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Abstract

The mechanical vibration induced by the flow of cooling water is discussed. The
possibility of combining acceptable heat-transfer with laminar flow is investigated and an
approximate formula for the effect of turbulent flow is given. The CLIC main
accelerating structure is taken as example.
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1. Introduction

Inevitably, the flow of cooling water induces vibrations. Tolerances are tightest in
the quadrupole magnets but there, water-cooled coils can be (and very probably have to
be) mechanically isolated from the yokes. In the accelerating structures this is
impossible so that a fundamental problem may arise. The analysis given here is only
semi-quantitative but believed to give a reasonable and somewhat pessimistic estimate.

2. Liquid coolants considered

Water is the obvious choice of coolant but ethylene glycol (C;HgO,) may be
considered because of its higher viscosity. The following properties are for 25° C:

Water C,H0,

Mass density p 10° 1.11 x10°  kgm™
Viscosity 7 0.89 x 107 16.1 x10® Nsm™
Cinematic viscosity 7/p  0.89 x 107° 14.5x10® m?s™!
Heat capacity ¢ 4.19 x 10° 2.4 x10° Ws mK™!
Heat conductivity o 0.6 0.26 W m 'K

Water is assumed unless stated otherwise.

3. Required volume flow and velocity

The following parameters will be assumed:

Total dissipation per unit length: OW/0! 5 kW/m

Number of cooling channels n per structure 4

Temperature rise along a channel o171 10°Cm™

Equivalent channel diameter: d & mm

With water, this requires a volume flow rate per channel of 3.0x10”° m’s™ or 1.8
liters/minute and an average flow velocity of

u=4(6V/ar) nd?=0.593ms™

4. Laminar flow

Reynold’s number
Re = udp/n

amounts to 5330 with the above parameters.

This is moderately above the onset of turbulence occurring at about Re = 2000.
Laminar flow could be established by employing glycol in the 8 mm cooling channel but
the heat transfer from metal to liquid would be insufficient. Instead, each cooling
channel can be subdivided into subchannels. For instance, 64 such subchannels of 1 mm
diameter each might be formed by extruded copper strips, each 15 mm wide and 1.5 mm
thick, say, with eight semicircular grooves of 0.5 mm depth on their faces. Packed face
to face into a 14 by 12 mm’ assembly and sealed around the circumference, they can
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form cooling bars, which may be brazed to the side of the accelerating structure. With
this and water-cooling, Re is reduced to 666. Employing glycol cooling would reduce it
to 71 (at the cost of a 5 bar/m pressure drop) if really necessary.

The cooling surface is 0.2 m* per meter of length in such a cooling bar. By conduction
alone, the temperature gradient across a 0.2 mm layer of water is 2°C (5° for glycol) for
the 1.25 kW assumed heat throughput and thus quite acceptable. Even with nominally
laminar flow some transverse motion will occur due to surface roughness and
mechanical tolerances. This is likely to be harmless, however, as can be seen from the
subsequent treatment of fully turbulent flow.

5. Turbulent flow

With turbulent flow, the pressure-drop along a circular tube of length [ and diameter d is
given by the semi-empirical formula
2
pu” 1
2 d
The coefficient 4 decreases very slowly with increasing Re. It can be found from
published diagrams such as ref. [1] or (for smooth pipes) from empirical formulas. The

one best suited for moderate turbulence is Blasius’ formula

Ap =

A=0316Re *
An appropriate value here is 4 = 0.04, including a small margin for surface roughness.

In the turbulent regime the pump power ApoV/ot is almost entirely converted to
irretrievable kinetic energy of turbulent motion. If v is the local and instantaneous
velocity seen from a frame moving with u, the volume density of turbulent kinetic
energy thus created is Y2pv 2 It departs from the length of pipe in which it was created
with the same volume flow rate 0V/ot. Thus, the pressure drop Ap equals the average
fraction of hydrostatic energy density p converted to irrecoverable turbulent kinetic
energy density. It follows that

is the mean-square velocity of turbulence. Assuming isotropy, one finds a local
momentum density in vertical direction, say, given by

Note that the length [ refers to the total length of cooling pipes of diameter d. This length
should be kept to a2 minimum — namely the length of the structure to be cooled.
Therefore, the n channels of a structure should be fed in parallel and laminar flow should
be imposed on the input and output pipes (with tapered transitions to the actual cooling
channels). That is what is assumed here.

From here on a rough but probably pessimistic approximation will be made. Its
validity is discussed in section 6 below. It is assumed that the kinetic energy is
concentrated in cells of average coherence-length equal to half the pipe diameter, d/2.
This seems justified by the fact that Re equals only 2.5 times the turbulence limit. The



assumption is believed to give a pessimistic estimate of vibration, since any momentum
shared by smaller cells will average out better in time and in distance, while larger cells,
if existing, would only favour longitudinal momentum transfer. With this, the vertical
momentum contained in a coherence-cell of volume Ad/2 (where A is the cross-section)

is given by
rmy Ad rmy Ad
P‘,(,e[[ = _pU\' p )'
2 2 V 3d

There are 2I/d such cells in a structure of length / and their momenta must be added in
quadrature, thus adding a factor ( 21/d)” to the above equation. The total rms momentum
transmitted from the turbulent water to the structure is therefore

P - Alpu,f ,/’”

where m is the mass of the water in a cooling channel and »n their number (four in this
example).

If the accelerating structure including its support (as far it is free of internal
mechanical resonance), can be expressed by an equivalent rigid mass M, its vertical rms
velocity induced by the turbulence of the cooling water is, therefore, given by

rms nﬂ'

U_vmf - Lt M 6

The assumption of a coherence-length implies the existence of a dominant frequency

(1):27ri
d

due to coherence-cells of length d/2, passing a fixed location at velocity u with the
assumed parameters @/2n = 74 Hz. Clearly this is not a discrete frequency but merely
the average of a range in which most of the energy is localized. Combining the last two
equations gives a rms vibration amplitude

oo L [,
: 2tV 6 M

This is a surprising result: The dependence on u is reduced to the very slowly decreasing

coefficient /4 oc Re™®. Apart from this, the vibration amplitude equals the width of the
cooling channel scaled down by the obvious mass ratio m/M, times a small collection of
(uncertain) numerical factors. With the parameters chosen the mass m of one water
column is 50 g/m. If M is the mass of the structure alone, taken as a copper cylinder of
40 mm diameter, M amounts to 11 kg/m and

s =0.94 m

Note that an isolated accelerating structure, taken as a copper rod of 40 mm diameter
and 0.5 m length, has its lowest bending mode at 540 Hz (< diameter/length®), the nodes
being situated at 0.224 [ from the ends. It will not be easy, therefore, to increase M much
beyond the mass of the bare structure by anchoring it to a heavy support.



6. Discussion

At first sight, rapid gain seems to come from reducing the width of the cooling
channel, thus increasing the flow velocity and Reynold’s number, since, on face value,
the vibration amplitude scales with md o« d 3. This would, however, stretch
characteristic frequencies into a range where structural resonances are inevitable.

In fact, it is found [2,3] that for Reynold’s numbers far above the critical one (a
situation characteristic of aerodynamics) the spectral density of turbulent kinetic energy
decreases with the —5/3" power of frequency between two corner frequencies. The lower
one is essentially the characteristic frequency given above, associated with coherence
lengths roughly equal to the channel radius. The upper one is due to minimum-size
coherence cells within which Reynold’s number has decreased to the turbulence limit, so
that they do not break up further. In the example considered above, the two frequencies
span roughly an octave, so that it is justified (and slightly pessimistic) to consider the
lower frequency only. With higher flow velocities, turbulent frequencies will span
structural resonances, which may be difficult to damp. A high-velocity solution may,
however, be appropriate for water-cooled magnet coils where the inevitable vibrational
isolation will be easier for smaller input-amplitudes and higher frequencies.

In conclusion it appears that the problem is not fatal but that it does require
experimental study and careful design.
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