κ3, κ4|T |κ1, κ2⟩id, (A.7)

Using (A.6) we can write the relation between the scattering amplitude and its interacting
part. It reads

Sλ3,λ4
λ1,λ2

(p1, p2, p3, p4) = id⟨κ3, κ4|κ1, κ2⟩id
(2π)4δ(4)(pµ

1 + pµ
2 − p

µ
3 − p

µ
4 )

+ iT λ3,λ4
λ1,λ2

(p1, p2, p3, p4). (A.8)
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The first term in the right-hand side of (A.8) is a formal expression. It can be straightforwardly
evaluated for example in the center of mass frame in spherical coordinates (e.g. see footnote
15 in [19]). The normalization of two-particle states follows from (A.3) and (A.5). It reads

id⟨κ3, κ4|κ1, κ2⟩id = 4p1p2(2π)6
(
δ(3)(p⃗1 − p⃗3)δ(3)(p⃗2 − p⃗4)δλ3

λ1
δλ4

λ2
+ (3↔ 4)

)
. (A.9)

Using the 4-momenta pµ
i one can form three scalar quantities called the Mandelstam

variables. For the in-out amplitudes their standard form reads as

s ≡ −(p1 + p2)2, t ≡ −(p1 − p3)2, u ≡ −(p1 − p4)2, s+ t+ u = 0. (A.10)

Their physical range is

s ≥ 0, t ∈ [−s, 0], u ∈ [−s, 0]. (A.11)

Scattering amplitudes in the center of mass frame. The center of mass (COM) frame
is defined by the following configuration of the 4-momenta

pcom
1 ≡

√
s

2 × (1, 0, 0,+1),

pcom
2 ≡

√
s

2 × (1, 0, 0,−1),

pcom
3 ≡

√
s

2 × (1,+sin θ, 0,+cos θ),

pcom
4 ≡

√
s

2 × (1,− sin θ, 0,− cos θ),

(A.12)

where θ ∈ [0, π] is the scattering angle. Plugging these into the definition of the Mandelstam
variables (A.10) we find that

sin θ = 2
√
tu

s
, cos θ = t− u

s
⇔ t = −s2(1− cos θ), u = −s2(1 + cos θ). (A.13)

The center of mass amplitudes are defined as

T λ3,λ4
λ1,λ2

(s, t, u) ≡ T λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ). (A.14)

Due to the presence of identical particles and parity symmetry, there are only 5 distinct
center of mass amplitudes, our choice here is

Φ1(s, t, u) ≡ T ++
++ (s, t, u),

Φ2(s, t, u) ≡ T −−
++ (s, t, u),

Φ3(s, t, u) ≡ T +−
+− (s, t, u),

Φ4(s, t, u) ≡ T −+
+− (s, t, u),

Φ5(s, t, u) ≡ T +−
++ (s, t, u).

(A.15)

The rest of the center of mass amplitudes are related to the above 5 ones via the 11 relations.
Due to the presence of identical particles we get the following 9 constraints

T −−
−− = Φ1, T +−

−− = T −+
−− , T −−

−+ = Φ5, T −+
−+ = Φ3, T +−

−+ = Φ4,

T ++
−+ = T −+

−− , T −−
+− = Φ5, T ++

+− = T −+
−− , T −+

++ = Φ5.
(A.16)
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Due to the requirement of parity invariance we get in addition another two relations which read

T −+
−− = Φ5, T ++

−− = Φ2. (A.17)

Both (A.16) and (A.17) follow straightforwardly from equations (2.64), (2.86), (2.89) and
(2.90) in [19].

A.2 Crossing equations in the center of mass frame

The s− t and s−u crossing equations for the center of mass amplitudes in the case of massless
j = 1 particles can be obtained up to an overall phase using the arguments of Trueman and
Wick [37]. They were derived in detail for example in [19], see equations (2.81) and (2.82).
Specializing to the case of photon scattering, their result reads

T λ3,λ4
λ1,λ2

(s, t, u) = χst T +λ2,−λ4
−λ1,+λ3

(t, s, u),

T λ3,λ4
λ1,λ2

(s, t, u) = χsu T −λ3,+λ2
−λ1,+λ4

(u, t, s),
(A.18)

where the overall phases χst and χsu remain undetermined. Using (A.15), (A.16) and (A.17)
we can rewrite the crossing equations (A.18) in terms of the 5 center of mass amplitudes
Φi(s, t, u) only. They read

ΦI(s, t, u) = χst

5∑
J=1

Cst
IJΦJ(t, s, u), ΦI(s, t, u) = χsu

5∑
J=1

Csu
IJΦJ(u, t, s), (A.19)

where the crossing matrices read

Cst ≡



0 0 0 1 0
0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1


, Csu ≡



0 0 1 0 0
0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 0 0 1


. (A.20)

Both matrices have the following eigenvalues {−1, 1, 1, 1, 1}. They cannot however be
simultaneously diagonalized.

The easiest way to fix the unknown phases χst and χsu in (A.19) is to plug the explicit
expressions of Φi(s, t, u) given in (1.6) at the lowest order in s (i.e. using only s2 terms) into
the crossing equations (A.19). One then immediately concludes that

χst = χsu = +1. (A.21)

As an alternative approach, in appendix G, we will derive the crossing equation (A.18)
explicitly using LSZ. There, we also show that the phases are given by (A.21).

A.3 Unitarity

We now discuss the constraints on the amplitudes due to unitarity. This subsection is an
application of the general construction presented in [19], which the reader is referred to for
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more details. We begin by defining a short-hand notation for the two-particle state (A.3)
evaluated in the center of mass frame, namely

|(p, θ, ϕ);λ1, λ2⟩id ≡
1√
2
(|p⃗;λ1⟩ ⊗ | − p⃗;λ2⟩+ | − p⃗;λ2⟩ ⊗ |p⃗;λ1⟩). (A.22)

Here (θ, ϕ) are the angular coordinates of p⃗ and p ≡ |p⃗ |. The state (A.22) transforms in the
reducible representation of the Poincaré group. Let us now define a two particle state which
transforms in the irreducible representation of the Poincaré group instead. It reads

|c, 0⃗, ℓ, λ;λ1, λ2⟩id

≡ 2ℓ+ 1
4π
√
2Cℓ

∫ 2π

0
dϕ

∫ π

0
dθ sin θe−iϕ(λ1+λ2−λ)d ℓ

λ,λ12(θ)|(p, θ, ϕ);λ1, λ2⟩id, (A.23)

where λ12 ≡ λ1 − λ2, ℓ = 0, 1, 2, . . . and λ are the total spin and helicity, c ≡ 2p =
√
s

is the center of mass energy and

Cℓ ≡
√
8π(2ℓ+ 1) . (A.24)

Since the states (A.23) transform in irreducible representations of the Poincaré group we
conclude that their inner product with the scattering operator T have the following most
general form

id⟨c′, p⃗ ′, ℓ′, λ′;λ3, λ4|T |c, p⃗, ℓ, λ;λ1, λ2⟩id = (2π)4δ4(pµ − p′µ)δℓℓ′δλλ′Tℓ
λ3,λ4
λ1,λ2

(s). (A.25)

Here the functions Tℓ
λ3,λ4
λ1,λ2

(s) are called (interacting part of) partial amplitudes. They are
related to the interacting part of scattering amplitudes via the following integral transform

Tℓ
λ3,λ4
λ1,λ2

(s) = 1
32π

∫ π

0
dθ sin θ d ℓ

λ12,λ34(θ)T
λ3,λ4

λ1,λ2

(
s, t(s, θ), u(s, θ)

)
, (A.26)

with t(s, θ) and u(s, θ) given in (A.13). Here d ℓ
λ12,λ34

(θ) stand for small Wigner d-matrices,
they are defined by

dℓ
λλ′(β) =

√
(ℓ+ λ)!(ℓ− λ)!(ℓ+ λ′)!(ℓ− λ′)!

×
2j∑

ν=0
(−1)3ν+λ−λ′ (cos(β/2))2ℓ+λ′−λ−2ν(sin(β/2))λ−λ′+2ν

ν!(ℓ− λ− ν)!(ℓ+ λ′ − ν)!(ν + λ− λ′)! (A.27)

=
(
cos

(
β

2

))λ′+λ (
sin
(
β

2

))λ′−λ
√

(l − λ)!(λ′ + l)!
(λ+ l)!(l − λ′)!

×
2F1

(
λ′ − ℓ, ℓ+ λ′ + 1;−λ+ λ′ + 1; sin2

(
β
2

))
Γ(−λ+ λ′ + 1) , (A.28)

where for completeness, we wrote two equivalent definitions.26 Using properties of the Wigner
d-matrices, see for example appendix A.1 of [19], the integral transform (A.26) can be inverted
and we obtain the usual partial wave expansion

T λ3,λ4
λ1,λ2

(
s, t(s, θ), u(s, θ)

)
=
∑

ℓ

16π(2ℓ+ 1)Tℓ
λ3,λ4
λ1,λ2

(s) d ℓ
λ12,λ34(θ). (A.29)

26Note that Mathematica implements the small Wigner d-matrices with a different sign convention
WignerD[{j, λ, λ′}, β] = (−1)λ−λ′

dj
λλ′ (β).
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In the case of two identical spin one massless particles there are three possible two particle
Poincaré irreps. We list them using the notation + for helicity +1 and − for helicity −127

|c, p⃗, ℓ, λ; +,+⟩id, |c, p⃗, ℓ, λ;−,−⟩id, |c, p⃗, ℓ, λ; +,−⟩id (A.30)

Bose symmetry of identical particles also implies the selection rule that the first two states
in the list above only exist for even ℓ. The third state exists for all spin ℓ ≥ 2.28 Under
parity transformation, the three states transform as follows

P|c, 0⃗, ℓ, λ; +,+⟩id = (−1)ℓ|c, 0⃗, ℓ, λ;−,−⟩id,
P|c, 0⃗, ℓ, λ;−,−⟩id = (−1)ℓ|c, 0⃗, ℓ, λ; +,+⟩id,
P|c, 0⃗, ℓ, λ; +,−⟩id = |c, 0⃗, ℓ, λ; +,−⟩id.

(A.31)

Since we consider parity invariant theories, it is convenient to define new linear combinations
which are parity eigenstates:

parity even:
|1⟩ ≡ 1√

2

(
|c, p⃗, ℓ, λ; +,+⟩id + |c, p⃗, ℓ, λ;−,−⟩id

)
, ℓ ≥ 0 (even),

|2⟩ ≡
√
2 |c, p⃗, ℓ, λ; +,−⟩id, ℓ ≥ 2,

(A.32)

parity odd: |3⟩ ≡ 1√
2

(
|c, p⃗, ℓ, λ; +,+⟩id − |c, p⃗, ℓ, λ;−,−⟩id

)
, ℓ ≥ 0 (even). (A.33)

In a unitary quantum theory, the norm of any state in the theory must be non-negative.
Consider the following set of six states:

|1⟩in, |2⟩in, |3⟩in, |1⟩out, |2⟩out, |3⟩out. (A.34)

Any linear combination of these states must have non-negative norm. This statement is
equivalent to the statement that the 6× 6 Hermitian matrix formed by the inner products
between the six states is positive semi-definite. Factoring out the overall delta functions
we write  in⟨a′|b⟩in in⟨a′|b⟩out

out⟨a′|b⟩in out⟨a′|b⟩out

 = Hℓ(s)× (2π)4δ4(pµ − p′µ)δℓℓ′δλλ′ . (A.35)

Unitarity as stated above then implies that

Hℓ(s) ⪰ 0 , ∀ ℓ and s ≥ 0 . (A.36)

The inner products between two incoming states or two outgoing states are fixed by the
normalization of these states, namely29

in⟨a′|b⟩in = out⟨a′|b⟩out = δa′b × δℓℓ′δλλ′(2π)4δ4(pµ − p′µ) . (A.37)
27Note that |c, p⃗, ℓ, λ;−,+⟩id = (−1)ℓ|c, p⃗, ℓ, λ; +,−⟩id by Bose symmetry.
28The total spin ℓ must always be greater than the difference in helicity λ1 − λ2 of the two particles.
29The pre-factors in (A.32) and (A.33) ensure that all three states have the same normalization.
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The inner products between incoming and outgoing states are, by definition, the matrix
elements of the scattering operator S = 1 + iT and therefore due to (A.25) we have

out⟨1′|1⟩in = δℓℓ′δλλ′(2π)4δ4(pµ − p′µ)
(
1 + i

(
Tℓ

+,+
+,+(s) + Tℓ

−,−
+,+(s)

))
out⟨2′|2⟩in = δℓℓ′δλλ′(2π)4δ4(pµ − p′µ)

(
1 + 2i Tℓ

+,−
+,−(s)

)
out⟨2′|1⟩in = δℓℓ′δλλ′(2π)4δ4(pµ − p′µ)

(
2i Tℓ

+,−
+,+(s)

)
out⟨1′|2⟩in = δℓℓ′δλλ′(2π)4δ4(pµ − p′µ)

(
2i Tℓ

+,−
+,+(s)

)
out⟨3′|3⟩in = δℓℓ′δλλ′(2π)4δ4(pµ − p′µ)

(
1 + i

(
Tℓ

+,+
+,+(s)− Tℓ

−,−
+,+(s)

))
.

(A.38)

Because of the invariance under parity there is no scattering between states with different
parity eigenvalues. Hence the inner products out⟨3′|1⟩in and out⟨3′|2⟩in are all zero and the
positive semi-definite condition (A.36) simplifies into smaller matrices. Taking into account
the parity selection rules, we arrive at two separate sectors, namely the parity even and
parity odd sectors.

Parity even sector. We begin by considering parity even eigenstates (A.32). For even
spin ℓ ≥ 2, we have

H+
ℓ (s)× δℓℓ′δλλ′(2π)4δ(4)(p− p′) ≡


in⟨1′|1⟩in in⟨1′|2⟩in in⟨1′|1⟩out in⟨1′|2⟩out
in⟨2′|1⟩in in⟨2′|2⟩in in⟨2′|1⟩out in⟨2′|2⟩out
out⟨1′|1⟩in out⟨1′|2⟩in out⟨1′|1⟩out out⟨1′|2⟩out
out⟨2′|1⟩in out⟨2′|2⟩in out⟨2′|1⟩out out⟨2′|2⟩out

 (A.39)

The case of spin ℓ = 0 is special because the state |2⟩ does not exist and therefore we
get a smaller matrix:

H+
0 (s)× δλλ′(2π)4δ(4)(p− p′) ≡

 in⟨1′|1⟩in in⟨1′|1⟩out
out⟨1′|1⟩in out⟨1′|1⟩out

 , (A.40)

We now consider odd ℓ ≥ 3, in which case the only state that exists is state |2⟩ and
therefore we have

H+
ℓ (s)× δℓℓ′δλλ′(2π)4δ(4)(p− p′) ≡

 in⟨2′|2⟩in in⟨2′|2⟩out
out⟨2′|2⟩in out⟨2′|2⟩out

 (A.41)

Parity odd sector. We now turn to the parity odd eigenstate (A.33) which exists for
even spin ℓ ≥ 0. We have

H−
ℓ (s)× δℓℓ′δλλ′(2π)4δ(4)(p− p′) ≡

 in⟨3′|3⟩in in⟨3′|3⟩out
out⟨3′|3⟩in out⟨3′|3⟩out

 . (A.42)

– 43 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

Final summary. We can now plug equations (A.37), (A.38) into (A.39)–(A.42) to obtain
the final form of the unitarity constraints. Below we will use the following notation for the
partial amplitudes in the center of mass frame

Φℓ
1(s) ≡ Tℓ

++
++(s),

Φℓ
2(s) ≡ Tℓ

−−
++(s),

Φℓ
3(s) ≡ Tℓ

+−
+−(s),

Φℓ
4(s) ≡ Tℓ

−+
+−(s),

Φℓ
5(s) ≡ Tℓ

+−
++(s).

(A.43)

These are consistent with the definitions given in (A.15). We finally get

ℓ ≥ 0 (even) :

1 1
1 1

+ i

 0 −Φℓ∗
1 (s) + Φℓ∗

2 (s)
Φℓ
1(s)− Φℓ

2(s) 0

 ⪰ 0 , (A.44)

ℓ ≥ 3 (odd) :

1 1
1 1

+ 2i

 0 −Φℓ∗
3 (s)

Φℓ
3(s) 0

 ⪰ 0 , (A.45)

ℓ = 0 :

1 1
1 1

+ i

 0 −Φ0∗
1 (s)− Φ0∗

2 (s)
Φ0
1(s) + Φ0

2(s) 0

 ⪰ 0 , (A.46)

ℓ ≥ 2 (even) :

 I2×2 Sℓ†
2×2(s)

Sℓ
2×2(s) I2×2

 ⪰ 0, (A.47)

where in (A.47) we have defined

I2×2 ≡

1 0
0 1

 , Sℓ
2×2(s) ≡

1 0
0 1

+ i

Φℓ
1(s) + Φℓ

2(s) 2Φℓ
5(s)

2Φℓ
5(s) 2Φℓ

3(s)

 . (A.48)

The unitarity constraints presented in (1.21) and (1.22) are a compact rewriting of the
above conditions.

We conclude this subsection by commenting on a curious symmetry of the above unitarity
constraints. The partial amplitude Φℓ

5 appears only in the 4 by 4 matrix (A.47) via (A.48). It
is straightforward to see that semidefinite positivity of (A.47) is invariant under Φ5 ↔ −Φ5.
If in some particular theory Φ5 = 0 (and as a consequence Φℓ

5 = 0), the matrix (A.47)
can be brought into a block diagonal form and as a result the semidefinite positivity then
simply reduces to a 2 by 2 condition

ℓ ≥ 2 (even) :

1 1
1 1

+ i

 0 +Φℓ∗
1 (s) + Φℓ∗

2 (s)
Φℓ
1(s) + Φℓ

2(s) 0

 ⪰ 0, (A.49)

and a 2 by 2 condition on Φℓ
3, same as (A.45) but now also for even spin

ℓ ≥ 2 (even) :

1 1
1 1

+ 2i

 0 −Φℓ∗
3 (s)

Φℓ
3(s) 0

 ⪰ 0 . (A.50)

The unitarity conditions (A.44)–(A.46) together with (A.49) and (A.50) are now Φ2 ↔ −Φ2
symmetric.
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A.4 Forward limit

Consider the scattering operator S. It is unitary, namely

S†S = 1. (A.51)

Splitting S into its trivial and interacting part according to (A.6), the above constraint can
be rewritten in the following form

T − T † = i T †T. (A.52)

Taking the expectation value in some state |state⟩ we get

Im⟨state|T |state⟩ = 1
2⟨state|TT †|state⟩ ≥ 0. (A.53)

The last inequality holds because any norm in a unitary theory should be non-negative. The
result (A.53) is known as the optical theorem.

We have defined two-particle states of identical spin one massless particles in (A.3). Let
us consider the situation when these states are in the center of mass (COM) frame given
by (A.12). In what follows we will use the following short-hand notation

|λ1, λ2⟩ ≡ |κ1, κ2⟩COM
id , ⟨λ3, λ4| ≡ COM

id ⟨κ3, κ4|, (A.54)

where κi are the particles participating in the scattering process 12→ 34 with the 4-momenta
pµ

i . We would also like to define the following state

|state⟩ = α1|+,+⟩+ α2|−,−⟩+ α3|+,−⟩+ α4|−,+⟩, (A.55)

with an analogous definition for ⟨state|. Here α⃗ ≡ {α1, α2, α3, α4} is a vector of complex
numbers. Plugging (A.55) into (A.53), using the definitions (A.15) and evaluating the
expression in the forward limit given by θ = 0 (or equivalently t = 0) we obtain the following
constraint30

α⃗† Im


Φ1(s) Φ2(s) Φ5(s) Φ5(s)
Φ2(s) Φ1(s) Φ5(s) Φ5(s)
Φ5(s) Φ5(s) Φ3(s) Φ4(s)
Φ5(s) Φ5(s) Φ4(s) Φ3(s)

 α⃗ ≥ 0. (A.56)

Here we have also defined the short-hand notation of the amplitudes in the forward limit

Φi(s) ≡ Φi(s, t = 0, u = −s). (A.57)

In the forward limit we have a special situation because

Φ4(s) = Φ5(s) = 0. (A.58)
30In writing this equation we have dropped the overall delta-function (2π)4δ(4)(0).
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This follows from the representation of amplitudes in terms of partial amplitudes (A.29)
and the fact that

dℓ
2,−2(θ = 0) = dℓ

2,0(θ = 0) = 0. (A.59)

Using (A.58) the constraint (A.56) can be rewritten in its final form

Im


Φ1(s) Φ2(s) 0 0
Φ2(s) Φ1(s) 0 0
0 0 Φ3(s) 0
0 0 0 Φ3(s)

 ⪰ 0. (A.60)

Due to the Sylvester’s criterion the positive semi-definite condition (A.60) is equivalent to
Im(Φ1(s) + Φ2(s)) ≥ 0
Im(Φ1(s)− Φ2(s)) ≥ 0
ImΦ3(s) ≥ 0

∀s ≥ 0 . (A.61)

The result (A.61) can be alternatively obtained from the unitarity constraints (A.44)–(A.47)
and (A.29) by taking the forward limit θ = 0.

B Tensor structures

Consider the in-out interacting amplitude T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) describing the scattering
process 12 → 34. Recall that λ1 and λ2 are helicities of the incoming particles with 4-
momenta p1 and p2, and λ3 and λ4 are helicities of the outgoing particles with 4-momenta
p3 and p4. It is convenient to factorize the interacting scattering amplitude of spinning
particles in the following way

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
N∑

I=1
AI(s, t, u)TI

λ3,λ4
λ1,λ2

(p1, p2, p3, p4). (B.1)

Here the objects TI take care of the correct Lorentz transformation properties. They are
called tensor structures. Their form is completely fixed by kinematics. There are N linearly
independent tensor structures. The objects AI(s, t, u) are referred to as the components
of the interacting scattering amplitude and are invariant under Lorentz transformations.
As a result they depend only on the Mandelstam variables defined in (A.10). Contrary
to tensor structures, the components of interacting amplitudes AI(s, t, u) carry dynamical
information of a particular theory.

The goal of this appendix is to explicitly construct a linearly independent basis of
tensor structures TI in the case of identical spin one massless particles. We will do it using
two different formalisms: the vector formalism presented in appendix B.3 and the spinor
formalism presented in appendix B.4. While the former works for any space-time dimension,
the latter is somewhat more efficient but also dimension dependent: here we present its d = 4
incarnation. (We will discuss group theory behind the construction of tensor structures in
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appendix B.2). We will find that in general space-time dimensions d > 4 there are N = 7
linearly independent tensor structures, instead in d = 4 space-time dimensions there are
N = 5 tensor structures [68].

In equation (A.14), we have defined scattering amplitudes in the center of mass frame
in d = 4. Evaluating (B.1) in the center of mass frame and plugging the result into (A.14)
we conclude that

T λ3,λ4
λ1,λ2

(s, t, u) ≡
5∑

I=1
AI(s, t, u)TI

λ3,λ4
λ1,λ2

(pcom
1 , pcom

2 , pcom
3 , pcom

4 ) (B.2)

Let us recall that in d = 4 there are only 5 distinct center of mass amplitudes. They
were chosen in (A.15) and denoted by ΦI(s, t, u). Equation (B.2) gives an explicit relation
between the two sets of objects ΦI(s, t, u) and AI(s, t, u) describing the scattering process
12 → 34, namely

ΦI(s, t, u) =
5∑

J=1
MIJ(s, t, u)AJ(s, t, u). (B.3)

The matrix M depends on the explicit form of the tensor structures TI .
When constructing tensor structures it is often convenient to work with all-in amplitudes

describing the process 1234 → vacuum. We denote them by

T λ1,λ2,λ3,λ4(p1, p2, p3, p4). (B.4)

We remind the reader that helicities placed downstairs represent incoming particles, instead
helicities placed upstairs represent outgoing particles. This convention allows to quickly
distinguish between the in-out amplitudes and the all-in amplitudes in formulas. We will
define the all-in amplitudes in appendix B.1 and explain how they are related to the in-out
amplitudes T λ3,λ4

λ1,λ2
(p1, p2, p3, p4).

B.1 All-in vs. in-out amplitudes

We focus here on d = 4 space-time dimensions where helicities λi are simply numbers. All
the conclusions of this subsection however hold in generic d ≥ 4.

We defined the in-out interacting part of the scattering amplitudes describing the
scattering process 12→ 34 in (A.7). Analogously we can define all-in scattering amplitudes
by crossing both of the outgoing particles i.e. by analytic continuation of the in-out amplitude

T λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ T
−λ3,−λ4
+λ1,+λ2

(p1, p2,−p3,−p4). (B.5)

The all-in amplitudes are non-physical because the process 1234→ vacuum does not obey
the energy-momentum conservation for physical particles with p0i ≥ 0, i = 1, 2, 3, 4. Crossing
is a very non-trivial operation, see for example appendix E in [19] for a detailed discussion.
The relation (B.5) can be seen as the definition of the all-in amplitude in terms of the in-out
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amplitude via the following analytic continuation31

i = 3, 4 : pµ
i → complex values→ −pµ

i . (B.6)

The Mandelstam variables describing the process 1234 → vacuum are defined as

s ≡ −(p1 + p2)2, t ≡ −(p1 + p3)2, u ≡ −(p1 + p4)2, s+ t+ u = 0. (B.7)

Notice the difference between (B.7) and (A.10). The two are equivalent however if one takes
into account (B.6). Analogously to (B.1) we can decompose the all-in scattering amplitude
into tensor structures

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) =
N∑

I=1
AI(s, t, u)TI λ1,λ2,λ3,λ4(p1, p2, p3, p4), (B.8)

where we recall that AI are the unknown functions containing the dynamics of the theory
and TI are the basis of tensor structures whose form is completely fixed by kinematics.

The benefit of working with all-in amplitudes is that they are S4 permutation symmetric in
the case of identical particles. Concretely, the all-in amplitudes obey the following constraints

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) = Tλ1,λ3,λ2,λ4(p1, p3, p2, p4),
Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) = Tλ1,λ4,λ3,λ2(p1, p4, p3, p2),

. . .

(B.9)

These are nothing but the crossing equations. Crossing equations for in-out amplitudes are
slightly more complicated. We will derive them in appendix G, they read

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T −λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4),

T λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T +λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2).
(B.10)

The crossing equations for the all-in amplitudes (B.9) and the in-out amplitudes (B.10) are
equivalent if we take into account the relation (B.5) and its variations.

Let us conclude this subsection by being more precise about the symmetry of (B.8).
As we already explained, due to the fact that the particles are identical and neutral, (B.8)
must be invariant under S4 permutation symmetry. There is a special normal subgroup of
S4 which is Z2 × Z2. This subgroup is generated by the {(2, 1, 4, 3), (3, 4, 1, 2)} permutations
and leaves the Mandelstam variables (B.7) invariant. As a result the functions AI(s, t, u)
are Z2 × Z2 invariant. When constructing the basis of tensor structures TI we will require
them to be Z2 × Z2 symmetric. The remaining symmetry of (B.8) is

S4/(Z2 × Z2) = S3 (B.11)

which is precisely the s − t − u crossing symmetry. The basis of tensor structures TI

will transform in some generally non-trivial representation of S3. In order to make (B.8)
invariant under S3 we will demand that the amplitudes AI(s, t, u) transform such that they
compensate for the non-trivial transformation of TI . This solves crossing, the details are in
subsections B.3.3 and B.4.2 for the vector and the spinor formalism respectively.

31This procedure is ambiguous. We make a particular choice of the analytic continuation, which in spherical
coordinates reads as

p0 → −p0, p → −p, θ → θ, ϕ→ ϕ.
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B.2 Group theory of tensor structures

As is standard, we require that our quantum system is invariant under the restricted Poincaré
group, which consists of the group of translations and the proper orthochronous Lorentz
group SO+(1, 3). (Au contraire, the full Poincaré group also contains two additional discrete
symmetries: parity and time-reversal). In fact, quantum mechanics requires the symmetry
group to be centrally extended to SL(2,C). The two groups have the same algebra. In this
work we are often imprecise and refer to both SO+(1, 3) and SL(2,C) as the Lorentz group.

In this section we work in d = 4 space-time dimensions. There are 6 generators of the
so+(1, 3) algebra, namely 3 generators of rotations Ji and 3 generators of boosts Ki. At
the (complexified) algebra level

sl(2,C) = suL(2)⊕ suR(2). (B.12)

The generators of the latter algebra are denoted by ML
i and MR

i . The relation to the
generators Ji and Ki is given by

ML
i = 1

2(Ji + iKi), MR
i = 1

2(Ji − iKi). (B.13)

For later it is also convenient to define

ML
± ≡ML

1 ±ML
2 , MR

± ≡MR
1 ±MR

2 . (B.14)

Particles are defined as a special set of irreducible representations of the Poincaré group.
They are classified using representations of the so called Little group, a subgroup of the
Lorentz group which leaves invariant the momentum of the particle in the standard center
of mass frame. For massless particles, such standard momentum is

kµ ≡ {E, 0, 0, E} , E ≥ 0 , (B.15)

and the little group is ISO(2). Its algebra has 3 generators commonly denoted by A, B and
J . They are related to the Lorentz generators as

A = −J1 −K2 = −ML
+ −MR

− , B = J2 −K1 = i(−ML
+ +MR

− ), (B.16)

together with

J = J3 =ML
3 +MR

3 . (B.17)

Massless particles are assumed to transform trivially under transformations generated by A

and B (a requirement coming from experiments). Thus, massless particles in the standard
frame are labeled only by their helicity λ. In other words,

A|⃗k, λ⟩ = 0, B |⃗k, λ⟩ = 0, J |⃗k, λ⟩ = λ|⃗k, λ⟩. (B.18)

The general one particle state is then defined as the result of applying a boost to the state of
the particle in the standard frame. A Lorentz transformation Λ acts on a 4-vector as

pµ → p′µ = Λµ
νp

ν . (B.19)
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For each light-like momentum p, one can define a standard Lorentz transformation such that

pµ = L(p)µ
νk

ν . (B.20)

Then the general one-particle state is

|p⃗, λ⟩ = U(L(p))|⃗k, λ⟩ . (B.21)

U(Λ) is a (infinite dimensional) unitary representation of the Lorentz group. Eq. (B.21),
together with (B.18), uniquely identifies the action of such unitary operator on any single
particle state:

|p⃗, λ⟩ → U(Λ)|p⃗, λ⟩ = e−iλ θ|Λ⃗p, λ⟩, (B.22)

where θ depends on Λ and p and is the angle of rotation around the third axis defined by
the following transformation:

L−1(Λp)ΛL(p) , (B.23)

which belongs to the little group. As a result, from the definition of the scattering ampli-
tude (A.7) and (B.5), we deduce the following transformation property

Tλ1,λ2,λ3,λ4(Λp1,Λp2,Λp3,Λp4) = t2λ1
1 t2λ2

2 t2λ3
3 t2λ4

4 Tλ1,λ2,λ3,λ4(p1, p2, p3, p4), (B.24)

where we have defined the short-hand notation

ti ≡ eiθi/2. (B.25)

The tensor structures Ti introduced in (B.1) take care of the correct transformation
properties of (B.1) given by (B.24). In order to find them, it is useful to consider building
blocks which have an index in a representation of the Lorentz group and another in the
representation (B.18) of the little group:

ΛA
BΞλ,B(p) = t−2λ Ξλ,A(Λp) . (B.26)

These objects can be called interpolators between the full Lorentz group and its Little group
sub-group. Their usefulness stems from the fact that, contracting away the Lorentz index A

in (B.26) with other objects transforming in the same representation of the Lorentz group,
one automatically gets the correct transformation law for the amplitude, equation (B.24).
The interpolators might be contracted with each other, or with the momenta. Hence, the
most natural choice is to pick A to be an index in the vector representation of the Lorentz
group. A different choice is given by the spin 1/2 representation, i.e. the pair of fundamental
representations of the su(2) factors in (B.12). We call the former and the latter the vector
and spinor formalisms respectively, and in the following we explain how to construct both
classes of interpolators.

If we specify (B.26) to a transformation W of the little group, we get

WA
BΞλ,B(k) = t−2λ Ξλ,A(k) . (B.27)
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In other words, Ξ(k) is a finite dimensional representation of the little group. Hence, the first
step in constructing the interpolators is to check if the vector and the spinor representations
contain the irreducible representation (B.18) in their branching rules. Once this is done, the
general interpolator is obtained via the same rule (B.21) which defined the state:

Ξλ,A(p) = LA
B(p) Ξλ,B(k) , (B.28)

where LA
B(p) is the standard boost (B.20) in the vector or spinor representations. This

guarantees that the phase θ in (B.26) and (B.22) coincide.
Starting with the spinors, equations (B.16)–(B.18) tell us how the spin one-half irreps of

sl(2,C) transform under iso(2). In particular, the spin up spinor of the (1/2, 0) has A = B = 0
and J = 1/2, while the spin down spinor of the (0, 1/2) has A = B = 0 and J = −1/2.
These are the interpolators we are looking for, and they are usually called spinor helicities.
On the other hand, if we turn to the vector formalism, we face a problem. The (1/2, 1/2)
representation of the Lorentz group decomposes into three representations of iso(2), but none
is of the form (B.18). The product of the spinor helicities is a singlet, hence proportional
to kµ. The other two representations are two dimensional, and have a top component with
J = ±1 respectively. Acting with A and B on it, we do not get zero, instead we get the singlet,
kµ.32 The top components are the polarization vectors, and the action of A and B has the
effect of a gauge transformation on them. The request that the tensor structures are invariant
by shifting the polarization vector by the momentum will ensure that (B.24) is satisfied.

In the following two paragraphs, we explicitly define the interpolators in the vector and
spinor formalisms in an arbitrary reference frame: they are easily obtained by applying (B.28)
to the representations we just discussed.

Vector formalism. The interpolator which has the Lorentz index in the vector representation
is denoted by

Ξλ,A(p)→ ϵλ,µ(p). (B.29)

It is usually called polarization in the literature. Here λ is the helicity and µ = 0, 1, 2, 3 is
the Lorentz index. As explained, representation theory allows for λ = ±1, and the tensor
structures must be identified under the following equivalence relation:

ϵλ,µ(p) ∼ ϵλ,µ(p) + cλ(p) pµ , (B.30)

with cλ(p) an arbitrary function. The requirement (B.30) can be solved by using the following
building blocks

Hλ,αβ ≡ pα ϵλ,β(p)− pβ ϵλ,α(p) (B.31)

instead of the polarizations (B.29). If we want an explicit form for ϵλ,µ, we can start in the
standard frame, where the group theory explained above dictates

ϵλ,µ(k) =
1√
2


0
1
iλ

0

 , λ = ±1 . (B.32)

32Recall that iso(2) is not semi-simple.
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The polarization vector in a general frame, which is obtained via (B.28), is easily written
in terms of the components of the 4-momentum pµ in spherical coordinates:

pµ = {p0, p⃗ }, p⃗ = {p cosϕ sin θ, p sinϕ sin θ, p cos θ}, p ≡ |p⃗ | . (B.33)

We obtain

ϵλ,µ(p) =
eiλϕ

√
2


0

cos θ cosϕ− iλ sinϕ
cos θ sinϕ+ iλ cosϕ

− sin θ

 . (B.34)

Notice that (B.34) obeys

pµϵλ,µ(p) = 0 , (B.35)

which is compatible with the equivalence relation (B.30).

Spinor formalism. Now, consider an interpolator with its Lorentz index in the spinor
representation of (B.12). There are two such representations, (1/2, 0) and (0, 1/2). As a
result we will have two different interpolators, we denote them by33

Ξλ,A → ξλ,α and ξ̃λ,α̇. (B.36)

The indices α and α̇ take the values 0 or 1. As described above, the two representations
allow for λ = ±1/2 and specifically we shall see that λ = +1/2 for ξλ,α and λ = −1/2 for
ξ̃λ,α̇. We will thus simply write

ξα and ξ̃α̇. (B.37)

In the standard frame, if we use the conventions of appendix A of [72],34 we get

ξα(k) =
√
2E

1
0

 , ξ̃α̇(k) =
√
2E

1
0

 . (B.40)

The normalization is chosen so that their product obeys the identity

kµ = −1
2 σ̄

µ α̇αξα(k) ξ̃α̇(k) , σ̄µ = (−12×2,−σi) . (B.41)

33Notice that in the literature, the spinor-helicity variables are usually called λα and λ̃α̇.
34For generic spinors ψα and ψ̃α̇, the generators are

(1/2, 0) ML
i : δψα = i

2σ
i
αβψβ , MR

i : δψα = 0 , (B.38)

(0, 1/2) ML
i : δψ̃α̇ = 0 , MR

i : δψ̃α̇ = − i

2σ
i
β̇α̇ψ̃β̇ . (B.39)

Here, σi are the Pauli matrices and repeated indices are summed. Comparing this transformation law
with (B.16)–(B.17), one finds (B.40). Notice in particular that ξ̃(k) has negative eigenvalue under MR

3 .
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This equation explicitly confirms that the tensor product of the spinor helicities gives the
singlet under the little group. The usual procedure leads to the following expression for
a generic frame:

ξα(p) =
√
2E

 cos θ
2

sin θ
2e

iϕ

 , ξ̃α̇(p) =
√
2E

 cos θ
2

sin θ
2e

−iϕ

 . (B.42)

Equation (B.41) is still obeyed:

pµ = −1
2 σ̄

µ α̇αξα(p)ξ̃α̇(p) . (B.43)

As wished, under Lorentz transformations we have

ξα → t ξα and ξ̃α̇ → t−1ξ̃α̇. (B.44)

Let us conclude by relating the spinor connectors (B.37) and vector ones (B.34). Let
us first rewrite the latter in the following way

ϵλ,αα̇(p) = ϵλ,µ(p)σµ
αα̇ , σµ = (−12×2, σ

i) . (B.45)

In the standard frame, the relation is fixed by choosing spinors whose tensor product has
λ = ±1:

ϵ+,αα̇(k) = ξα(k) η̃α̇, ϵ−,αα̇(k) = ηα ξ̃α̇(k) , (B.46)

where the auxiliary spinors η and η̃ are both proportional to (0, 1). If we instead pick generic
auxiliary spinors, the polarization vectors will differ from (B.46) by a gauge transforma-
tion (B.30), in accordance with the features of the representation they belong to. Hence,
one can promote (B.46) to a generic frame, and the choice of η and η̃ is irrelevant in any
gauge invariant expression.

B.3 Tensor structures basis in vector formalism

In this section we construct a linearly independent basis of tensor structures TI in vector
formalism for scattering amplitudes of identical spin one massless particles. Recall that
tensor structures were defined in (B.1) for the in-out amplitudes and in (B.8) for the all-in
amplitudes. In practice it will be easier to work in this appendix with all-in amplitudes.
Once the basis of tensor structures for the all-in amplitudes is constructed, the basis for
in-out amplitudes simply follows due to the relation (B.5). The discussion of this section
closely follows the logic of [68].

This appendix is organized as follows. In appendix B.3.1 we will construct a basis of
tensor structures in d > 4 space-time dimensions. In appendix B.3.2 we will construct a
basis of tensor structures in the special case of d = 4 dimensions. Given the latter basis,
we will also compute the matrix M defined in (B.3) in d = 4. In appendix B.3.3, we will
solve the crossing equations explicitly in d > 4. In appendix B.3.4, we will do the same
for the special case of d = 4.
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B.3.1 Basis of tensor structures in d > 4

The only ingredients we have at our disposal to construct the tensor structures TI defined
in (B.8) are the 4-momenta pα and the invariant blocks Hλ,αβ defined in (B.31).35

Parity even tensor structures are then constructed as all possible Lorentz invariant prod-
ucts between the 4-momenta of particles pα and the basic building blocks Hαβ

λ , schematically

(p1)n1(p2)n2(p3)n3(p4)n4Hλ1Hλ2Hλ3Hλ4

∣∣∣∣Lorentz contracted

Z2×Z2 symmetrized
. (B.47)

We also require Z2 × Z2 symmetrization according to the discussion at the end of appendix B.1.
Parity odd tensor structures would also contain a single Levi-Cevita symbol εα1...αd . We do
not discuss such structures in this paper and instead focus only on parity even ones. Let
us denote the total power of the 4-momenta in (B.47) by

n ≡ n1 + n2 + n3 + n4. (B.48)

In order to be able to fully contract all the Lorentz indices in (B.47) n must be even. We
perform all possible Lorentz contractions in (B.47) using Mathematica. At the n = 0 level
there are 6 linearly independent tensor structures. At the n = 2 level there is only one
additional linearly independent tensor structure.36 At the n ≥ 4 there are no more linearly
independent tensor structures apart from the ones already obtained at the n = 0 and n = 2
levels. Thus, we arrive at the conclusion that in d > 4 there are 7 linearly independent tensor
structures. We will see in appendix B.3.2 that in d = 4, only 5 structures are independent.

Our choice for the basis of 7 tensor structures reads as

T1 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E
(1)
1 ≡ tr(Hλ1Hλ2)tr(Hλ3Hλ4),

T2 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E
(2)
1 ≡ tr(Hλ1Hλ3)tr(Hλ2Hλ4),

T3 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E
(3)
1 ≡ tr(Hλ1Hλ4)tr(Hλ2Hλ3),

T4 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E
(1)
2 ≡ tr(Hλ1Hλ3Hλ2Hλ4), (B.49)

T5 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E
(2)
2 ≡ tr(Hλ1Hλ2Hλ3Hλ4),

T6 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E
(3)
2 ≡ tr(Hλ1Hλ2Hλ4Hλ3),

T7 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ E3 ≡ p2Hλ1p3tr (Hλ2Hλ3Hλ4)− p1Hλ2p4tr (Hλ1Hλ3Hλ4)
+ p2Hλ4p3tr (Hλ1Hλ2Hλ3)− p1Hλ3p4tr (Hλ1Hλ2Hλ4) .

We emphasize that these structures are manifestly Z2×Z2 invariant. For later convenience we
have also denoted our 7 tensor structures by Ei. In (B.49) we used the following short-hand
notation for contractions of Lorentz indices:

tr(Hλ1Hλ2) ≡ Hλ1,αβH
βα
λ2
,

tr(Hλ1Hλ2Hλ3Hλ4) ≡ Hλ1,αβH
βγ
λ2
Hλ3,γρH

ρα
λ4
,

(p2Hλ1p3) ≡ p2,αH
αβ
λ1
p3,β .

(B.50)

35We remind the reader that we denote helicities using λ, whereas we denote Lorentz indices with α, β.
36Notice that when checking linear dependences one is allowed to multiply tensor structures with any

product of the Mandelstam variables. Such relation were called linear up to descendants in [68].
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In [73] it was noticed that the number of independent scattering amplitudes (or equiv-
alently the number of linearly independent tensor structures) in d dimensions is equal to
the number of tensor structures describing the four-point functions of local operators with
the same spin in conformal field theory in d − 1 dimensions. This was proven in [74] by
arguing that even though the details of both constructions are different, the Little group
analysis in both situations is the same and thus the counting should match. We confirm
this equivalence for our particular example of scattering of spin one massless particles, see
table 1 of [75] with the summary of the conformal field theory results.37 We notice the
special feature that in d ≥ 5 independently of the number of dimensions there are always 7
structures. Looking at the CFT results, we foresee that in d = 4 there are two more linear
relations among the structures (B.49), such that we get only 5 linearly independent tensor
structures. We address the special case of d = 4 in appendix B.3.2. For more examples of
this correspondence see subsection 2.4 in [19].

B.3.2 Basis of tensor structures in d = 4

In the special case of d = 4, one can verify the existence of two relations among the 7 tensor
structures in (B.49). They read

0 = s2E
(2)
2 − t

2E
(1)
2 −

s2 − t2

4
(
E

(1)
1 + E

(2)
1 + E

(3)
1

)
, (B.51)

0 = s2E
(3)
2 − u

2E
(1)
2 −

s2 − u2

4
(
E

(1)
1 + E

(2)
1 + E

(3)
1

)
. (B.52)

These relations should be used to eliminate two structures from the basis (B.49). There are
several ways to do this. For example, we can decide to eliminate E(2)

2 and E
(3)
2 . As a result,

the basis in d = 4 consists of the following 5 structures

{E(1)
1 , E

(2)
1 , E

(3)
1 , E

(1)
2 , E3}. (B.53)

Thus, our choice for the basis of tensor structures in d = 4 reads as

T1 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ tr(Hλ1Hλ2)tr(Hλ3Hλ4)
T2 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ tr(Hλ1Hλ3)tr(Hλ2Hλ4)
T3 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ tr(Hλ1Hλ4)tr(Hλ2Hλ3)
T4 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ tr(Hλ1Hλ3Hλ2Hλ4) (B.54)
T5 λ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ p2Hλ1p3tr (Hλ2Hλ3Hλ4)− p1Hλ2p4tr (Hλ1Hλ3Hλ4)

+ p2Hλ4p3tr (Hλ1Hλ2Hλ3)− p1Hλ3p4tr (Hλ1Hλ2Hλ4) .

Basis for in-out amplitudes. So far we have only discussed tensor structures for the
all-in amplitudes. Let us now explain how to obtained the basis for in-out amplitudes in
d = 4 from (B.54).

We start by noticing that the following relations hold

ϵαλ(−p) = ϵαλ(p), Hαβ
λi

(−p) = −Hαβ
λi

(p). (B.55)
37In the particular case of d = 5 scattering amplitudes, the associated CFT counting is also summarized in

table 1 of [76]. There it was also shown that no parity odd structures are allowed in this particular dimension.
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They follow from the definitions (B.34) and (B.31). It is also convenient to define

Hλi,αβ(p) ≡
(
Hαβ

λi
(p)
)∗

= Hαβ
−λi

(p). (B.56)

Here the second equality holds due to (B.34). Using the relation between the all-in and
in-out amplitudes (B.5), and taking into account (B.55) and (B.56), we obtain the basis of
structures for the in-out amplitudes from (B.54). It reads

T1
λ3,λ4
λ1,λ2

= tr(Hλ1Hλ2)tr(Hλ3Hλ4),

T2
λ3,λ4
λ1,λ2

= tr(Hλ1H
λ3)tr(Hλ2H

λ4),

T3
λ3,λ4
λ1,λ2

= tr(Hλ1H
λ4)tr(Hλ2H

λ3),

T4
λ3,λ4
λ1,λ2

= tr(Hλ1H
λ3Hλ2H

λ4),

T5
λ3,λ4
λ1,λ2

= − (p2Hλ1p3) tr
(
Hλ2H

λ3Hλ4
)
+ (p1Hλ2p4) tr

(
Hλ1H

λ3Hλ4
)

−
(
p2H

λ4p3
)

tr
(
Hλ1Hλ2H

λ3
)
+
(
p1H

λ3p4
)

tr
(
Hλ1Hλ2H

λ4
)
.

(B.57)

Center of mass frame. The scattering of identical spin one massless particles can be either
described by the five center of mass amplitudes ΦI or the five amplitude components AI .
The relation between the two was given in (B.2) and (B.3). Plugging the explicit basis (B.57)
into (B.2) we conclude that the matrix M defined in (B.3) has the following explicit form

M(s, t, u) =



s2 0 0 s2

4 0
s2 t2 u2 − tu

2 stu

0 0 u2 u2

4 0
0 t2 0 t2

4 0
0 0 0 0 stu

4


. (B.58)

Crossing equations for in-out amplitudes. Let us now inspect the basis of tensor
structures (B.57). Using the properties (B.55) and (B.56) we can straightforwardly write
the following relations

TI
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4) =
5∑

J=1
C̃st

IJ(s, t, u)TJ
λ3,λ4
λ1,λ2

(p1, p2, p3, p4),

TI
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2) =
5∑

J=1
C̃su

IJ(s, t, u)TJ
λ3,λ4
λ1,λ2

(p1, p2, p3, p4),
(B.59)

where the matrices C̃st and C̃su read as

C̃st
IJ(s, t, u) =



0 1 0 0 0
1 0 0 0 0
0 0 1 0 0

s2−t2

4s2
s2−t2

4s2
s2−t2

4s2
t2

s2 0
0 0 0 0 1


, C̃su

IJ(s, t, u) =



0 0 1 0 0
0 1 0 0 0
1 0 0 0 0

s2−u2

4s2
s2−u2

4s2
s2−u2

4s2
u2

s2 0
0 0 0 0 1


. (B.60)
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Plugging the decomposition (B.1) into the crossing equations for the in-out amplitudes (B.10)
and using the relations (B.59) we obtain

AI(s, t, u) =
5∑

J=1
AJ(t, s, u) C̃st

JI(s, t, u), AI(s, t, u) =
5∑

J=1
AJ(u, t, s) C̃su

JI(s, t, u). (B.61)

Using (B.3) we can rewrite these equations in the form (A.19). The following consistency
relations must hold then

χstC
st =M(s, t, u)(C̃st(s, t, u))T (M(t, s, u))−1,

χsuC
su =M(s, t, u)(C̃su(s, t, u))T (M(u, t, s))−1.

(B.62)

Plugging here (B.58), (B.60) together with (A.20), (A.21) we explicitly verify the validity of
the relations (B.62). This can be seen as an excellent consistency check.

B.3.3 Solving crossing equations in d > 4

Let us focus on d > 4 space-time dimensions in this subsection and address the remaining
crossing S3 permutation symmetry, see (B.11) and the discussion around it. Inspecting the
basis of tensor structures (B.49) we quickly see that the following triplets of tensor structures(

E
(1)
1 , E

(2)
1 , E

(3)
1

)
and

(
E

(1)
2 , E

(2)
2 , E

(3)
2

)
(B.63)

independently form three dimensional irreducible representations of S3. Moreover the tensor
structure E3 transforms as the singlet of S3 (trivial representation).

In order to enforce the S3 symmetry on (B.8) we need to require that the amplitude
components AI defined in (B.8) transform in the same representation as the associated
tensor structures. In other words

(A1,A2,A3) and (A4,A5,A6) (B.64)

must independently form triplet representations of S3 and A7 must be an S3 singlet. Let
us introduce the three functions

f1(s|t, u), f2(s|t, u), f3(s, t, u), (B.65)

which obey the following properties

f1(s|t, u) = f1(s|u, t),
f2(s|t, u) = f2(s|u, t),
f3(s, t, u) = f3(t, s, u) = f3(u, t, s).

(B.66)

The required symmetry properties of the amplitude components AI explained above are
achieved by

A1(s, t, u) = f1(s|t, u), A2(s, t, u) = f1(t|u, s), A3(s, t, u) = f1(u|s, t),
A4(s, t, u) = f2(s|t, u), A5(s, t, u) = f2(t|u, s), A6(s, t, u) = f2(u|s, t)

(B.67)
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together with

A7(s, t, u) = f3(s, t, u). (B.68)

As a result we obtain the following decomposition of the all-in scattering amplitude into a
basis of tensor structures which is automatically fully crossing invariant

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) = f1(s|t, u)E(1)
1 + f1(t|u, s)E(2)

1 + f1(u|s, t)E(3)
1

+ f2(s|t, u)E(1)
2 + f2(t|u, s)E(2)

2 + f2(u|s, t)E(3)
2

+ f3(s, t, u)E3.

(B.69)

The helicity indices in the right-hand side are implicit.

B.3.4 Solving crossing equations in d = 4

The expression (B.69) is automatically crossing invariant in d ≥ 4. If we focus on the specific
case of d = 4 there are two additional relations between the 7 tensor structures given by (B.51)
and (B.52). We use them to eliminate the structures E(2)

2 and E
(3)
2 from (B.69). As a result

we obtain the following expression

Tλ1,λ2,λ3,λ4(p1,p2,p3,p4)=
(
f1(s|t,u)+

f2(u|s,t)+f2(t|s,u)
4 −u

2f2(u|s,t)+t2f2(t|s,u)
4s2

)
E

(1)
1

+
(
f1(t|s,u)+

f2(u|s,t)+f2(t|s,u)
4 −u

2f2(u|s,t)+t2f2(t|s,u)
4s2

)
E

(2)
1

+
(
f1(u|s,t)+

f2(u|s,t)+f2(t|s,u)
4 −u

2f2(u|s,t)+t2f2(t|s,u)
4s2

)
E

(3)
1

+
(
f2(s|t,u)+

u2f2(u|s,t)+t2f2(t|s,u)
s2

)
E

(1)
2

+f3(s,t,u)E3. (B.70)

The helicity indices in the right-hand side are implicit. Comparing with (B.8) and taking
into account (B.54) we conclude that

A1(s, t, u) = f1(s|t, u) +
f2(u|s, t) + f2(t|s, u)

4 − u2f2(u|s, t) + t2f2(t|s, u)
4s2 ,

A2(s, t, u) = f1(t|s, u) +
f2(u|s, t) + f2(t|s, u)

4 − u2f2(u|s, t) + t2f2(t|s, u)
4s2 ,

A3(s, t, u) = f1(u|s, t) +
f2(u|s, t) + f2(t|s, u)

4 − u2f2(u|s, t) + t2f2(t|s, u)
4s2 ,

A4(s, t, u) = f2(s|t, u) +
u2f2(u|s, t) + t2f2(t|s, u)

s2
,

A5(s, t, u) = f3(s, t, u).

(B.71)

The solution for the amplitude components (B.71) was derived in the case of the all-in
amplitudes. It holds however also in the case of in-out amplitudes if we change the meaning of
the Mandelstam variables from (B.7) to (A.10). Then plugging (B.71) and (B.57) into (B.1)
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we can check that the in-out crossing equations (B.10) are automatically satisfied. This
is a non-trivial consistency check.

If we insist on keeping the manifestly crossing invariant decomposition of the all-in
amplitude (B.70) in d = 4 there is another price to pay. The functions fi contain some
redundancies. This implies the existence of an equivalence class of functions fi that generates
the same amplitude components (B.71). In what follows we show that this equivalence class
has the following most generic form:38

f1(s|t, u) ∼ f1(s|t, u)−
1
4
{
g′(s|t, u) + g′(t|s, u) + g′(u|s, t)

}
,

f2(s|t, u) ∼ f2(s|t, u) + g′(s|t, u),
(B.72)

where

g′(s|t, u) ≡ t2gA(u; s, t) + u2gA(t; s, u), (B.73)

and gA(s; t, u) is some function antisymmetric in the last two variables.
To begin with, notice, that the relations (B.51) and (B.52) already imply a redundancy

of the function describing the same amplitude

f1(s|t, u) ∼ f1(s|t, u) + f̂1(s|t, u),
f2(s|t, u) ∼ f2(s|t, u) + f̂2(s|t, u),

(B.74)

if f̂1 and f̂2 obey the following relation

0 = f̂1(s|t, u)E(1)
1 + f̂1(t|u, s)E(2)

1 + f̂1(u|s, t)E(3)
1

+ f̂2(s|t, u)E(1)
2 + f̂2(t|u, s)E(2)

2 + f̂2(u|s, t)E(3)
2 .

(B.75)

Let us now derive the most generic form of f̂1 and f̂2 which obey (B.75).
In order to do it systematically we take a t − u symmetric combination of the rela-

tions (B.51) and (B.52), more precisely

0 = k(t, u)
[
s2E

(2)
2 − t

2E
(1)
2 −

s2 − t2

4
(
E

(1)
1 + E

(2)
1 + E

(3)
1

)]

+ k(u, t)
[
s2E

(3)
2 − u

2E
(1)
2 −

s2 − u2

4
(
E

(1)
1 + E

(2)
1 + E

(3)
1

)]
,

(B.76)

where k(x, y) is a function with no particular symmetry. This expression, together with
those obtained by permutation, form a triplet of S3. A crossing symmetric solution (i.e.
singlet) can therefore be constructed by taking the “inner product” with symmetric function

38In [68], this equivalence relation was already investigated. We notice that, probably due to a typo, the
result reported in the paper is incorrect.
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h(x, y) = h(y, x) (as they also transform in a triplet of S3) and we obtain:

0= 1
4
(
E

(1)
1 +E(2)

1 +E(3)
1

){
s2 [h(s, t)k(s, t)+h(s,u)k(s,u)−h(t,u)k(t,u)−h(t,u)k(u,t)]

+ t2 [h(s, t)k(t,s)−h(s,u)k(s,u)−h(s,u)k(u,s)+h(t,u)k(t,u)]

+u2 [−h(s, t)k(s, t)−h(s, t)k(t,s)+h(s,u)k(u,s)+h(t,u)k(u,t)]
}

+E(1)
2

{
t2[h(s,u)k(s,u)−h(t,u)k(t,u)]+u2[h(s, t)k(s, t)−h(t,u)k(u,t)]

}
(B.77)

+E(2)
2

{
s2[h(t,u)k(t,u)−h(s,u)k(s,u)]+u2[h(s, t)k(t,s)−h(s,u)k(u,s)]

}
+E(3)

2

{
s2[h(t,u)k(u,t)−h(s, t)k(s, t))+ t2[h(s,u)k(u,s)−h(s, t)k(t,s)]

}
.

The expression (B.77) can be simplified by defining an antisymmetric function gA(s; t, u)
in the last two variables as

gA(s; t, u) = h(t, s)k(t, s)− h(u, s)k(u, s) . (B.78)

With the help of this function the relation (B.77) takes the form:

0 =
(
E

(1)
1 + E

(2)
1 + E

(3)
1

) 1
4
{
s2[gA(t; s, u) + gA(u; s, t)] + t2[gA(s; t, u) + gA(u; t, s)]

+ u2[gA(s;u, t) + gA(t;u, s)]
}

+ E
(1)
2

{
t2gA(u; s, t) + u2gA(t; s, u)

}
+ E

(2)
2

{
s2gA(u; t, s) + u2gA(s; t, u)

}
+ E

(3)
2

{
s2gA(t;u, s) + t2gA(s;u, t)

}
.

(B.79)

We can further simplify this expression by using another function g′ defined in (B.73).
Plugging (B.73) into (B.79) we finally get

0 = −1
4
{
g′(s|t, u) + g′(t|s, u) + g′(u|s, t)

} (
E

(1)
1 + E

(2)
1 + E

(3)
1

)
+ g′(s|t, u)E(1)

2 + g′(t|u, s)E(2)
2 + g′(u|s, t)E(3)

2 .

(B.80)

Making the following identification

f̂1(s|t, u) = −
1
4
{
g′(s|t, u) + g′(t|s, u) + g′(u|s, t)

}
,

f̂2(s|t, u) = g′(s|t, u),
(B.81)

we obtain the earlier announced answer (B.72) with (B.73).

B.4 Tensor structures basis in spinor formalism in d = 4

In this section we will show how to write the basis of tensor structures TI for the all-in
amplitudes defined in (B.8) in the case of identical massless particles using spinor formalism
in d = 4 space-time dimensions. This formalism is commonly referred to as the spinor-helicity
formalism, for a review complementary to ours see for example [77]. The spinor formalism
can also be used in the case of massive particles, see [78] and appendix H in [19].
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In order to proceed in a coherent way let us make a summary of what we have found
using vector formalism first. In the case of four different massless particles there are at
most 16 independent functions which describe the scattering process. This means that in
general we can write

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) =
16∑

I=1
AI(s, t, u)TI λ1,λ2,λ3,λ4(p1, p2, p3, p4). (B.82)

Since in our case all the particles are identical there is an S4 permutation symmetry. As
discussed in the end of appendix B.1 we can impose its normal subgroup Z2 × Z2 which
leads to 11 relations among the 16 amplitudes components AI and we are left with only 5
distinct amplitude components AI . This was shown in a slightly different but equivalent way
in appendix B.3.2, where we found that there are only 5 independent tensor structures which
are Z2 × Z2 symmetric. Further imposing the rest of S4 constraints we have concluded in
appendix B.3.4 that there are only 3 independent functions describing the scattering process
of identical massless spin one particles. We denoted these 3 functions by fi. The 5 distinct
amplitude components AI were expressed in terms of the 3 functions fi in (B.71).

In what follows we will repeat all these steps using the spinor formalism. As we will see
shortly, in spinor formalism the decomposition (B.82) diagonalizes and one can simply write

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) = h(λ1,λ2,λ3,λ4)(s, t, u)Tλ1,λ2,λ3,λ4(p1, p2, p3, p4). (B.83)

Here there is no summation over the repeated indices. This relation should be interpreted in
the following way: to each helicity configuration (λ1, λ2, λ3, λ4) corresponds a single amplitude
component h(λ1,λ2,λ3,λ4). In what follows we will first construct the 16 tensor structures
Tλ1,λ2,λ3,λ4 . Then using S4 permutation symmetry we will write down all the relations
between the amplitude components h(λ1,λ2,λ3,λ4). We will find that there are only three
independent amplitude components, we will denote them by hi.

We will conclude this appendix by relating the functions hi, the functions fi of vector
formalism and the center of mass frame amplitudes ΦI of appendix A to each other.

B.4.1 Tensor structures

Using the spinors ξα and ξ̃α̇ defined in (B.37) one can construct two Lorentz invariant
building blocks, namely

[ij] ≡ (ξi)α(ξj)βϵ
αβ , ⟨ij⟩ ≡ (ξ̃i)α̇(ξ̃j)β̇ϵ

α̇β̇ , (B.84)

where we used the short-hand notation ξi ≡ ξ(pi) and ξ̃i ≡ ξ̃(pi).
Let us now recall the Little group transformation property of scattering amplitudes

of massless particles. It reads

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4)→ t2λ1
1 t2λ2

2 t2λ3
3 t2λ4

4 Tλ1,λ2,λ3,λ4(p1, p2, p3, p4), (B.85)

where ti are some real scalar objects. Notice that imposing (B.85) assuming all ti’s are
independent parameters implies (B.24). However, one could worry that there are solutions
to (B.24) that do not respect (B.85). In practice, this is not relevant in our case because
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as we will see below we will find independent tensor structures for every choice of helicities.
Recall that the spinors (B.37) transform as (B.44)

ξi → tiξi and ξ̃i → t−1
i ξ̃i, (B.86)

which means that the Lorentz invariant blocks (B.84) transform as

[ij]→ titj [ij], ⟨ij⟩ → t−1
i t−1

j ⟨ij⟩. (B.87)

We can construct tensor structures Tλ1,λ2,λ3,λ4 in (B.83) as products of Lorentz invariant
blocks (B.84). The exponents in these products are fixed by requiring correct transformation
properties of the amplitude (B.85). In our case of identical spin one massless particles we
can write for instance

T+,+,+,+(p1, p2, p3, p4) = ([12][34])2 + ([13][24])2 + ([14][23])2,
T+,+,−,−(p1, p2, p3, p4) = ([12]⟨34⟩)2,
T+,−,+,−(p1, p2, p3, p4) = ([13]⟨24⟩)2,
T+,−,−,+(p1, p2, p3, p4) = ([14]⟨23⟩)2,
T+,+,+,−(p1, p2, p3, p4) = (⟨41⟩[12][13])2,
T+,+,−,+(p1, p2, p3, p4) = (⟨31⟩[12][14])2,
T+,−,+,+(p1, p2, p3, p4) = (⟨21⟩[13][14])2,
T−,+,+,+(p1, p2, p3, p4) = (⟨12⟩[23][24])2.

(B.88)

Due to the transformation properties (B.87) square blocks take care of positive helicities
and angular blocks take care of negative helicities.

In (B.88) we have defined tensor structures for 8 helicity configurations. The other 8
configurations which have opposite helicities to (B.88) are obtained from (B.88) by exchanging
square and angular blocks, namely

[ij]↔ ⟨ij⟩. (B.89)

It is interesting to notice that the following identity exists:

([12][34])2 + ([13][24])2 + ([14][23])2 = (s2 + t2 + u2) [12][34]
⟨12⟩⟨34⟩ . (B.90)

The tensor structure [12][34]
⟨12⟩⟨34⟩ was used for example in [69]. The latter choice might be more

familiar to some readers.

B.4.2 Parity and permutation symmetry S4

We have constructed the basis of 16 tensor structures given by 8 structures written explicitly
in (B.88) together with the 8 related ones (where all the helicities have an opposite sign)
which are obtained from (B.88) as explained at the end of the last subsection. Plugging
these 16 structures into (B.83) we obtain the final decomposition of the amplitude into tensor
structures in spinor formalism. The goal of this subsection is to impose the constraints of

– 62 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

parity and permutation symmetry S4 on the decomposition (B.83) in order to get relations
between the amplitude components h(λ1,λ2,λ3,λ4).

Let us start with parity. According to equation (2.64) in [19] parity in our case requires

T λ1,λ2,λ3,λ4(p1, p2, p3, p4) = T −λ1,−λ2,−λ3,−λ4(p1, p2, p3, p4). (B.91)

Since under parity the following holds

(ξi)α
P←→ (ξ̃i)α̇, [ij] P←→ ⟨ij⟩, (B.92)

we conclude from (B.83) that

h(λ1,λ2,λ3,λ4)(s, t, u) = h(−λ1,−λ2,−λ3,−λ4)(s, t, u). (B.93)

We are thus left only with 8 independent functions h(λ1,λ2,λ3,λ4).
Let us now impose the S4 permutation symmetry on the 8 amplitudes not related by

parity. The amplitude which has all plus helicities is

T+,+,+,+. (B.94)

It is obviously invariant under permutation of any particles. In particular

T+,+,+,+(p1, p2, p3, p4) = T+,+,+,+(p3, p2, p1, p4), (B.95)
T+,+,+,+(p1, p2, p3, p4) = T+,+,+,+(p4, p2, p3, p1). (B.96)

From the explicit form of the T+,+,+,+ tensor structure given in the first line of (B.88)
we see that this tensor structure is also invariant under any permutations of particles, as
a result we conclude that the function h(+,+,+,+)(s, t, u) in (B.83) must be fully crossing
symemtric in its arguments, namely

h(+,+,+,+)(s, t, u) = h(+,+,+,+)(t, s, u) = h(+,+,+,+)(u, t, s). (B.97)

Now consider amplitudes with two plus and two minus helicities, they are39

T+,+,−,−, T+,−,+,−, T+,−,−,+. (B.98)

Permutation symmetry relates them as

T+,+,−,−(p1, p2, p3, p4) = T+,−,+,−(p1, p3, p2, p4) = T+,−,−,+(p1, p3, p4, p2). (B.99)

Moreover, the first amplitude is also symmetric under both 1↔ 2 and 3↔ 4 permutations.
(Similar statement can be made about the other two amplitudes in (B.98)). Investigating
how the tensor structures in (B.88) transform under all these permutations we conclude
that the following relations must be satisfied

h(++−−)(s, t, u) = h(++−−)(s, u, t) = h(+−+−)(t, s, u) = h(+−+−)(t, u, s)
= h(+−−+)(u, t, s) = h(+−−+)(u, s, t).

(B.100)

39Such amplitudes are often referred to in the literature as “Maximally Helicity Violating” (MHV) amplitudes.
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Finally, let us consider the amplitudes with only one minus helicity, namely

T+,+,+,−, T+,+,−,+, T+,−,+,+, T−,+,+,+. (B.101)

They are all related by permutation symmetry

T+,+,+,−(p1, p2, p3, p4) = T+,+,−,+(p1, p2, p4, p3)
= T+,−,+,+(p1, p4, p2, p3) = T−,+,+,+(p4, p1, p2, p3). (B.102)

Moreover, the first amplitude in (B.101) is symmetric under any permutation of particles
1, 2 and 3. (Similar statements hold for the rest of the amplitudes in (B.101)). Inspecting
the permutation properties of the tensor structures in (B.88) we conclude that the following
relations must be satisfied

h(+++−)(s, t, u) = h(+++−)(t, s, u) = h(+++−)(u, t, s), (B.103)

together with

h(+++−)(s, t, u) = h(++−+)(s, t, u) = h(+−++)(s, t, u) = h(−+++)(s, t, u). (B.104)

In order to find this result notice, that the following relation holds due to momentum
conservation

(⟨41⟩[12][13])2 = (⟨42⟩[12][23])2 = (⟨43⟩[32][13])2. (B.105)

Summarizing, out of 16 amplitude components h(λ1,λ2,λ3,λ4) there are only three inde-
pendent ones. We denote them as

h1(s|t, u) ≡ h(++−−)(s, t, u),
h2(s, t, u) ≡ (s2 + t2 + u2)−1h(++++)(s, t, u),
h3(s, t, u) ≡ h(+++−)(s, t, u).

(B.106)

The rest of the functions h(λ1,λ2,λ3,λ4) can be obtained from these ones by using (B.93) which
holds due to parity and the relations (B.97), (B.100), (B.103) and (B.104) which hold due to
permutation symmetry S4. Notice, that the functions h2 and h3 are fully crossing symmetric
in their arguments, whereas the function h1(s|t, u) is symmetric only in its last two arguments.
The prefactor in the definition of h2 is introduced for later convenience.

B.4.3 Center of mass frame

We have worked so far with all-in amplitudes. Let us now use (B.5) in order to obtain in-out
amplitudes from the all-in ones. Explicitly, we have

T ++
++ (p1, p2, p3, p4) = T++−−(p1, p2,−p3,−p4),
T −−
++ (p1, p2, p3, p4) = T++++(p1, p2,−p3,−p4),
T +−
+− (p1, p2, p3, p4) = T+−−+(p1, p2,−p3,−p4),
T −+
+− (p1, p2, p3, p4) = T+−+−(p1, p2,−p3,−p4),
T +−
++ (p1, p2, p3, p4) = T++−+(p1, p2,−p3,−p4).

(B.107)
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The amplitudes in the right-hand side can still be decomposed into tensor structures (B.83)
with the basis given by (B.88). Evaluating (B.107) in the center of mass frame defined
in (A.12) and using (A.15) together with (B.83), (B.88) and (B.106) we conclude that

Φ1(s, t, u) = ([12]⟨34⟩)2h1(s|t, u)
∣∣∣
COM

,

Φ2(s, t, u) =
(
([12][34])2 + ([13][24])2 + ([14][23])2

)
(s2 + t2 + u2)−1h2(s, t, u)

∣∣∣
COM

,

Φ3(s, t, u) = ([14]⟨23⟩)2h1(u|t, s)
∣∣∣
COM

,

Φ4(s, t, u) = ([13]⟨24⟩)2h1(t|s, u)
∣∣∣
COM

,

Φ5(s, t, u) = (⟨31⟩[12][14])2h3(s, t, u)
∣∣∣
COM

.

(B.108)

In order to evaluate the tensor structures in (B.108) in the center of mass frame we first
apply the analytic continuation (B.6) to (B.42). We then plug in the center of mass frame
values for the 4-momenta given in (A.12). This leads us to

ξCOM
1 = s1/4

1
0

 , ξCOM
2 = s1/4

0
1

 , (B.109)

ξCOM
3 = is1/4

cos θ
2

sin θ
2

 , ξCOM
4 = is1/4

 sin θ
2

− cos θ
2

 , (B.110)

together with

ξ̃COM
1 = ξCOM

1 , ξ̃COM
2 = ξCOM

2 , ξ̃COM
3 = ξCOM

3 , ξ̃COM
4 = ξCOM

4 . (B.111)

Where the i in ξCOM
3,4 and ξ̃COM

3,4 comes from the analytic continuation from incoming to
outgoing particle.

Plugging these into the definitions (B.84) we conclude

Φ1(s, t, u) = s2h1(s|t, u),
Φ2(s, t, u) = h2(s, t, u),
Φ3(s, t, u) = u2h1(u|t, s),
Φ4(s, t, u) = t2h1(t|s, u),
Φ5(s, t, u) = stu h3(s, t, u).

(B.112)

The center of mass amplitudes ΦI are related to the amplitude components AI via (B.3)
and (B.58). The amplitude components AI in turn are expressed in terms of the 3 functions
fi according to (B.71). Using (B.112) we can then relate hi and fi functions. We get

h1(s|t, u) = f1(s|t, u) +
1
4(f2(s|t, u) + f2(t|s, u) + f2(u|s, t)),

h2(s, t, u) = s2f1(s|t, u) + t2f1(t|s, u) + u2f1(u|s, t)

− 1
2(tuf2(s|t, u) + suf2(t|s, u) + stf2(u|s, t)) + stuf3(s, t, u),

h3(s, t, u) =
1
4f3(s, t, u).

(B.113)

Notice that the functions hi written in terms of functions fi here are invariant under the
equivalence class transformation (B.72). This is a powerful consistency check.

– 65 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

C One-loop from elastic unitarity

In this appendix, we will compute the one-loop amplitude at threshold using elastic unitarity.
This computation follows the idea of [10, 18, 24], the novelty compared to those references is
the presence of spin and we will see that the general result can be easily extended.

The (tree-level) amplitudes are schematically given at threshold by (1.6)

T = a2s̄
2 + a3s̄

3 +O(s̄4) , (C.1)

where we wrote generic dimensionless coefficients ai ∈ R and used the dimensionless Man-
delstam variables (3.8). From unitarity (Im T ∼ T 2), we expect the amplitude to acquire
an imaginary part at O(s̄4). This discontinuity corresponds to EFT loops and, as we are
considering massless particles, it is given at threshold by logs. This leads to the ansatz (1.6),
with the one-loop discontinuity given by (1.7).

We will now show how to fix the coefficients βi to (1.8) by imposing unitarity at
threshold. To begin, we decompose the ansatz (1.6) in the partial waves amplitudes Sℓ(s),
defined in (1.22).

Elastic unitarity is broken due to particle production starting at T (2 → 4) = O(s̄3).
Therefore at threshold, unitarity implies

Eigenvalues
[
(Sℓ(s))†Sℓ(s)

]
= 1 +O(s̄6) . (C.2)

We can expand the partial wave amplitude as follows:

Sℓ(s) = I+ i(Fℓ
2s̄

2 + Fℓ
3s̄

3 + Fℓ
4s̄

4) +O(s̄4 log s̄) , (C.3)

and (C.2) implies

2 ImFℓ
4 = (Fℓ

2)2 , ∀ ℓ . (C.4)

We recall here that Fℓ are one-by-one or two-by-two matrices (1.22). Imposing this equation
allows us to fix the coefficients βi using for the logarithm the prescription log(−s) = log(|s|)−
iπθ(s). The result matches the explicit loop computation described in appendix D. Note that
this result could be extended to O(s̄5), as elastic unitarity is only broken at O(s̄6) (C.2).

D Computation of scattering amplitudes in EFTs

In this appendix, we will compute scattering amplitudes from the general EFT written
in (1.13) to eighth order in derivatives i.e. fourth order in s. This means that we must go
to one-loop order in the dim-8 vertices L8 given in (1.14) but only to linear order in the
dim-10 L10 and dim-12 L12 vertices. The one-loop diagrams computed using dim-8 vertices
will turn out to be UV-divergent and therefore we will need to regularize the integral and
add counter terms to cancel these UV-divergences, using say the MS prescription. The
calculations in this section were done with the help of software packages FeynCalc [79–81],
FeynArts [82], FeynHelpers [83], FeynRules [84] and PackageX [85]. We now proceed order
by order in derivatives or equivalently in s.
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O(s2). This corresponds to tree level in the dimension 8 lagragian L8. Conceptually it is
straightforward to compute the Feynman amplitude from the Lagrangian. However, on a
technical level, the process is a bit tricky due to the various Lorentz indices and different
possible contractions between them. Using computer algebra to perform the contractions,
we arrive at

Mµνρσ(p1, p2, p3, p4) = 8c1ηµνηρσs
2 + 4c2p4µp3νηρσs+ . . . (D.1)

where, for brevity, we only displayed a couple of terms. From this Feynman amplitude,
one can derive the scattering amplitude by contracting the Lorentz indices with photon
polarization vectors in the COM frame:

T λ3λ4
λ1λ2

(s, t, u) = ϵµλ1
(pcom

1 )ϵνλ2(p
com
2 )ϵρ∗λ3

(pcom
3 )ϵσ∗λ4(p

com
4 )Mµνρσ(pcom

1 , pcom
2 , pcom

3 , pcom
4 ) , (D.2)

where the centre of mass frame momenta pcom
i were defined in (A.12) and the polarization

vectors ϵµλ(p) were defined in (B.34). With this, we arrive at our result, which is as follows:

Φ1(s, t, u)
∣∣
s2 = 2(4c1 + 3c2)s2 ,

Φ2(s, t, u)
∣∣
s2 = 2(4c1 + c2)s2 ,

Φ5(s, t, u)
∣∣
s2 = 0 ,

(D.3)

were we used the notation Φi(s, t, u)
∣∣
sn to emphasize that we only write the O(sn) terms.

Comparing with (1.6), we deduce the following relations between the Wilson coefficients in
the Lagrangian and the coefficients in the expansion of the amplitudes:

g2 = 2(4c1 + 3c2) ,
f2 = 2(4c1 + c2) .

(D.4)

O(s3). At this order, only the tree level amplitude of the dimension 10 Lagrangian L10
contributes. Once again using FeynCalc, we arrive at

Mµνρσ(p1, p2, p3, p4) = 4c4 ηµνηρσs
3 + 1

2c3 p4µp3νηρσst+ . . . (D.5)

Repeating the same steps as before, i.e. going to the COM frame and contracting with the
polarization vectors, we compute the scattering amplitudes

Φ1(s, t, u)
∣∣
s3 = −4c4s3 ,

Φ2(s, t, u)
∣∣
s3 = −6(c3 + 2c4 − c5)stu ,

Φ5(s, t, u)
∣∣
s3 = −3

2c3stu ,

(D.6)

and upon comparing with (1.6), we see that

g3 = 4c4 ,
f3 = 6(c3 + 2c4 − c5) ,

h3 =
3
2c3 .

(D.7)
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O(s4). We now have one-loop diagrams from the dimension 8 Lagrangian L8 as well as
tree level diagrams from the dimension 12 Lagrangian L12. The one-loop diagrams are
UV-divergent, using dimensional regularization (d = 4 − 2ϵ), they can be written in the
following form:

Φ1(s,t,u)
∣∣
s4 =

(
ξ1
ϵ
+ξ0

)
s4+

(
ξ̃1
ϵ
+ξ̃0

)
s2tu+s2

(
β1,1s

2+β1,2tu
)
log
(
− s

µ2

)
+β1,3s

2
(
t2 log

(
− t

µ2

)
+u2 log

(
− u

µ2

))
,

Φ2(s,t,u)
∣∣
s4 =

(
κ1
ϵ
+κ0

)
(s2+t2+u2)2+β2

(
s4 log

(
− s

µ2

)
+t4 log

(
− t

µ2

)
+u4 log

(
− u

µ2

))
,

Φ5(s,t,u)
∣∣
s4 =0, (D.8)

where µ2 is the dimensional regularization scale40 and the various coefficients in the equation
are given by

ξ1 =
1

120π2
(
1008c21 + 840c1c2 + 231c22

)
,

ξ0 =
1

1200π2
(
16912c21 + 15000c1c2 + 4489c22

)
,

ξ̃1 = −
1

120π2
(
224c21 + 304c1c2 + 110c22

)
,

ξ̃0 = −
1

1800π2
(
7664c21 + 9304c1c2 + 2495c22

)
,

κ1 =
5

24π2
(
16c21 + 16c1c2 + 3c22

)
,

κ0 =
1

1440π2
(
6992c21 + 8888c1c2 + 1773c22

)
,

β1,1 =
1

120π
(
912c21 + 696c1c2 + 177c22

)
,

β1,2 = −
1

60π
(
16c21 + 8c1c2 + c22

)
,

β1,3 =
1

20π (4c1 + 3c2)2 ,

β2 =
5

12π2
(
16c21 + 16c1c2 + 3c22

)
.

(D.9)

The UV divergences, which are now neatly captured by the 1
ϵ poles, can be cancelled by

introducing dimension 12 counter-terms of the same form as in L12. The MS regularization
scheme corresponds to choosing the coefficients of the counter-terms such that they only
cancel the divergences, without changing the finite parts. Explicitly, in this scheme we

40To be precise, this is actually the redefined scale µ2 → eγE

4π
µ2 which is used to get rid of factors of 4π and

the Euler-Mascheroni constant γE .
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choose the following the counter-terms:

δc6 =
8κ1
ϵ
,

δc7 =
12κ1 + ξ1

ϵ
,

δc8 =
4ξ1 + 2ξ̃1

ϵ
.

(D.10)

Having done this, and also including the contribution from tree level L12 terms, we have the
following result for the amplitude at order s4 in dimensional regularization with MS scheme:

Φ1(s,t,u)
∣∣
s4 =

(1
4(2c7−3c6)+ξ0

)
s4+

(1
2(3c6−2c7−c8)+ξ̃0

)
s2tu

+s2
(
β1,1s

2+β1,2tu
)
log
(
− s

µ2

)
+β1,3s

2
(
t2 log

(
− t

µ2

)
+u2 log

(
− u

µ2

))
,

Φ2(s,t,u)
∣∣
s4 =

(
−1
8c6+κ0

)
(s2+t2+u2)2+β2

(
s4 log

(
− s

µ2

)
+t4 log

(
− t

µ2

)
+u4 log

(
− u

µ2

))
,

Φ5(s,t,u)
∣∣
s4 =0. (D.11)

However, it is more convenient for our purposes to choose a different subtraction scheme.
Firstly, we choose the dimensional regularization scale µ2 to be related to the coefficient g2:

µ2 = 1
√
g2

= 1√
2(4c1 + 3c2)

. (D.12)

We then choose the following subtraction scheme — the counter-terms also cancel out the
finite pieces ξ0, ξ̃0 and κ0. Explicitly,

δc6 =
8κ1
ϵ

+ 8κ0 ,

δc7 =
12κ1 + ξ1

ϵ
+ 12κ0 + ξ0 ,

δc8 =
4ξ1 + 2ξ̃1

ϵ
+ 4ξ0 + 2ξ̃0 .

(D.13)

With this new scheme, we reach our final result:

Φ1(s, t,u)
∣∣
s4 =

1
4(2c7−3c6)s4+

1
2(3c6−2c7−c8)s2tu+s2

(
β1,1s

2+β1,2tu
)
log(−s√g2)

+β1,3s
2
(
t2 log(−t√g2)+u2 log(−u

√
g2)
)
,

Φ2(s, t,u)
∣∣
s4 =−

1
8c6(s

2+ t2+u2)2+β2
(
s4 log(−s√g2)+ t4 log(−t

√
g2)+u4 log(−u

√
g2)
)
,

Φ5(s, t,u)
∣∣
s4 =0 , (D.14)

and comparing with (1.6) leads to the identification

g4 =
1
4(2c7 − 3c6) ,

g′4 =
1
2(3c6 − 2c7 − c8) ,

f4 = −
1
8c6 .

(D.15)
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As it is clear from the computation, the above relations are only valid for the chosen subtraction
scheme, and a different choice of subtraction scheme, say for example MS, would lead to
terms involving c1 and c2 in the above equation.

E Wilson coefficients in various models

In this appendix, we give some details on the amplitudes whose Wilson coefficients we use
in section 4. The corresponding EFTs are all obtained by integrating out massive particles
which are weakly coupled at their production threshold. We consider resonances which can
be integrated out at tree level (Yukawa-like theories) and charged particles which can be
integrated out at one-loop (QED-like theories). Notice that these theories are not necessarily
UV complete on their own: new particles might be necessary to restore unitarity above
a larger energy scale.

E.1 Yukawa-like theories

This subsection collects a few examples where a low spin resonance is integrated out at tree
level. We consider resonances of spin 0 and 2, even or odd under parity. The resulting Wilson
coefficients are summarized in the first five rows of table 9. Notice that a massive spin 1
resonance cannot couple to two photons. This is known as the Landau-Yang theorem [86, 87],
and it simply follows from (A.32), (A.33). Indeed, a resonance of spin ℓ only contributes
to the partial wave of the same spin in the production channel, and there is no overlap of
any two photon state with a spin 1 state.

There are multiple ways to derive the EFT. Since the field corresponding to the massive
particle appears quadratically in the Lagrangian, one can evaluate the action on shell and
expand at low energies, as done in [43]. Alternatively, one can compute the 2-to-2 tree level
amplitude starting from the Feynman rules, or directly, using factorization and crossing, as
explained in [78]. We will mostly follow the latter method, and we will comment on the
relation to the Lagrangian construction only for the case of a spin 2 resonance.

We now illustrate the method, which will also serve as a lightning review. This subsection
is not meant to be self-contained, see [78] for details. At tree level the on-shell pole due to
exchange of a massive particle of spin S and mass m can be written as

M
{I1,I2...I2S}
L, λ1,λ2

MR, λ3,λ4, {I1,I2...I2S}

P 2 +m2 (E.1)

where ML and MR are three-point amplitudes, λi are the photon helicities and I1, I2 . . . I2S

are the little group indices of the massive particle. Consider now the construction of the
two photon to one massive particle amplitude, with particle 3 being the massive one. This
amplitude must be constructed out of the spinor-helicity variables41

ξα
1 , ξ̃

α̇
1 , ξ

α
2 , ξ̃

α̇
2 , ξ3

I α, ξ̃I α̇
3 (E.2)

41See appendix B.2 for an introduction to spinor helicities for massless particles. In the massive case, the
little group is SO(3), and the index I = 1, 2 is in the spin 1/2 representation, i.e. the fundamental of su(2).

– 70 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

such that it has the right transformation property under the respective little groups of the
three particles. For example the coupling of two positive helicity photons to spin 0 and
spin 2 particles can be written as

Spin 0 : M spin 0
++ = g

m
[12]2,

Spin 2 : M spin 2
++ = g

m5 ⟨13⟩⟨23⟩[13][23][12]2,
(E.3)

where
[i j] ≡ ξα

i ξ
I
j α ⟨i j⟩ ≡ ξ̃j α̇ ξ̃

I α̇
j . (E.4)

We can now “glue” three-point couplings in (E.1) to deduce the four particle amplitude,
keeping in mind that this prescription computes the all incoming amplitude. This procedure
fixes the on shell residue of the amplitudes that we will present later in this section. Note
that by choosing the coupling constants for + and − helicity photons appropriately, we can
ensure that the pole lies in the parity even or odd channel. In principle one could have had
other couplings, for example in the spin 2 case,

M spin 2
++ = g

m7 ⟨13⟩⟨23⟩⟨13⟩⟨23⟩[12]4. (E.5)

However these are equivalent at the on shell mass pole i.e. s = m2 because

⟨13⟩ ≡ ξ̃1 α̇ ξ̃
Iα̇
3 = − ξ̃1 α̇ p

αα̇
3 ξI

3α

m
= ξ̃1 α̇ p

αα̇
2 ξI

3α

m
= ⟨12⟩[23]

m
, (E.6)

and
⟨12⟩2 = [12]2 = s, (E.7)

and as mentioned before, this procedure only fixes the on shell residue. Therefore we can
trade powers of s for powers of m2. Another way to understand this is that these couplings
are the same up to contact terms. We choose the former coupling in (E.3) since it is consistent
with low energy s→ 0 and the high energy s→∞ behaviour that we assume in this work.
This point will be explained in more detail later in the appendix.

Scalar. A parity even neutral scalar particle of mass m can generically decay into two
photons via the tree level coupling ϕFµνF

µν , where ϕ is the field describing the particle. This
interaction is not renormalizable, therefore the theory needs a UV completion. However, it
is easy to imagine at least one: we can resolve the effective coupling by adding a charged
particle (a scalar or a fermion) of mass M > m, with a Yukawa interaction with ϕ. The
resulting model is renormalizable. Here, we are interested in the EFT obtained by integrating
out the charged particle. Its 2-to-2 photon amplitude at tree level can be easily constructed
with the recipe given in [78]:

Φ1(s, t, u) = −
λ2

m2
s2

s−m2 , (E.8a)

Φ2(s, t, u) = −
λ2

m2

(
s2

s−m2 + t2

t−m2 + u2

u−m2

)
, (E.8b)

Φ5(s, t, u) = 0 , (E.8c)
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while Φ3 and Φ4 are obtained by crossing — see (1.5). If, for instance, we complete the
theory by coupling the scalar to a spin 1/2 charged fermion of mass M , the dimensionless
coupling λ is proportional to the ratio m/M . Regardless, the amplitude (E.8) shows that
m/λ is the cutoff of the EFT. Indeed, when the Mandelstam invariants are of order (m/λ)2,
the amplitudes become large, the theory is strongly coupled and something new must happen
to unitarize. On the other hand, for fixed s and λ small, the violations of unitarity contained
in (E.8) can be cured by higher order terms in λ, as usual in effective field theory.

Axion. The case of a parity odd scalar proceeds much as in the previous example. This
time the interaction vertex is ϕ̃FµνF̃

µν , F̃µν being the Hodge dual of the field strength,
and the amplitudes are

Φ1(s, t, u) = −
λ2

m2
s2

s−m2 , (E.9a)

Φ2(s, t, u) =
λ2

m2

(
s2

s−m2 + t2

t−m2 + u2

u−m2

)
, (E.9b)

Φ5(s, t, u) = 0 . (E.9c)

The only difference with the scalar case is a overall minus sign in the Φ2 amplitude, which
moves the production pole of the scalar resonance from the parity even to the parity odd
partial wave.

Parity even spin 2. If we construct an amplitude for the tree level exchange of a spin
2 resonance following [78], we find that there are multiple options. The ambiguity is
parametrized by the three-point coupling between two photons and a massive spin 2 particle.
A spin 2 massive particle can either decay into two photons with the same helicities, or into
two photons with opposite helicities.42 The latter state has even parity — see (A.31)—hence
it only exists for a parity even spin 2 resonance. On the other hand, a parity even resonance
couples to the (++) and the (−−) states equally, while a parity odd one couples to them
with opposite sign. All in all, we have a two-parameters family of couplings of photons to a
parity even spin 2 resonance. For simplicity, we only consider the limiting cases where the
resonance does not couple to both the (+−) and the ++ state, i.e. we set the amplitude Φ5
to zero. This is not necessary, but it is enough for our purposes. The two amplitudes are

ΦI
1(s, t, u) = −λ2

s2

m6
t2 − 4tu+ u2

s−m2 + polynomial , (E.10a)

ΦI
2(s, t, u) = −

λ2

m6

(
s2
t2 − 4tu+ u2

s−m2 + t2
s2 − 4su+ u2

t−m2 + u2
s2 − 4st+ t2

u−m2

)
+ polynomial , (E.10b)

ΦI
5(s, t, u) = 0 , (E.10c)

42It is worth noticing that the spinor helicity structure for the decay into 2 photons with the same helicity
is only unique once we ask for the absence of kinematic singularities, i.e. we demand that the Φ1 amplitude
has a low energy expansion of the kind (1.6).
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for the coupling to equal helicity photons, and

ΦII
1 (s, t, u) = −

λ2

m2

(
s2

t−m2 + s2

u−m2

)
+ polynomial , (E.11a)

ΦII
2 (s, t, u) = 0 , (E.11b)

ΦII
5 (s, t, u) = 0 , (E.11c)

for the coupling to photons with opposite helicities. In (E.10) and (E.11), we allowed for yet
unspecified polynomials in the Mandelstam invariants. Clearly, a polynomial does not change
the residues of the amplitude. Therefore, these are ambiguities in the EFT of the resonance
and the photons. Such degrees of freedom are parametrized by the Wilson coefficients as
in (1.6), because the latter provide the most general polynomial solution to crossing without
kinematic singularities. In other words, the polynomials correspond to contact interactions
among the photons. We use this ambiguity to improve the Regge limit of the amplitudes (E.10)
and (E.11). In particular, the type I amplitudes can be made compatible with the classical
Regge growth conjecture [68], i.e. their growth can be limited to being O(s2, u2, t2), depending
on which variable is taken large. This requires adding a homogeneous polynomial of degree
3. Furthermore, as explained in subsection 4.3, we can add a homogeneous polynomial of
degree 2 to further improve the Regge limit in the forward kinematics, so that both type I
and type II amplitudes obey the dispersion relation (2.10). Notice that none of the additions
modify the Wilson coefficients at dimension 12 (g4, g′4, f4). The final results are

ΦI
1(s, t, u) = −λ2

s2

m6
t2 − 4tu+ u2

s−m2 + λ2

m6

(
m2s2 + s3

)
, (E.12a)

ΦI
2(s, t, u) = −

λ2

m6

(
s2
t2 − 4tu+ u2

s−m2 + t2
s2 − 4su+ u2

t−m2 + u2
s2 − 4st+ t2

u−m2

)

+ λ2

m4

(
s2 + t2 + u2

)
, (E.12b)

ΦI
5(s, t, u) = 0 , (E.12c)

and

ΦII
1 (s, t, u) = −

λ2

m2

(
s2

t−m2 + s2

u−m2

)
− λ2

m4 s
2 , (E.13a)

ΦII
2 (s, t, u) = 0 , (E.13b)

ΦII
5 (s, t, u) = 0 . (E.13c)

Let us now make contact with the work [43]. There, a single parity even coupling was
considered, which in the present language is the type II coupling, without the addition of
contact terms. The authors explicitly used a Lagrangian, and parametrized the coupling
to the spin 2 resonance via

hµν
(
u

M
FµρFν

ρ + u′

M
ηµνFρσF

ρσ
)
, (E.14)
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where h is the field describing the resonance, η is the metric and u, u′ are coupling constants.
Since the trace of h does not propagate, the u′ coupling does not produce poles, and, as
pointed out in [43], it is in fact equivalent to contact interactions, which can be fine tuned to
produce an amplitude which does not grow more than s2 in the Regge limit. Since (E.14)
is the most general parity even cubic coupling at lowest derivative order, our additional
type I amplitudes must correspond to a higher derivative interaction. This is indeed the
case, as it can be reversed engineered from the amplitude, following [69]. The interaction
producing equation (E.10) is

λ

m3

(
hµν∂µFρσ∂νF

ρσ − 1
4∂µ∂νh

µνFρσF
ρσ
)

(E.15)

As explained above, photon contact interactions can be added in order to obtain the Regge
bounded amplitudes (E.12): if needed, their Lagrangian can be deduced combining (E.12)
with (1.14) and (1.17).

It would be interesting to investigate the possible UV completions of the EFT of a spin
1 massless particle and a neutral spin 2 resonance, perhaps coupling them via a charged
vector boson, and understand if the Lagrangian (E.15) can arise at low energies. At the
end of this subsection, we report an attempt at improving the Regge behavior of the type I
and II amplitudes, following an idea pioneered in [30]. Interestingly, the attempt fails for
both types of amplitudes, leaving open the puzzle on the reason why the null constraints
are obeyed by the type II but violated by the type I coupling.

Parity odd spin 2. As mentioned in the previous paragraph, the lowest derivative order cubic
coupling with a parity odd spin 2 particle involves two photons with equal helicities (type
I). The corresponding amplitude, equipped with contact terms as above, is

Φ1(s, t, u) = −λ2
s2

m6
t2 − 4tu+ u2

s−m2 + λ2

m6

(
m2s2 + s3

)
, (E.16a)

Φ2(s, t, u) =
λ2

m6

(
s2
t2 − 4tu+ u2

s−m2 + t2
s2 − 4su+ u2

t−m2 + u2
s2 − 4st+ t2

u−m2

)

− λ2

m4

(
s2 + t2 + u2

)
, (E.16b)

Φ5(s, t, u) = 0 . (E.16c)

All the same observations about the parity even type I amplitudes apply to this case as
well. In particular, the Lagrangian which generates it is

λ

m3

(
hµν∂µFρσ∂νF̃

ρσ − 1
4∂µ∂νh

µνFρσF̃
ρσ
)

(E.17)

A failed attempt at Improving the Regge limit. Type I and II amplitudes have the same
Regge limit, but, as discussed in subsection 4.5, the former violates the null constraints
employed in [43], which require a Regge growth strictly slower than s2, also away from the
forward limit. In [30], a recipe to improve the Regge behavior of an amplitude was devised.
The procedure is concocted so that the Wilson coefficients of the original amplitude are
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modified by parametrically small shifts. The price to pay is the introduction of new higher
spin particles, infinitely many of which lie at the same mass of the original resonance.

The basic idea is to multiply the amplitude by additional poles, compatible with crossing
and unitarity. The latter in particular require that, in the forward limit, ImΦ1,3(s) ≥ 0,
and similarly for each partial wave — see (1.25) and (2.1). This allows us to focus on the
Φ1 amplitude exclusively, which will be sufficient to find a contradiction. A first simple
constraint from unitarity is that we cannot improve the Φ1 amplitude by multiplying it by
an s-channel pole, (s − µ2)−1. Indeed, the (distributional) imaginary part of the product
(s−m2)−1(s− µ2)−1 flips sign as a function of s. For the type I amplitude, of either parity,
we are therefore led to the following improvement:

Φ1(s, t, u) =
(
−λ2 s

2

m6
t2 − 4tu+ u2

s−m2 + λ2

m6

(
κm2s2 + s3

)) 1(
t

µ2 − 1
) (

u
µ2 − 1

) . (E.18)

Since the additional poles improve the Regge limit by one power, only the s3 term of the
polynomial in parenthesis is necessary to make the amplitude grow linearly in the Regge limit.
The new parameter κ makes the ensuing freedom manifest. The amplitude (E.18) reduces
to the original (E.12) for κ = 1, as µ → ∞, as promised. The new particle content now
includes two higher spin towers of degenerate mass m and µ respectively. Unitarity demands
all the imaginary parts of the corresponding partial waves to be positive. The particles of
mass µ are exchanged in the u channel, or equivalently in Φ3, and it is easy to verify that
the spin three partial wave has negative imaginary part,

ImΦℓ=3
3 (s = µ) < 0 , (E.19)

for µ large enough with any fixed value for κ. Therefore, the Regge bounded amplitude (E.18)
is non-unitary. This was required for consistency with [43, 44].

Let us see what changes for the type II coupling. In this case, the only non-vanishing
component is Φ1, whose improvement reads

Φ1(s, t, u) =
(
− λ

2

m2

(
s2

t−m2 + s2

u−m2

)
− λ2

m4κs
2
)

1(
1− s

µ2

) . (E.20)

Again, the improved amplitude grows at most linearly in the Regge limit, for any value of the
new parameter κ. However, positivity of ImΦℓ=0

1 (s), for large values of µ/m, requires κ = 0.
Then, while the s-channel partial waves all have positive imaginary part, all the odd-spin
u-channel ones again violate unitarity. We conclude that neither version of the coupling of
a spin two resonance to photons can be improved in the way discussed here.

E.2 QED-like theories

Let us briefly consider scalar, spinor and vector QED. By integrating out the massive
charged particle (i.e. respectively the fermion, scalar and vector), one obtains the Wilson
coefficients of the photon Lagrangian (1.13). The case of standard QED leads to the well
known Euler-Heisenberg Lagrangian [88].

Here, we comment on the Regge limit of the one-loop amplitudes, from which the value
in table 9 are easily obtained. In all three cases, the amplitudes can be explicitly written in

– 75 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

a basis of three integrals [89–91]. These integrals can be estimated when the Mandelstam
invariants become large, and one can conclude that these one-loop amplitudes grow in the
Regge limit at most as O((log s)2).

Finally, note that these QED theories are not UV complete on their own (see appendix F)
and should be considered as partial UV completion of the photon EFT.

F UV incompleteness of QED

This appendix is a short summary of the results derived in [92] for quantum electrody-
namics (QED).

Let us consider the Lagrangian density of QED, it reads

LQED = ψ̄(i /D −m)ψ − 1
4FµνF

µν − 1
2ξ (∂µA

µ)2 + counter terms. (F.1)

Here ψ(x) is the Dirac fermion field with the physical mass m and the covariant derivative is

Dµ ≡ ∂µ + ieAµ, (F.2)

where e is the electric charge of ψ. The excitations of ψ(x) describe electrons and positrons
with mass m. The electromagnetic field strength tensor Fµν(x) is given by

Fµν(x) ≡ ∂µAν(x)− ∂νAµ(x), (F.3)

where Aµ(x) is the electromagnetic potential. The excitations of Aµ(x) describe photons.
One usually also defines the electromagnetic constant α as

α ≡ e2/4π. (F.4)

Notice that the counter terms in (F.1) are adjusted in such a way that m and α are
physical finite constants. QED describes interaction between electrons, positrons and light
in our world. The experimentally measured value of α is

α ≈ 1
137.035 . (F.5)

Let us discuss what observables can be computed in QED and how the result (F.5) can
be measured experimentally.

The electromagnetic form factor is defined as the following matrix element

λ1λ2
out ⟨m, p⃗1;m, p⃗2|Jµ(x = 0)|0⟩, (F.6)

where Jµ(x) is the electromagnetic current and in the left-hand side we have a two-particle
“out” asymptotic state built out of an electron and positron with helicities λ1 and λ2 and
3-momenta p⃗1 and p⃗2. Due to the Lorentz invariance this form factor can be decomposed
into tensor structures as

λ1λ2
out ⟨m, p⃗1;m, p⃗2|Jµ(x = 0)|0⟩ = F1(q2)× (ūλ1γ

µuλ2) + F2(q2)×
iqν

2m (ūλ1σ
µνuλ2), (F.7)
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where uλ is the 4-component solution of the Dirac equation. Here F1 and F2 are the
scalar components of the electromagnetic form factor. The total momentum q of the two-
particle state is

qµ ≡ pµ
1 + pµ

2 . (F.8)

For a generic discussion of form factors see [20, 21].
The functions F1 and F2 are computed to one-loop in section 6 in [92], see equations (6.56)

and (6.57). Using the (semi-classical) Born approximation one can compute the expression
for the magnetic moment of the electron in terms of the Landé g-factor which reads as

g = 2 + 2F2(0), F2(0) =
α

2π . (F.9)

By measuring g one can determine α via the above relation.
The effective Coulomb potential was discussed in subsection 7.5 in [92]. One finds that

V (r) = −f(r)
r
, (F.10)

where the function f(r) computed in QED to one loop has the form

f(r) = α+ α2 h(r) +O(α3). (F.11)

The function f(r) is often called the running coupling constant. The function h(r) can be
evaluated analytically at large and small distances. One gets

h(r) =
mr≫1

1
4
√
π

e−2mr

(mr)3/2 , h(r) =
mr≪1

− 1
54π (5/6 + γ + log(mr)), (F.12)

where γ is the Euler gamma. Looking at (F.11) and (F.12) one finds the following asymptotic
behavior

f(∞) = α, f(0) =∞. (F.13)

At small distance or equivalently at high energies the function f(r) blows up. This indicates
that the theory is not well-defined at arbitrary high energies. In fact, one expects the coupling
to diverge at a finite energy scale. This problem is known as the Landau pole. The Landau
pole issue was discovered perturbatively but is believed to hold non-perturbatively.

G LSZ derivation of crossing equations

We begin in subsection G.1 with a derivation of crossing in general frame using the LSZ
prescription, as defined in many textbooks, with the gauge fixed correlator of the Aµ fields.
However, we find this prescription not as satisfactory as working with the gauge invariant
correlator of field strengths Fµν . Therefore, in subsection G.2 we will use the latter to
re-derive crossing in both general and COM frame.
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G.1 Gauge fixed LSZ prescription

The LSZ reduction formula for the scattering process 12→ 34 of four massless spin-1 particles
can be written in the following form [93]

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip3x3 ϵµ3∗
λ3

(p3)(−∂23)
× e−ip4x4 ϵµ4∗

λ4
(p4)(−∂24)

× ⟨Ω|T{Aµ4(x4)Aµ3(x3)Aµ1(x1)Aµ2(x2)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂22)ϵ

µ2
λ2
(p2) eip2x2 , (G.1)

where |Ω⟩ denotes the vacuum state and Aµi(x) are massless spin 1 fields in the Lorentz
gauge. Similarly we can write the LSZ reduction formula for the process 13̄ → 2̄4

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1, p3, p2, p4) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip2x2 ϵµ2∗
λ2

(p2)(−∂22)
× e−ip4x4 ϵµ4∗

λ4
(p4)(−∂24)

× ⟨Ω|T{Aµ4(x4)Aµ2(x2)Aµ1(x1)Aµ3(x3)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂23)ϵ

µ3
λ3
(p3) eip3x3 , (G.2)

Note that the amplitudes above are defined for positive energy momenta, namely p0i > 0.
Crossing symmetry is the statement that the amplitudes for the two processes above are
related by analytic continuation. Consider the 13̄ → 24 process and analytically continue
the expression G.2 in p2 and p3 to allow for negative energies.

T13̄→2̄4
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× eip2x2 ϵµ2∗
λ2

(−p2)(−∂22)
× e−ip4x4 ϵµ4∗

λ4
(p4)(−∂24)

× ⟨Ω|T{Aµ4(x4)Aµ2(x2)Aµ1(x1)Aµ3(x3)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂23)ϵ

µ3
λ3
(−p3) e−ip3x3 , (G.3)

We see that the above expression looks very similar to (G.1) except for the correlator and
the polarization vectors which are evaluated at negative energies. Using the fact that bosonic
operators commute we see that the correlation functions are equal

⟨Ω|T{Aµ4(x4)Aµ3(x3)Aµ1(x1)Aµ2(x2)}|Ω⟩ = ⟨Ω|T{Aµ4(x4)Aµ2(x2)Aµ1(x1)Aµ3(x3)}|Ω⟩
(G.4)
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We now consider the negative energy polarization vectors ϵµλ(−p). They are the analytic
continuations of the positive energy polarizations, which were defined in B.34. Since we
deal with massless particles in this work, we choose the following analytic continuation
for the momenta

p0 → −p0, p→ −p, θ → θ, ϕ→ ϕ (G.5)

which ensures that pµ → −pµ. See [19] for more details. Under this analytic continuation
we see from the explicit form B.34 that

ϵµλ(−p) = ϵµλ(p) = ϵµ∗
−λ(p) (G.6)

Thus by using G.6 and G.4 in G.3 and then comparing with G.1 we have

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4). (G.7)

Analogously one derives the other three crossing equations. The complete summary of
crossing equations reads

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T4̄2→31̄
+λ3,−λ1
−λ4,+λ2

(−p4, p2, p3,−p1),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13̄→2̄4
−λ2,+λ4
+λ1,−λ3

(p1,−p3,−p2, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T3̄2→1̄4
−λ1,+λ4
−λ3,+λ2

(−p3, p2,−p1, p4),

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T14̄→32̄
+λ3,−λ2
+λ1,−λ4

(p1,−p4, p3,−p2).

(G.8)

Specializing to the case of scattering of identical neutral massless spin 1 particles, all the
processes in the above 4 equations are the same and thus the crossing equations express
a symmetry of the scattering amplitude.

All incoming amplitude. Using the LSZ reduction formula G.1 it is possible to define an
unphysical 4 photons to nothing amplitude by analytic continuation:

Tλ1,λ2,λ3,λ4(p1, p2, p3, p4) ≡ T
−λ3,−λ4
λ1, λ2

(p1, p2,−p3,−p4) (G.9)

=
∫
d4x1 d

4x2 d
4x3 d

4x4

× eip3x3 ϵµ3
λ3
(p3)(−∂23)

× eip4x4 ϵµ4
λ4
(p4)(−∂24)

× ⟨Ω|T{Aµ4(x4)Aµ3(x3)Aµ1(x1)Aµ2(x2)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂22)ϵ

µ2
λ2
(p2) eip2x2 , (G.10)

where we used G.6. The benefit of defining this unphysical amplitude is that it is manifestly
S4 permutation invariant.
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G.2 Gauge invariant LSZ prescription

We begin by considering the residue at the on-shell pole of a 4 point correlator of electro-
magnetic tensor Fµν , see for example eq.10.3.2 of [94]:∑

λ1,λ2,λ3,λ4

Hλ1
µ1ν1(p1)H

λ2
µ2ν2(p2)Hλ3,µ3ν3(p3)Hλ4,µ4ν4(p4) T12→34

λ3,λ4
λ1,λ2

(p1, p2, p3, p4)

=
∫
d4x1 d

4x2 d
4x3 d

4x4 e
−ip3x3 e−ip4x4 (−∂23) (−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ3ν3(x3)Fµ1ν1(x1)Fµ2ν2(x2)}|Ω⟩connected

× (−
←−
∂21)(−

←−
∂22) eip1x1 eip2x2

(G.11)

where the object Hλ,µν is the same as (B.31) because in free theory we have

Hλ,µν(p) = ⟨0|Fµν(0)|p, λ⟩ . (G.12)

Unfortunately it is not easy to invert this object in a covariant way to extract the scattering
amplitude. Instead we use the following relation which follows from the orthogonality and
transversality of photon polarization vectors:

ϵµ ∗
λ′ (p)Hλ,µν(p) = pνδλ′λ (G.13)

to arrive at

p1ν1p2ν2p3ν3p4ν4 T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4)

=
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip3x3 ϵµ3∗
λ3

(p3)(−∂23)

× e−ip4x4 ϵµ4∗
λ4

(p4)(−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ3ν3(x3)Fµ1ν1(x1)Fµ2ν2(x2)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂22)ϵ

µ2
λ2
(p2) eip2x2 , (G.14)

At this stage, we can evaluate the above equation in the COM frame (A.12) and extract
the amplitude as follows:

T12→34
λ3,λ4
λ1,λ2

(s, t, u) =
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ipcom
3 x3 ϵµ3∗

λ3
(pcom

3 )vν3(−∂23)

× e−ipcom
4 x4 ϵµ4∗

λ4
(pcom

4 )vν4(−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ3ν3(x3)Fµ1ν1(x1)Fµ2ν2(x2)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(pcom

1 )vν1 eipcom
1 x1

× (−
←−
∂22)ϵ

µ2
λ2
(pcom

2 )vν2 eipcom
2 x2 , (G.15)

where the vector v = 2√
s
(−1, 0, 0, 0) is chosen so that

vµpi
com
µ = 1 ∀ i = 1, 2, 3, 4 (G.16)

– 80 –



J
H
E
P
1
0
(
2
0
2
4
)
1
0
3

Crossing using LSZ. Consider the LSZ formula for the process 13 → 24

p1ν1p3ν3p2ν2p4ν4 T13→24
λ2,λ4
λ1,λ3

(p1, p3, p2, p4)

=
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip2x2 ϵµ2∗
λ2

(p2)(−∂22)

× e−ip4x4 ϵµ4∗
λ4

(p4)(−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ2ν2(x2)Fµ1ν1(x1)Fµ3ν3(x3)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂23)ϵ

µ3
λ3
(p3) eip3x3 . (G.17)

A priori this formula and (G.14) are both defined for positive energy momenta p0i ≥ 0. But
suppose we can analytically continue the formulae to negative energy momenta as well, then
evaluating (G.17) at −p2 and −p3 gives

p1ν1p3ν3p2ν2p4ν4 T13→24
λ2,λ4
λ1,λ3

(p1,−p3,−p2, p4)

=
∫
d4x1 d

4x2 d
4x3 d

4x4

× eip2x2 ϵµ2∗
λ2

(−p2)(−∂22)

× e−ip4x4 ϵµ4∗
λ4

(p4)(−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ2ν2(x2)Fµ1ν1(x1)Fµ3ν3(x3)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p1) eip1x1

× (−
←−
∂23)ϵ

µ3
λ3
(−p3) e−ip3x3 , (G.18)

which looks very similar to (G.14), except for the correlator and the polarization vectors
which are evaluated at negative energies. Using the fact that bosonic operators commute
we see that the correlation functions are equal

⟨Ω|T{Fµ4ν4(x4)Fµ3ν3(x3)Fµ1µ1(x1)Fµ2ν2(x2)}|Ω⟩
= ⟨Ω|T{Fµ4ν4(x4)Fµ2ν2(x2)Fµ1ν1(x1)Fµ3ν3(x3)}|Ω⟩ (G.19)

We now consider the negative energy polarization vectors ϵµλ(−p). They are the analytic
continuations of the positive energy polarizations, which were defined in B.34. Since we
deal with massless particles in this work, we choose the following analytic continuation
for the momenta

p0 → −p0 ,p→ −p, θ → θ, ϕ→ ϕ (G.20)

which ensures that pµ → −pµ. See [19] for more details. Under this analytic continuation
we see from the explicit form B.34 that

ϵµλ(−p) = ϵµλ(p) =
(
ϵµ
−λ(p)

)∗
(G.21)
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Thus we have

p1ν1p2ν2p3ν3p4ν4 T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4)

= p1ν1p3ν3p2ν2p4ν4 T13→24
−λ2,λ4
λ1,−λ3

(p1,−p3,−p2, p4) ,
(G.22)

which implies the crossing equation in any frame

T12→34
λ3,λ4
λ1,λ2

(p1, p2, p3, p4) = T13→24
−λ2,λ4
λ1,−λ3

(p1,−p3,−p2, p4) . (G.23)

Crossing for COM frame amplitudes. Our prescription to arrive at the amplitude
involved going to a special frame, the COM frame. But this presents a problem - it is not
possible to have both the processes in their COM frame in the above relation (G.23). For
example putting say the s channel amplitude on the right hand side in its COM frame would
mean that the t-channel amplitude on the left hand side is in a frame different from its COM
frame (which we called crossed frame). The way to deal with this, as was reviewed in [19], is
to take a step back and first perform a Lorentz transformation and then analytically continue
the amplitude, i.e. cross the amplitude. More concretely, consider (G.14) in the (s-channel)
COM frame and perform the following (complexified) Lorentz transformation

Λ =



0 i
√
−u√
s

0 − i
√
−t√
s

−
√
−u√
−t

1 0
√
−u√
−t

0 0 1 0

− i
√

s√
−t

i
√
−u√
s

0 − iu√
s
√
−t


(G.24)

such that

pcom
1 =

√
s

2 (1, 0, 0, 1) p̃1 ≡ Λp1 = −
i
√
−t
2 (1, 0, 0, 1)

pcom
2 =

√
s

2 (1, 0, 0,−1) −→ p̃2 ≡ Λp2 = −
i
√
−t
2

(
−1, 2i

√
−su
t

, 0, u− s
t

)

pcom
3 =

√
s

2

(
1, 2
√
tu

s
, 0, t− u

s

)
p̃3 ≡ Λp3 = −

i
√
−t
2 (−1, 0, 0, 1)

pcom
4 =

√
s

2

(
1,−2

√
tu

s
, 0, u− t

s

)
p̃4 ≡ Λp4 = −

i
√
−t
2

(
1, 2i
√
−su
t

, 0, u− s
t

)
(G.25)

Note that we are still in the s-channel region s > 0 and t < 0. For this choice of Lorentz
transformation Λ, the photon polarization vectors also transform in the same way ϵµλ(p̃) =
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ϵµλ(Λp) = Λµ
νϵ

ν
λ(p)43 (upto terms proportional to the momentum)

ϵλ(p1) =
1√
2
(0, 1, iλ, 0) ϵλ(p̃1) = Λϵλ(p1) =

1√
2
(0, 1, iλ, 0)

ϵλ(p2) =
1√
2
(0,−1, iλ, 0) −→ ϵλ(p̃2) = Λϵλ(p2) =

1√
2

(
0, s− u

t
, iλ,

2i
√
−su
t

)

ϵλ(p3) =
1√
2

(
0, t− u

s
, iλ,−2

√
tu

s

)
ϵλ(p̃3) = Λϵλ(p3) =

1√
2
(0,−1, iλ, 0) (G.26)

ϵλ(p4) =
1√
2

(
0, u− t

s
, iλ,

2
√
tu

s

)
ϵλ(p̃4) = Λϵλ(p4) =

1√
2

(
0, u− s

t
, iλ,−2i

√
−su
t

)

Under this Lorentz transformation, the amplitude transforms as (B.24)44

p̃1ν1 p̃2ν2 p̃3ν3 p̃4ν4 T12→34
λ3,λ4
λ1,λ2

(s, t, u) = p̃1ν1 p̃2ν2 p̃3ν3 p̃4ν4 T12→34
λ3,λ4
λ1,λ2

(p̃1, p̃2, p̃3, p̃4) (G.27)

Writing out the right hand side

p̃1ν1 p̃2ν2 p̃3ν3 p̃4ν4 T12→34
λ3,λ4
λ1,λ2

(s, t, u)

=
∫
d4x1 d

4x2 d
4x3 d

4x4

× e−ip̃3x3 ϵµ3∗
λ3

(p̃3)(−∂23)

× e−ip̃4x4 ϵµ4∗
λ4

(p̃4)(−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ3ν3(x3)Fµ1ν1(x1)Fµ2ν2(x2)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(p̃1) eip̃1x1

× (−
←−
∂22)ϵ

µ2
λ2
(p̃2) eip̃2x2 ,

(G.28)

we now analytically continue to the t-channel region t > 0 and s < 0 at fixed real u. Under
this operation we have

p̃1 = −
i
√
−t
2 (1, 0, 0, 1) p̃a.c.

1 =
√
t

2 (1, 0, 0, 1)

p̃2 = −
i
√
−t
2

(
−1, 2i

√
−su
t

, 0, u− s
t

)
−→ p̃a.c.

2 = −
√
t

2

(
1, 2
√
su

t
, 0, t− u

s

)

p̃3 = −
i
√
−t
2 (−1, 0, 0, 1) p̃a.c.

3 = −
√
t

2 (1, 0, 0,−1) (G.29)

p̃4 = −
i
√
−t
2

(
1, 2i
√
−su
t

, 0, u− s
t

)
p̃a.c.
4 =

√
t

2

(
1,−2

√
su

t
, 0, u− s

t

)

which ensures that the momenta P com
1 = p̃a.c.

1 , P com
3 = −p̃a.c.

3 , P com
2 = −p̃a.c.

2 and P com
4 =

p̃a.c.
4 are precisely in the t-channel COM frame. We also analytically continue the photon

43In general we have ϵµ
λ(Λp) = e−iλωΛµ

νϵ
ν
λ(p). For a Lorentz transformation composed of boosts and

rotations in the x− z plane, the Wigner angle ω is 0. See equation A.112 in [19].
44The little group phases ti = 1 since the Wigner angle is 0. See footnote 43 above.
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polarizations

ϵλ(p̃1) =
1√
2
(0, 1, iλ, 0) ϵa.c.

λ (p̃1) =
1√
2
(0, 1, iλ, 0)

ϵλ(p̃2) =
1√
2

(
0, s− u

t
, iλ,

2i
√
−su
t

)
−→ ϵa.c.

λ (p̃2) =
1√
2

(
0, s− u

t
, iλ,−2

√
su

t

)

ϵλ(p̃3) =
1√
2
(0,−1, iλ, 0) ϵa.c.

λ (p̃3) =
1√
2
(0,−1, iλ, 0) (G.30)

ϵλ(p̃4) =
1√
2

(
0, u− s

t
, iλ,−2i

√
−su
t

)
ϵa.c.
λ (p̃4) =

1√
2

(
0, u− s

t
, iλ,

2
√
su

t

)
.

Using ϵµλ(−p) =
(
ϵµ−λ(p)

)∗
, we have

p̃1ν1 p̃2ν2 p̃3ν3 p̃4ν4 T12→34
λ3,λ4
λ1,λ2

(s, t, u)

=
∫
d4x1 d

4x2 d
4x3 d

4x4

× eiP com
3 x3 ϵµ3∗

−λ3
(P com

3 )(−∂23)

× e−iP com
4 x4 ϵµ4∗

λ4
(P com

4 )(−∂24)

× ⟨Ω|T{Fµ4ν4(x4)Fµ3ν3(x3)Fµ1ν1(x1)Fµ2ν2(x2)}|Ω⟩connected

× (−
←−
∂21)ϵ

µ1
λ1
(P com

1 ) eiP com
1 x1

× (−
←−
∂22)ϵ

µ2
−λ2

(P com
2 ) e−iP com

2 x2 ,

(G.31)

the right hand side is nothing but the t channel amplitude evaluated in its COM frame
with the values for its arguments given by

s̄ = −(P com
1 + P com

3 )2 = −(p̃1 − p̃3)2 = t

t̄ = −(P com
1 − P com

2 )2 = −(p̃1 + p̃2)2 = s ,
(G.32)

and therefore we deduce that

P1
com
ν1 P2

com
ν2 P3

com
ν3 P4

com
ν4 T12→34

λ3,λ4
λ1,λ2

(s, t, u) = P1
com
ν1 P2

com
ν2 P3

com
ν3 P4

com
ν4 T13→24

−λ2,λ4
λ1,−λ3

(t, s, u)
(G.33)

and we can finally extract the crossing relation by dotting on both sides with the vector
v̄ = 2√

t
(−1, 0, 0, 0)

T12→34
λ3,λ4
λ1,λ2

(s, t, u) = T13→24
−λ2,λ4
λ1,−λ3

(t, s, u) (G.34)

For the case at hand, i.e photon scattering, the two processes are the same since all the
particles 1, 2, 3 and 4 are identical and the above s− t crossing relation is a symmetry of the
amplitude. Similarly one can repeat the process to establish the other crossing equations.

H Asymptotic unitarity constraints

As described in section 3, we impose the unitarity constraints up to some Lmax and on a
grid of s values. In this appendix we describe how we supplement them with additional
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constraints by analyzing the unitarity equations as ℓ→∞ and s→∞. In principle, these
constraints should become redundant as we increase Lmax and choose finer grids in s. In
practice, we find that adding in these asymptotic constraints improves convergence in Lmax
and number of grid points.

H.1 Large spin

The first step is to estimate the behaviour of partial waves at large spin. To this end, we follow
the analysis of appendix D.4 in [3]. We would like to use the Froissart-Gribov projection
formula and write partial waves as contour integrals in the complex z = cos θ plane. We define

eℓ
λµ(z)=

(−1)λ−µ

2 [Γ(ℓ+λ+1)Γ(ℓ−λ+1)Γ(ℓ+µ+1)Γ(ℓ−µ+1)]
1
2

(1+z
2

)λ+µ
2

(H.1)

×
(1−z

2

)−λ−µ
2
(
z−1
2

)−ℓ−µ−1 1
Γ(2ℓ+2)2F1

(
ℓ+λ+1, ℓ+µ+1,2ℓ+2, 2

1−z

)
,

valid for λ+ µ ≥ 0 and λ− µ ≥ 0. For other ranges of parameters, the function is defined
by its symmetry properties

e ℓ
λµ(z) = (−1)λ−µe ℓ

µλ(z) = (−1)λ−µe ℓ
−λ,−µ(z) (H.2)

This function has a branch cut in the complex z plane between −1 and 1 and its discontinuity
there is the Wigner d function:45,46

e ℓ
λµ(z + iϵ)− e ℓ

λµ(z − iϵ) = −iπd ℓ
λµ(z) z ∈ (−1, 1) (H.4)

We now recall the definition of partial wave amplitudes

T ℓλ3,λ4
λ1,λ2(s) =

∫ +1

−1
dz d ℓ

λ12λ34(z) T
λ3,λ4

λ1,λ2
(s, z) (H.5)

At this point we would like to use H.4 to write the above equation as a contour integral in
the z plane. Scattering amplitudes have the following behaviour near z = ±147

T λ3,λ4
λ1,λ2

(s, z) = bλ12λ34(z)T̂
λ3,λ4

λ1,λ2
(s, z), (H.6)

where we have defined the b function

bλµ(z) =
(1 + z

2

) |λ+µ|
2
(1− z

2

) |λ−µ|
2

(H.7)

45In this respect, it’s a generalization of the Legendre Q function, which obeys an analogous relation to the
Legendre P polynomial.

46In general, the Wigner e function has additional singularities at z = ±1. The leading singular behaviour
there is (z + 1)(λ+µ)/2 and (z − 1)(λ−µ)/2. In the case relevant for us, we have

eℓ
2,2(z) ∼ 2(−1)ℓ

ℓ(ℓ+ 1)
1

(z + 1) + 12(−1)ℓ−1

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
1

(z + 1)2

eℓ
0,2(z) ∼ 2√

(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)
1

(z + 1) + 2(−1)ℓ√
(ℓ− 1)ℓ(ℓ+ 1)(ℓ+ 2)

1
(z − 1)

(H.3)

47See for example eq. (2.138) in [19].
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and with the function T̂ being regular near z = ±1. This behaviour of the scattering
amplitude precisely cancels the poles (more generally branch cuts) mentioned in footnote 46.
We can now re-write the partial wave integral as a contour integral

T ℓλ3,λ4
λ1,λ2(s) =

1
iπ

∮
C
bλ12λ34(z)e ℓ

λ12λ34(z)T̂
λ3,λ4

λ1,λ2
(s, z) (H.8)

with the contour C circling the line segment [−1, 1] anti-clockwise. In fact, in the presence
of massless particles, the contour should pass through z = 1 and z = −1, as it will be clear
below. Therefore for large enough ℓ,48 we can open up the contour and drop the arcs at
infinity, to arrive at the (generalized) Froissart-Gribov projection formula

T ℓλ3,λ4
λ1,λ2(s) =

1
iπ

(∫ ∞

zt

dz bλ12λ34(z) e ℓ
λ12λ34(z)DisctT̂ λ3,λ4

λ1,λ2
(s, z)

+
∫ −∞

−zu

dz bλ12λ34(z) e ℓ
λ12λ34(z)DiscuT̂ λ3,λ4

λ1,λ2
(s, z)

)
(H.9)

where the 1st term is due to the t channel branch cut from [zt,∞) and the 2nd term is due
to the u channel branch cut from (−∞,−zu].

For theories with a mass gap, zt = 1 + 2t0
s−4m2 > 1 and zu = 1 + 2u0

s−4m2 > 1 and due
to the exponential decay in spin of the e function, the partial wave amplitudes also have
an exponential fall off in spin. For theories with massless particles this is not the case,
because zt → 1 and zu → 1.

We therefore consider the large ℓ, z → 1+ limit of the hypergeometric function. Assuming
λ ≪ ℓ, µ ≪ ℓ we find

2F1

(
ℓ+ λ+ 1, ℓ+ µ+ 1, 2ℓ+ 2, 2

1− z

)
≈ 2Γ(2ℓ+ 2)

Γ(ℓ+ µ+ 1)Γ(ℓ− µ+ 1)

(
z − 1
2

)ℓ+1+µ+λ
2

× Kλ−µ

(√
2(z − 1) ℓ

)
. (H.10)

Hence we obtain an approximation for the e function

e ℓ
λµ(z) ≈ (−1)

λ−µ
2 Kλ−µ

(√
2(z − 1) ℓ

)
, (H.11)

valid for ℓ ≫ 1 and z → 1+ and λ ≪ ℓ, µ ≪ ℓ. For the other limit ℓ ≫ 1 and z → −1−,
we use the relation

e ℓ
λµ(−z) = (−1)l−λ+1e ℓ

λ,−µ(z) (H.12)

The other piece in (H.9) is the discontinuity of the amplitude T̂ ≡ T
b . In our numerics we

parametrize the amplitude as displayed in (3.1). The prefactors, composed of χs, χt and
χu, which were added for kinematical reasons, ensure the cancellation of the singularities
at z = ±1. We therefore consider the ρ series:∑

abc

αabcρ
a(s)ρb(t)ρc(u) (H.13)

48Note that eℓ
λµ ∼ z−ℓ for large |z|.
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For such a series, the t-channel discontinuity comes from

ρ(t(s, z + iϵ))b − ρ(t(s, z − iϵ))b ≈ 2ib
√
2s
√
z − 1 (H.14)

and the u-channel discontinuity comes from

ρ(u(s, z − iϵ))c − ρ(u(s, z + iϵ))c ≈ 2ic
√
2s
√
−z − 1 (H.15)

By making a change of variable z → −z for the u channel contribution and using the symmetry
properties (H.12) of the e function and the b function

bλµ(−z) = bλ,−µ(z) (H.16)

we can reduce all our computations to that of integrals of the following form:∫ ∞

1
dz (1 + z)m (1− z)n√z − 1Ka

(
c
√
z − 1

)
(H.17)

To perform this integral we make a change of variable (z − 1) = ξ2 and then expand in the
variable ξ to get the following type of integrals which are easily evaluated

∫ ∞

0
dξ ξbKa (c ξ) =

2b−1

cb+1 Γ
(
b− a+ 1

2

)
Γ
(
b+ a+ 1

2

)
(H.18)

Since c ∼ ℓ, the leading contribution comes from the lowest order term in the ξ expansion.
At leading order in the large ℓ limit, we have49

Φℓ
1 ≡ T ℓ+,+

+,+(s) ≈
1
ℓ3

∑
abc

α
(1)
abc

(
b ρc(−s) + (−1)ℓc ρb(−s)

)√
s ρa(s)χ2(s),

Φℓ
2 ≡ T ℓ−,−

+,+(s) ≈
1
ℓ3

∑
abc

α
(2)
abc

(
b ρc(−s) + (−1)ℓc ρb(−s)

)√
s ρa(s),

Φℓ
3 ≡ T ℓ+,−

+,−(s) ≈
1
ℓ3

∑
abc

α
(1)
cbab ρ

c(−s)
√
s ρa(s)χ2(−s),

Φℓ
5 ≡ T ℓ+,−

+,+(s) ≈ O(l−4).

(H.19)

We notice that the fifth amplitude Φℓ
5 is sub-leading at large spin and therefore the unitarity

condition (A.47) decomposes into two 1 × 1 conditions

|1 + i(Φℓ
1 +Φℓ

2)| ≤ 1,
|1 + i(2Φℓ

3)| ≤ 1.
(H.20)

In addition we have from (A.44)

|1 + i(Φℓ
1 − Φℓ

2)| ≤ 1. (H.21)

49Recall that due to crossing symmetry Φ3(s, t, u) = Φ1(u, t, s), which is why the same coefficients α(1)
abc

appear in the expansion for both the amplitudes, albeit with different orderings of the a, b and c indices.
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Plugging in (H.19) into the above unitarity equations we get the following large spin con-
ditions:50

∑
abc

(
α
(1)
abcIm(ρa(s)χ2(s)) + α

(2)
abcIm(ρa(s))

)
b
√
s ρc(−s) ≥ 0, (H.22)

∑
abc

(
α
(1)
abcIm(ρa(s)χ2(s))− α(2)

abcIm(ρa(s))
)
b
√
s ρc(−s) ≥ 0, (H.23)

∑
abc

α
(1)
cbaIm(ρa(s)) b

√
s ρc(−s)χ2(−s) ≥ 0, (H.24)

valid for s ≥ 0.

H.2 Large energy

We begin by considering the s → ∞ expansion of a monomial term in the ansatz:

ρa(s)ρb(t)ρc(u)≈ (−1)a+b+c

[
1− 2√

s

(
ia+

√
2b√

1−z
+
√
2c√

1+z

)
+ i4
√
2a
s

(
b√
1−z

+ c√
1+z

)

+ 1
s

(
−2a2+ 8bc√

1−z
√
1+z

+ 4b2

1−z +
4c2

1+z

)
+ . . . (H.25)

In addition to the large energy expansion of the ρ series, we also need the large energy
expansion of χ2(s) , χ2(u) and χ(t)χ(u):

χ2(s) ≈ 9− 48i√
s
+ . . .

χ2(u) ≈ 9− 48i√
s

1√
1 + z

+ . . .

χ(s)χ(t)χ(u) ≈ 27− 72i√
s

(
1 +

√
2√

1 + z
+
√
2√

1− z

)
+ . . .

(H.26)

This leads to the following expansions of the ansatze at large energy:

Φ1 ≈
∑
abc

α
(1)
abc(−1)

a+b+c

[
9− 6√

s

(
(8 + 3a)i+ 3

√
2b√

1− z
+ 3

√
2c√

1 + z

)
+ . . .

]
,

Φ2 ≈
∑
abc

α
(2)
abc(−1)

a+b+c

[
1− 2√

s

(
ia+

√
2b√

1− z
+
√
2c√

1 + z

)
+ . . .

]
,

Φ3 ≈
∑
abc

α
(1)
cba(−1)

a+b+c

[
9− 6√

s

(
3ia+ 3

√
2b√

1− z
+ (8 + 3c)

√
2√

1 + z

)
+ . . .

]
,

Φ5 ≈
∑
abc

α
(5)
abc(−1)

a+b+c

[
27− 18√

s

(
(4 + 3a)i+ (4 + 3b)

√
2√

1− z
+ (4 + 3c)

√
2√

1 + z

)
+ . . .

]
.

(H.27)

We now work order by order in 1
s . We begin with the leading order which is

50|1 + iϵf(s)| ≤ 1 for ϵ≪ 1 implies that Imf(s) ≥ 0. In our case the small parameter ϵ is 1
ℓ3 .
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O(1). The unitarity condition on spin 0 partial waves |1 + i(Φ0
1 ± Φ0

2)| ≤ 1 implies that∑
abc

α
(1)
abc(−1)

a+b+c = 0 , (H.28)

and ∑
abc

α
(2)
abc(−1)

a+b+c = 0 . (H.29)

Similarly, the unitarity condition on odd spin ℓ partial waves |1 + 2i(Φℓ
3)| ≤ 1 implies that∑

abc

α
(1)
cba(−1)

a+b+c = 0 , (H.30)

which turns out to be equivalent to the condition (H.28). Finally the unitarity condition (A.47)
simplifies at leading order due to the results we just derived above, and leads to∑

abc

α
(5)
abc(−1)

a+b+c = 0 . (H.31)

Effectively, the constraints above say that constant terms in the amplitudes should go to
0 as s → ∞. We now consider the next order which is

O(s−1/2). From the unitarity condition on spin 0 partial waves |1 + i(Φ0
1 ± Φ0

2)| ≤ 1, we
get the two conditions:∑

abc

(−1)a+b+c
(
(24 + 9a)α(1)

abc + aα
(2)
abc

)
≤ 0 , (H.32)

and ∑
abc

(−1)a+b+c
(
(24 + 9a)α(1)

abc − aα
(2)
abc

)
≤ 0 . (H.33)

Consider now the unitarity condition (A.47) for non-zero even spin ℓ partial waves. The
imaginary part of the Φℓ

1 and Φℓ
2 is 0 and this immediately implies that the imaginary part

of Φ5 must vanish at this order:∑
abc

α
(5)
abc(−1)

a+b+ca = 0 . (H.34)

In addition, it implies that |1+2ϕℓ
3| ≤ 1.51 Since

∫
dz dℓ

22(z) > 0 for even ℓ and
∫
dz dℓ

22(z) < 0
for odd ℓ, we get ∑

abc

α
(1)
cba(−1)

a+b+ca = 0 . (H.35)

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.

51More precisely, it implies it only for even ℓ, but we also have the same condition |1 + 2ϕℓ
3| ≤ 1 separately

for odd ℓ from (A.45).
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