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Abstract

To identify the accelerator structures that are contributing to performance
limitations and execute mitigation techniques, a precise estimate of the beam
coupling impedance is required. The beam coupling impedance of a device
should ideally be assessed by activating it with the beam itself. However,
in most circumstances, this solution is not practicable, and additional ap-
proaches must be used to analyze the influence of the beam. A well-known
approach is to replicate the beam by feeding a current pulse via a wire
stretched along the beam axis. The stretched wire method is a popular and
well-liked method for determining beam coupling impedance. Yet, because
the introduction of the stretched wire perturbs the EM boundary conditions,
the information obtained from wire measurements may not exactly repre-
sent the answer to our initial dilemma. The existence of another conductive
medium in the center of the device under investigation has the most obvi-
ous effect of allowing TEM propagation across the device with zero cut-off
frequency. The existence of a TEM mode among the EM issue solutions will
have the unintended consequence of causing extra losses. The modeling of
the beam coupling impedance of complicated or rounded-shaped accelerator
parts is difficult, and other methods are needed. The Bead-Pull method is a
popular electromagnetic field measuring technique for tuning an RF cavity
to meet design criteria. A tiny dielectric or metallic bead is drawn through
a cavity while electric field measurements are obtained. Inserting a metallic
or dielectric bead into a resonant cavity alters its frequency. This frequency
shift is proportional to the sum of the squared amplitudes of the electrical and
magnetic fields at the bead’s position. The magnitude of the perturbation
for a particular electromagnetic field is solely determined by the geometry of
the perturbing item. As a result, calibration of the bead may be performed in
a variety of resonant topologies without sacrificing generality. A method for
doing precise bead calibration using electromagnetic simulations is proposed
in this study. In comparison to the conventional technique of measuring a
reference cavity, the simulation method’s flexibility in studying alternative
bead shapes and sizes may be useful in optimizing the measurement setup.
A calibrated bead-pull configuration allows you to measure the electric field
and hence the shunt impedance of the cavity’s resonant modes. The beam
coupling impedance obtained with the calibrated bead-pull arrangement is
compared with well-established electromagnetic models.
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Introduction

This dissertation work was the result of a collaboration between the Univer-
sity of Perugia, CERN (Conseil européen pour la recherche nucléaire) and
ADAM SA (Applications of Detector and Accelerators to Medicine). It is
part of the research activity of the BE-ABP-CEI (BEam-Accelerator Beam
Physics-Coherent Effects and Impedance) section at CERN.
The Beams Department is at the heart of the CERN accelerator complex.
Whether it is the design of new accelerators and facilities, responsibility
for essential component building, or exploitation of the entire complex and
technological infrastructure, the BE team plays a critical role in supplying
the Physics community with world-class scientific equipment. The group is
organized in five sections responsible for the hadron sources and linear accel-
erators, optics and single particle dynamics, coherent and incoherent collec-
tive effects throughout the CERN circular accelerators and the design and
operation of lepton accelerators (e.g. CLIC) and test facilities (e.g. CTF3).
Across all sections, the group is responsible for the development, deployment,
maintenance and support accelerator physics computer codes. This includes
improving our understanding of the underlying accelerator physics, building
and installing new accelerator components to improve the machine’s capabil-
ities, and developing new methods and processes for operating the machines
in ways and at levels that were not necessarily considered when the machines
were designed.

High beam intensity is required for future high-energy particle physics
research using accelerators. The parasitic interaction of the charged particle
beam with its surroundings can degrade beam quality and restrict the peak
intensity at which safe machine operation can be assured. The beam induces
electromagnetic fields in the accelerator components that surround it, which
influences particle motion and can trigger beam instabilities. Beam coupling
impedance is a concept that is widely used to characterize this interaction.
With such high intensities, collective effects, where collective refers to the
influence of the ensemble (all the particles) on a test particle, may provide a
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performance constraint and be a crucial concern for the accelerator. Exam-
ples of collective effects are space charge or beam-beam effects, vacuum and
electron cloud issues, and, as treated in this thesis, beam coupling impedance.
The issues are twofold: longitudinal and transverse impedance can induce
instabilities and unwanted tune changes, and the actual part of longitudinal
impedance causes power dissipation in the component. This may result in
substantial heating at high intensities. Analytical calculations or numerical
simulations may often be used to determine a component’s beam coupling
impedance. These two techniques, however, are challenging in some instances
due to complicated geometries or unknown electromagnetic material proper-
ties, and additional information is necessary. Beam measurements often only
provide a broad view of the machine or, at best, a list of high-impedance
parts. Furthermore, the majority of such measurements necessitate the use
of valuable beam time. Bench measurements, on the other hand, can be
performed in the laboratory on portions or the whole component in the air.

The coaxial wire method is the norm for bench measurements of the
beam coupling impedance on particle accelerator elements. It is assumed
that the EM field distribution (TEM field) of a bunch of extremely relativis-
tic beams is remarkably similar to that of a brief pulse on a coaxial line.
Note that the presence of the wire always lowers the Q of high Q DUTs like
a cavity and usually detunes the resonance frequency. The wire permits the
exchange of EM energy between discontinuities for frequencies below wave-
guide cut-off which would not be the case without the presence of the wire.
Cavity-like structures may be assessed in terms of loss factor or R/Q using
the wire approach. A change in Q caused by the wire does not, to first or-
der, influence the R/Q value for short gaps (gap length beam-pipe diameter)
and a thin wire in a single cell cavity. However, there are documented in-
stances when wire-based R/Q measurements on cavities produced readings
that were >50% off from the accurate value determined via bead-pull or
numerical modeling. The wire’s matching is also a typical issue. Thus wire
based longitudinal impedance studies on cavity-like objects are conceivable,
but should not actually be suggested.

The electric and magnetic fields in a cavity are commonly determined
using the Slater Bead-Pull measuring method [1]. The fundamental idea is
to sample the field in the cavity by moving a perturbing object, a bead or
needle for example, through the cavity’s longitudinal axis, the axis of the
beam and pipe. While the bead traverses the whole cavity, a change in the
resonance frequency is seen. The concept of a calibrated bead-pull tech-
nique as a bench method for beam coupling impedance measurements will
be presented in this document.
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Introduction

• Chapter 2 provides a broad introduction to the concept of beam cou-
pling impedance and the physics behind the beam-wall interaction.

• Chapter 3 presents an overview of the bead-pull approach for impedance
studies. Additionally, a strong emphasis is placed on the necessity of
calibrating the perturbing item used in the measurement already in
simulations.

• Chapter 4 deals with the definition of the features of the measurement
system. The emphasis is on specific factors, such as the various bead
geometries and materials and how these impact the system’s accuracy.
The comparison of numerical simulation of the DUT with measure-
ments will also be discussed in this chapter.

5



Chapter 1

CERN: Conseil européen pour
la recherche nucléaire

1.1 Particle Accelerators

Particle accelerators were originally designed to provide beams for nuclear
and particle research, fulfilling various needs in terms of beam intensity,
energy, as well as particle types. Many more uses of particle accelerators
were then found, ranging from industrial applications to particle therapy
for cancer treatment. Charged particles, such as protons or electrons, are
propelled at high speeds near the speed of light by an accelerator. Electric
fields are employed in particle accelerators to accelerate and raise the energy
of a stream of particles that is directed and focused by magnetic fields.
The particles to be accelerated, such as protons or electrons, are supplied
by the particle source. In the metal beam pipe, a particle beam moves
inside a vacuum. The vacuum is essential for maintaining air and dust-free
environment in which the particle beam may flow freely. Electromagnets
guide and concentrate the particle beam as it goes through the vacuum
tube. At a specific frequency, electric fields around the accelerator transition
from positive to negative, producing radio waves that accelerate particles in
groups. They are subsequently crushed against other particles flowing in the
opposite direction or against a target.
Particle accelerators can be classified into three main categories:

• Linear accelerator (often shortened to Linac) [6] boosts charged sub-
atomic particles or ions to high speeds by passing them through a se-
quence of oscillating electric potentials along a linear beam-line. The
majority of accelerators employ some type of radio-frequency (RF)
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acceleration because electrostatic breakdown restricts the highest con-
stant voltage that can be delivered across a gap to generate an electric
field. In RF acceleration, a voltage source is used to move the particle
through a sequence of accelerating zones such that the particle may
see an accelerating field as it passes through each one. Particles must
inevitably move in "bunches" during this sort of acceleration, which
corresponds to the period of the oscillator’s cycle where the electric
field is pointing in the direction of acceleration. The small accelera-
tions add together to give the particles greater energy than could be
achieved by the voltage used in one section alone. The design of a
Linac depends on the type of particle that is being accelerated.

• Cyclotron accelerates charged particles outwards from the center of a
flat cylindrical vacuum chamber along a spiral path.[9] The particles
are held to a spiral trajectory by a static magnetic field and accelerated
by a rapidly varying electric field. In a linear particle accelerator, in
order for a bunch to "see" a forward voltage every time it crosses a
gap, the gaps must be placed further and further apart, in order to
compensate for the increasing speed of the particle. A cyclotron, by
contrast, uses a magnetic field to bend the particle trajectories into a
spiral, thus allowing the same gap to be used many times to accelerate
a single bunch. As the bunch spirals outward, the increasing distance
between transits of the gap is exactly balanced by the increase in speed,
so a bunch will reach the gap at the same point in the RF cycle every
time.

• Synchrotron is a form of cyclic particle accelerator derived from the
cyclotron in which the accelerating particle beam follows a set closed-
loop route. [10] While a classical cyclotron implements both a con-
stant guiding magnetic field and a constant-frequency electromagnetic
field (and thus operates in the classical approximation), its succes-
sor employs local variations in the guiding magnetic field to adapt to
the increasing relativistic mass of particles during acceleration. This
adaptation is accomplished by varying the magnetic field intensity over
time rather than in space. The frequency of the applied electromag-
netic field may also shift to follow the non-constant circulation time of
particles that do not travel at the speed of light. By adjusting these
parameters as the particles gain energy, the circulation route may be
kept constant while they accelerate. This enables the particle vacuum
chamber to be a huge thin torus rather than a disk as in prior, com-
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pact accelerator designs. Furthermore, the vacuum chamber’s small
profile allowed for more efficient utilization of magnetic fields than in
a cyclotron and since bending, beam focusing, and acceleration can be
divided into independent components, the synchrotron was one of the
first accelerator designs to permit the building of large-scale facilities.

Beams of high-energy particles are useful for fundamental and applied re-
search in the sciences, and also in many technical and industrial fields un-
related to fundamental research. Physicists can examine the realm of the
endlessly small by investigating the collisions between particles or between
particles and targets. When the particles are sufficiently energetic, an incred-
ible thing occurs: the collision’s energy is turned into the matter in the form
of new particles, the most massive of which existed in the early Universe.
Einstein’s famous equation E = mc2 describes these phenomena, stating
that matter is a concentrated form of energy, and the two are interchange-
able. Over the past years, technological progression has allowed an increased
performance of particle accelerators, leading to important discoveries. This
is why particle accelerators and colliders such as the Large Hadron Collider
(LHC) operated by CERN are used in particle physics.

1.2 CERN and the CERN accelerator complex

At the end of the Second World War, European science was no longer world-
class. Following the example of international organizations, a handful of vi-
sionary scientists imagined creating a European atomic physics laboratory.
Raoul Dautry, Pierre Auger and Lew Kowarski in France, Edoardo Amaldi
in Italy and Niels Bohr in Denmark were among these pioneers. Such a
laboratory would not only unite European scientists but also allow them to
share the increasing costs of nuclear physics facilities. The first meeting of
the CERN Council quickly followed the signing of the agreement. The draft
convention was completed in the alotted 18 months and approved unani-
mously by the representatives of the eleven countries that had signed the
original agreement plus the UK, and the document was made available for
signature. At the sixth session of the CERN Council, which took place in
Paris from 29 June - 1 July 1953, the convention establishing the organiza-
tion was signed, subject to ratification. On 29 September 1954, following
ratification by France and Germany, the European Organization for Nuclear
Research officially came into being.
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Figure 1.1: The European Organization for Nuclear Research was founded
in 1954 by 12 European states.

It aimed to rebuild the European nuclear physics landscape which had
been shattered by the Second World War and share the increasing cost of
research instruments among its members. CERN has developed a number of
policies and official documents that enable and promote open science, start-
ing with CERN’s founding convention in 1953 which indicated that all its
results are to be published or made generally available.Since then, CERN
published its open access policy in 2014 which ensures that all publications
by CERN authors will be published with gold open access and most recently
an open data policy that was endorsed by the four main LHC collabora-
tions (ALICE, ATLAS, CMS and LHCb). The organization’s role within
the open science landscape is strongly affirmed by stating: “The particle
physics community should work with the relevant authorities to help shape
the emerging consensus on open science to be adopted for publicly-funded
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research, and should then implement a policy of open science for the field”.
[12] The open data policy complements the open access policy, addressing
the public release of scientific data collected by LHC experiments after a
suitable embargo period. Its primary mission is to provide particle accelera-
tors and other infrastructure required for high-energy physics research; as a
result, various experiments have been built at CERN through multinational
collaborations. Since researchers require remote access to these resources,
the lab has historically served as a key wide area network hub. CERN is
also the origin of the World Wide Web. Indeed, based on the concept of
hypertext, the project was originally conceived and developed to meet the
demand for automated information-sharing between scientists in universities
and institutes around the world. The first website was activated in 1991. On
30 April 1993, CERN announced that the World Wide Web would be free
to anyone. A copy of the original first webpage, created by Berners-Lee, is
still published on the World Wide Web Consortium’s website as a historical
document.

CERN operates a network of eight accelerators and two decelerators,
and some additional small accelerators. Each machine in the chain increases
the energy of particle beams before delivering them to experiments or to
the next more powerful accelerator (the decelerators naturally decrease the
energy of particle beams before delivering them to experiments or further ac-
celerators/decelerators). The first accelerator, the Synchro-Cyclotron (SC),
accelerated its first beam in 1957, but a second accelerator, the Proton Syn-
chrotron (PS) was already under construction. While the SC was shut down
in 1990, the PS still runs after 60 years of operation and delivers beams to
fixed target experiments as well as to the Large Hadron Collider (LHC).
As high energy physics required larger instruments to reach higher energies,
a 7 km long accelerator was designed. In 1976, the Super Proton Synchrotron
was inaugurated. Five years later, it was converted to a proton-antiproton
collider, leading to the discovery of the W and Z bosons. As the understand-
ing of the standard model progressed further, the energy reached by colliders
became insufficient to explore rare phenomena. In consequence, CERN de-
signed in the 1980s the 27 km long Large Electron Positron (LEP) collider.
The LEP helped further investigate the properties of the W and Z bosons
discovered beforehand in the SPS. At the beginning of the 2000s, the LEP
was dismantled to make room for the LHC. From the beginning, the LHC
design foresaw the use of cutting-edge technologies: 8 T superconducting
magnets to guide the beam along the 27 km ring. The two counter-rotating
beams are kept separate from one another, requiring twin-aperture magnets
and they are accelerated by superconducting radio-frequency cavities. The
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magnets cold bore are maintained at ≈2 K with a flow of super-fluid helium
created by large cryogenics plants. Of course, the LHC is the last element
of the vast complex of CERN accelerators:

1. After the proton source, a linear accelerator, the Linac 2, regroups the
protons in bunches and accelerates them up to kinetic energy of 50
MeV.

2. The Proton Synchrotron Booster (PSB) accelerates the proton beams
from 50 MeV to 1.4 GeV kinetic energy. It is also in the Booster that
the proton bunches’ intensities and transverse sizes are defined.

3. The Proton Synchrotron accelerates the beams from 1.4 GeV to 26
GeV. The PS is also a key accelerator: thanks to its various RF systems,
one bunch can be split into multiple bunches, and they can be merged
or shortened to provide finely tuned beams for the SPS and the LHC.

4. The Super Proton Synchrotron is the last stage before the LHC: the
bunches are accelerated from 26 GeV to 450 GeV.

The accelerator complex serves not only the LHC but also a rich and diverse
experimental program. Most of the other accelerators in the chain have their
own experimental halls where beams are used for experiments at lower ener-
gies, serving fixed target experiments or antimatter production. Operation
with ion beams is also possible and involves additional accelerators, the Linac
3 and the Low Energy Ion Ring (LEIR) at the beginning of the chain. Fur-
thermore, other experiments require antiproton or heavy-ions beams. The
PSB serves the Online Isotope Mass Separator (ISOLDE). The PS serves the
Antiproton Decelerator, the neutron time-of-flight (n_TOF) facility, and an
experimental area known as the East Area, which houses the CLOUD ex-
periment as well as IRRAD and CHARM. The SPS serves the North Area
experiments COMPASS, NA61/SHINE, NA62, NA63, NA64 and UA9, as
well as the CERN Neutrino Platform, AWAKE and HiRadMat. The LHC
serves four large experiments, ALICE, ATLAS, CMS and LHCb, as well as
the smaller TOTEM, LHCf, MoEDAL and FASER experiments.CERN, in
collaboration with groups worldwide, is also investigating two main concepts
for future accelerators: a linear electron-positron collider with a new accel-
eration concept to increase the energy (CLIC) and a larger version of the
LHC, a project currently named Future Circular Collider.
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Figure 1.2: The CERN accelerator complex.

12



Chapter 2

Beam Coupling Impedance

The Lorentz force created by the "external" electromagnetic fields generated
by the guiding and focusing magnets, RF cavities, and other key accelerator
equipment has a low-intensity effect on a beam of charged particles traveling
around an accelerator. When the beam intensity rises, the beam can no
longer be seen as a collection of independently moving single particles. The
term "collective effects of beam dynamics" refer to a group of events where
the evolution of the beam depends on the interaction of the beam’s particles
with external fields. This interaction may cause significant issues with ac-
celerator operation, such as overheating of vacuum chamber components or
unstable beam motion, which may degrade the beam quality or restrict the
beam’s intensity. Depending on the nature of engagement, these effects can
be divided into many categories:

• Space Charge Effects resulting from the Coulomb interaction between
beam particles;

• Wakefields Effects resulting from the beam’s contact with its surround-
ings;

• Beam-Beam Effects effects due to interaction of the beam with the
contrarian beam in a collider

• Electron Cloud Effects due to the interaction between beam and elec-
trons produced in the accelerator structure

All these disturbances in longitudinal and transverse planes result in a very
significant problem for particle accelerators. Impedance is a term used to
describe how a particle beam interacts with its environment. In essence, the
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Chapter 2. Beam Coupling Impedance

interaction intensity is inversely proportional to the product of the beam
current and impedance. To put it more properly, a beam moving through a
complicated vacuum chamber triggers charges and currents in the structures
it passes through, creating electromagnetic fields that are more specifically
referred to as wake fields. The particle beam’s tail and velocity are both
impacted by the E.M. fields produced by the head of the beam, which leads
to beam dynamics instability. A result of this is that an accelerator may be
thought of as a feedback mechanism, where any longitudinal or transverse
perturbation in the beam distribution may be amplified or damped by the
E.M. forces produced by the disturbance itself. When the beam intensity in
an accelerator approaches greater levels, the impact becomes significant. In
reality, the beam motion is started and allowed to expand, and in the absence
of any damping device, the beam is soon deteriorated or even lost. Further-
more, the beam’s energy is eventually dissipated as heat in the accelerators’
equipment, potentially causing damage. All of these "perturbations" and
their underlying causes should be correctly measured as the beam intensity
increases, by examining the motion of the charged particles using the total
electromagnetic fields, which are the sum of the external and perturbation
fields.

For decades, beam instabilities have been the focus of a significant inves-
tigation. As the machine’s performance increased, additional processes were
identified, and the current problem is to analyze the interactions between
all of these events because it is not always possible to treat the different
impacts individually. In this specific case, studying the impedance is a cru-
cial component of the accelerator design for a new accelerator project since
it allows identifying possible mitigation techniques, ensuring beam stability
during operations, and reducing beam-induced heating. To achieve success,
the impedance must be reduced without compromising the device’s func-
tionality. This thesis pays special attention to the beam coupling impedance
seen as the Fourier transform of the wakefield. The word "wake" refers to the
fact that the causality principle forbids the existence of an electromagnetic
field in front of the beam in the ultra-relativistic limit.

2.1 Wake functions and wake potential

The wake function is a Green’s function that describes how a single source
charge q1 applies a force on a test charge q2, both directly and indirectly
by interference with the (lossy) wall, see Fig. 2.1. The relevant quantity for
both beam dynamics and heat load considerations is the integrated force, i.e.
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the energy or momentum change, rather than at the instantaneous values.
This integrated force is determined by the relative distance s between q1 and
q2 as well as their transverse locations, rather than by time or longitudinal
position.

Figure 2.1: Longitudinal cut through an accelerator structure and centered
coordinate system. The charge q1 is usually referred to as source or leading
charge and q2 is referred to as test or trailing charge.

In Fig. 2.1 there is a source particle q1(z1, r1) and a test particle q2(z2,
r2) traveling with constant velocity v = βc, where c is the speed of light in
vacuum and β is the relativistic factor. The Lorentz the force generated by
the source particle q1 and acting on the test particle q2 is:

F = q[E + v × B] = q[Ez ẑ + (Ex−vBy)x̂+ (Ey + vBx)ŷ] = F∥ + F⊥ (2.1)

The electromagnetic fields E and B generated by the charge q1 in the struc-
ture may be calculated by solving the Maxwell equations imposing the ap-
propriate boundary conditions.

∇× B = µ0j +
1

c2
δE
δt

∇ · B = 0 (2.2)

∇× E = −δB
δt

∇ · E =
1

ϵ0
ρ (2.3)

where ρ is the Gaussian charge distribution, j is the corresponding current
density, and µ0 ϵ0 are the constants of magnetic permeability and electrical
permittivity respectively.
The Lorentz force is made up of two components, F∥ is the longitudinal force
that affects the energy of the test particle, and F⊥ is the transverse force
that deflects its trajectory. Typically, two assumptions are used to decouple
the equations of motion from electromagnetism:
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1. Rigid Beam Approximation: Although the leading charge loses en-
ergy, its velocity remains unchanged. I.e. the wakefield perturbation
does not affect the motion of the beam during the traversal of the
impedance. The distance z of the test particle behind some source par-
ticle does not change. This is exactly fulfilled for an ultra-relativistic
beam that carries infinite energy.

2. Kick Approximation: The wake force continuously acting on the trail-
ing charge is lumped in a single kick after the passage through the
device. This means that can be considered the impulse instead of the
force point by point.

These assumptions are confirmed by the different time scales of particle pas-
sage (fast) and the emergence of wakefield effects (slow). The wake function
is defined as follows:

W(r⊥2 , r
⊥
1 , s) :=

1

q1q2

ˆ ∞

−∞
F
(
r2, z2, t

)
dz2 =

1

q1

ˆ ∞

−∞
[E + v × B]

(
r2, z2, t

)
dz2 (2.4)

In this way, a positive number implies momentum or energy gain for the test
charge. The integral (Eq.2.4) existed only if the hypothesized infinitely long
pipe connections do generate wakefields, which necessitates the following
conditions:

• No smooth pipe (geometric wakefields)

• No perfectly conducting pipe (resistive wakefields)

• No beam with ultra relativistic properties (space charge wakefields)

Because the dispersed fields from the 3D region diminish in the pipe, the
infinite integration in Eq.2.4 may be replaced by a finite one when all of
these requirements are met.
The energy variation is defined as the integrated longitudinal force acting on
the test particle along the structure. Considering a device of length L, it is
expressed as follows:

U(r2, r1) =

ˆ L

0
F∥ds ≈ U(z) (2.5)
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The longitudinal wake function is the energy loss normalized by the two
charges of the particles:

w∥(z) = −U(z)

q2q1
[V/C] (2.6)

The transverse placements have no effect on the longitudinal wake function
(Eq.2.6). The wake function can be enlarged in multipolar terms in the case
of symmetric structures, particularly those with cylindrical symmetry and
ultra-relativistic charges. The first term is the main term in the longitudinal
situation, and the wake function is simply dependent on z [7]. Furthermore,
it is a convention to add a negative sign to obtain a positive wake for a
decelerating field.
It is also necessary to include the following loss factor:

k = −U(z = 0)

q22
(2.7)

which is the energy lost by the source particle per unit charge squared. We
can clearly see from the formulae above that when the charges follow the same
trajectory, the loss factor is the wake function in the case of zero distance
between q2 and q1: k = wz(0). This is true in the case of β <1, while the
beam loading theorem, which states:

k =
w∥(z → 0+)

q22
(2.8)

It indicates that an ultra-relativistic particle can only observe half of its own
wake and can only exist in the z <0 area. The electromagnetic energy of
modes that propagate down the beam chamber (above cut-off), which will
eventually be wasted on surrounding lossy materials, and the electromag-
netic energy of modes that stay trapped in the accelerator devices, are two
components of the energy lost by the source. In the latter, this energy can
be wasted on the lossy walls or continue to ring without damping, but it can
also be passed to subsequent particles, potentially feeding into instability. A
positive transverse wake indicates a defocusing transverse force. The trans-
verse wake functions, like the longitudinal wake functions, may be expanded
into a power series in the offset of the source and test particle. Because
no transverse effects may occur when the source and test particles are at
the center of symmetry, the power series’ zeroth order term is null. Due to
the ultra-relativistic approximation, the wake also vanishes in the transverse
case for z > 0.
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2.1.1 Wake potential

Because it is created by a point charge, the wake function stated in Eq. 2.6
is a Green function. When a bunch of particles moves parallel to the axis at
r1, its wakefields can still be estimated using the wake function of the point
charge for any bunch distribution. Indeed, when the longitudinal plane and
a bunch with longitudinal distribution λ(z) are considered, the wake function
created by the bunch distribution at a location z is simply provided by the
convolution of the Green function over the bunch distribution. In practice,
the superposition concept is used to calculate the convolution integral. The
distribution is divided into an unlimited number of tiny slices, with their
wake contributions totaled at the point z’. According to the definitions
given so far, the wake potential of a bunch is expressed as follows:

W∥(z) =
1

Q

ˆ z

−∞
w∥(z

′ − z)λ(z′)dz′ (2.9)

where Q is the total charge of the bunch. The same consideration can be
done for the transverse plane, the transverse wake potential is:

W⊥(z) =
1

Q

ˆ z

−∞
w⊥(z

′ − z)λ(z′)dz′ (2.10)

Figure 2.2: Bunch spatial distribution.
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Figure 2.3: At the top, the slice view is the bunch. At the bottom, the wake
is left behind each slice.

2.2 Relationship between longitudinal and trans-
verse impedance

The equivalent of the wake functions in the frequency domain may be deter-
mined by applying its Fourier transform:

Z∥ =
1

c

ˆ ∞

−∞
w∥(e)

j ωz
c dz [Ω] (2.11)

Here j is the imaginary unit and ω = 2πf is the angular frequency. In general,
the beam coupling impedance is a complex quantity: Z(ω) = Zr(ω)+jZi(ω).
Where, for the longitudinal impedance Zr(ω), Zi(ω) are even and odd func-
tions of ω, while for the transverse is the opposite.
The concept of an impedance in an electrical circuit is analogous to wakefields
induced by a charged particle beam in an accelerator component. The beam
acts as a time-varying current source, inducing voltage along the beam’s
pathway. As a result, the idea of beam coupling impedance, which connects
the induced voltage to the beam current over the frequency spectrum, is
presented. The impedance is highly important in analyzing the influence of
different accelerator components on the beam and their contribution to an
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accelerator’s total impedance budget, which may not be exceeded to ensure
stable operation for a given beam intensity. Similarly to the wake function,
the beam coupling impedance might be calculated directly in the frequency
domain using the current and field components [8].

Since the particles move at the fixed velocity v = βc through the accel-
erating structure, an important quantity is the impulse, defined as follows:

∆p(x, y, z) =

ˆ ∞

−∞
Fdt =

ˆ ∞

−∞
q[E + v × B]dt (2.12)

From the definition of the impulse can be introduced an important theorem
which links the transverse and longitudinal impedance. Starting from the
four Maxwell equations, for a particle in the beam, can be shown (considering
β = 1):

∇×∆p(x, y, z) = 0 (2.13)

which is known as the Panofsky-Wenzel theorem [2]. This relation is very
general, as no boundary conditions have been imposed. In principle it is
sufficient to know the longitudinal wake potential for all transverse positions
(x,y) or (r,ϕ) because it is possible to reconstruct the transverse component
of the wake potential.

From the Maxwell equation ∇×E=- δ
δt B it’s possible to obtain:

ez ×
δB
δt

=
δE⊥
δz

−∇⊥Ez (2.14)

Since the total derivative of the transverse component of the electric field
with respect to z is given by:

δ

δz
E⊥

(
x, y, z,

z + s

c

)
=
( δ
δz

+
1

c

δ

δt

)
E⊥

(
x, y, z,

z + s

c

)
(2.15)

the derivative of the transverse wake potential with respect to s can be
written as:

δ

δs
w⊥(x, y, s) =

1

q2

ˆ ∞

−∞

(
(
d

dz
E⊥)(r,

z + s

c
)−∇⊥)Ez(r,

z + s

c
)
)
dz (2.16)

A consequence of the Panofsky- Wenzel theorem is the following relationship:

∇⊥w∥(z) =
δ

δz
w⊥ (2.17)

Eq. 2.17 can link the longitudinal with the dipole transverse impedance by
performing the Fourier transform.
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2.3 Bench measurement of beam coupling impedance

The meticulous creation of an impedance budget for each particle accelera-
tor design is a precondition for achieving desired performance. As a result,
theoretical analysis, computer simulations, and actual measurements of ac-
celerator components’ beam coupling impedance are key jobs in accelerator
research, design, and development. Computer simulations may be divided
into three categories: Time Domain (TD), Frequency Domain (FD), and
approaches without a particle beam. TD approaches are the most frequent
since they simply require matrix-vector multiplications for time stepping.
They are often based on Finite Differences Time Domain (FDTD) or Finite
Integration Technique (FIT), which result in a Cartesian mesh discretization
of a coincident space.

CST Studio Suite [13], a 3D electromagnetic Computer-Aided Design
(CAD) application widely used for the computation of wakes and impedances,
is the most often utilized software. Particle Studio’s (PS) Wakefield solver, in
particular, solves Maxwell’s equations in the time domain utilizing a particle
bunch as an excitation of the structure under investigation. The simulation
produces the wake potential and the beam coupling impedance. The exciting
Gaussian bunch, that is the source, generates the wake function as a func-
tion of the time delay with respect to the source’s passage. It is the voltage
gain of a unit charge passing the structure with a delay relative to the lead-
ing charge, caused by the latter’s fields. The beam coupling impedance is
the Fourier transform normalized to the bunch spectrum, or the frequency
domain counterpart of the wake potential. In terms of experimental measure-
ments, ideally, the beam coupling impedance of the accelerator components
should be evaluated by activating the device with the beam itself. However,
this strategy, which is in theory the best, is not always practical. Fur-
thermore, when we require information on the behavior of the components
prior to machine setup, bench measurements are desirable. The stretched
Wire technique (WM) [8] is a popular alternative for measuring the beam
coupling impedance of accelerator systems for this purpose. In frequency
domain simulations, the WM is also a typical strategy for approximating
beam excitation.

2.3.1 The Wire Method and its limits

Due to the sensitivity of the beam coupling impedance to the boundary con-
ditions of the equipment used, it is necessary to utilize different measurement
techniques to fully analyze the impedance of accelerator structures. The
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coaxial wire approach [5], also known as the stretched wire method, is suited
for structures that are predicted to have predominantly low Q-resonances.
Sands and Rees initially introduced this approach in 1974 and nowadays it
is widely used. In particular, at CERN, the method is employed to measure
the longitudinal and transverse beam coupling impedance of a kicker in the
frequency domain.
This method relies on the similarity of the electromagnetic field profile due
to an ultra-relativistic charged particle and that of a short electrical pulse
sent along a coaxial wire. A traveling charged particle generates an electro-
magnetic field in an arc transverse to its direction of motion, with the angle
of the arc opening inversely equal to the particle’s relativistic component.
The field becomes completely perpendicular to the direction of motion for
an ultra-relativistic particle (γ → ∞). A short electrical pulse sent along the
same path that the charged particle would take (in most cases, this is well
represented by a straight wire) would propagate in the TEM (Transverse
Electrical and Magnetic field) mode, producing a field profile similar to that
emitted by the ultra-relativistic charged particle.

Figure 2.4: Thin metallic wire placed along the beam axis of a structure.

An accelerator component with a thin metallic wire on its beam axis
can be considered as a two-port circuit, which can be characterized with a
Network Analyzer. In particular, the transmission scattering parameters of
the Device Under Test (DUT) and the reference beam pipe (REF) can be
measured.
The experimental setup is sketched in Fig. 2.5. Firstly the external circuit
(i.e. everything which is not the DUT such as VNA, cables, transition be-
tween connections, etc.) is matched to the characteristic impedance of the
coaxial line inside the DUT.
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Figure 2.5: Experimental setup for a measurement of the beam coupling
impedance using the classical coaxial wire method.

This is done by measuring the reflection coefficient Γ for the setup with
only one port connected to the DUT and the other end terminated by an
open connection. Knowing the characteristic impedance of the VNA and
associated cables (typically Zc0 = 50 Ω), we can easily calculate the charac-
teristic impedance of the DUT, Zc, from the relation,

Γ =
Zc − Zc0

Zc + Zc0
(2.18)

The characteristic impedance can then be electrically matched by connecting
the DUT to the external circuit through a resistive network. This can be
accomplished in two ways:

1. Adding resistors in series right before the DUT to resistively match the
VNA and associated measurement setup’s characteristic impedance (as
viewed by the DUT) to that of the DUT, so that the series resistance
Rs = Zc-Zc 0. An attenuator is frequently used to reduce the effect of
reflections from the mismatch between the VNA and the resistor.

2. The use of two-way matching, with a parallel (Rp) and series (Rs)
resistor. These resistance values are supplied by:

Rp = Zc0

√
Zc

Zc − Zc0
Rs = Zc0 −

ZcRp

Zc + Zc0
(2.19)

23



Chapter 2. Beam Coupling Impedance

The values that are wish to be measured to evaluate the beam coupling
impedance of a device are the scattering parameters of the resulting circuit,
in particular S21, the normalized transmission parameter through the DUT.
The longitudinal beam coupling impedance of the DUT can be found as
follows:

Z∥ = 2Zc0(
S21REF

S21DUT
− 1) (2.20)

Zc0 is the characteristic impedance of the equivalent transmission line formed
by the wire and the DUT wall. In 1993, Vaccaro [8] derived a more rigorous
and accurate formula, based on the transmission line theory. He showed that
the longitudinal coupling impedance in a transmission line can be expressed
by:

Z∥ = jZc0(kDUT
2 − kR

2)
l

kREF
(2.21)

The kDUT and kREF are the propagation constant of the DUT and REF. If
the line is matched implies S11 = S22 = 0 and Zc = Zch and in addition the
propagation constant can be related to transmission coefficient by:

S21 = e−jkl (2.22)

and the longitudinal coupling impedance can be expressed as:

Z∥ = −Zc0ln
S21DUT

S21REF

(
1 +

lnS21DUT

lnS21REF

)
(2.23)

In most cases of the accelerator components, the S21DUT is close to S21REF

and the formula can be approximated by the well-known Log-formula:

Z∥ = −2Zc0ln
S21DUT

S21REF
(2.24)

The Wire Method for Coupling Impedance Evaluations is intriguing because
it allows for bench measurements as well as frequency domain simulations of
beam excitation; in fact, scattering parameters and characteristic impedance
are direct outputs of the simulations and experiments. Nonetheless, due
to the existence of the wire, which perturbs the electromagnetic boundary
conditions, this established approach has several drawbacks. In reality, the
conductor in the structure’s core affects its cross-section such that it is no
longer simply connected, allowing the propagation of TEM modes with zero
cut-off frequency. As a result, the WM may not fully represent the solution
to our initial problem, resulting in extra losses during the measurements.
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Numerical Calibration of The
Bead-Pull Method

Although the Wire Method is a well-established approach in the realm of
particle accelerators, understanding its limits and developing new strategies
to overcome them is a high-demand endeavor. In this respect, in addition
to the difficulties discussed in paragraph 2.3.1, the focus has been narrowed
down to feasible options that do not need a change of the DUT. The lon-
gitudinal beam coupling impedance is strongly bound to the transmission
scattering characteristic since it is necessarily related to the energy loss of
the electromagnetic wave traveling through the structure.
The simple example of a pill-box with resistive walls can clarify the reason.
Let us consider a cavity mode below the cut-off frequency of the attached
beam pipe. In the real configuration of the structure (without wire) this
mode can only get dissipated on the cavity wall. By introducing a con-
ductive wire, the beam pipe is turned into a coaxial cable and its cut-off
frequency vanishes. The mode, which would be otherwise trapped in the
cavity, will be able to lose power also through TEM propagation. Therefore,
the quality factor measured with wire could be significantly lower than the
actual quality factor of the mode (without wire) [11]. In this thesis, the
bead-pull method is explored as a method to measure the beam coupling
impedance of structures, avoiding the issue of the conductive wire.

3.1 Bead-Pull Method

The bead-pull method is a typical electromagnetic field measuring technique
that is used to tune a radiofrequency cavity to meet design criteria and
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create the appropriate accelerating field. A small dielectric or metallic bead
is pushed through a cavity using a non-conducting wire while electric field
measurements, from inside the structure itself, are collected. It is based
on Slater’s small signal perturbation theory [1], which claims that when a
resonant cavity is perturbed by a small bead, whether metallic or dielectric,
the resonant frequency varies from the initial frequency. This frequency
shift ∆ω is proportional to the combination of the squared amplitudes of the
electrical and magnetic fields at the location of the bead. This relationship
is given by the equation:

∆ω

ω0
=
ω − ω0

ω0
= k

ˆ
∆r

µH2 − εE2

2U
dv = kSLH

| H |2

U
− kSLE

| E |2

U
(3.1)

where ω and ω0 are the new and the original resonant frequencies respec-
tively, µ is the magnetic permeability, ε is the electrical permittivity, U is
the energy stored in the cavity, kSLE and kSLH are constants determined
by the shape and the material of the bead, while E and H are the electric
and magnetic field amplitudes respectively. This equation shows that if the
magnetic field or kSLH is zero (as it is along the cavity’s center), the electric
field is precisely proportional to the change in the resonant frequency. As a
result, if the resonant frequency changes, the electric field may be calculated
by moving the bead along a line in the cavity.

The dimension of the perturbing object must be chosen so that the field
does not vary significantly over its largest linear dimension and at the same
time introduces a disturbance large enough to be distinguishable from the
measurement noise. Shaped beads are used to enhance perturbation and
give directional selectivity among different field components. For a given
electromagnetic field, the amplitude of the perturbation depends only on
the geometry of the perturbing object. Therefore, the calibration of the
bead can be done in different resonant structures without loss of generality.
In this thesis, a method to perform an accurate calibration of the bead with
electromagnetic simulations is proposed. Compared to the common practice
of measuring a reference cavity, the flexibility given by the simulation method
to study different bead shapes and sizes could be advantageous to optimize
the measurement setup. A calibrated bead-pull setup allows to quantify of
the electric field and, therefore, the shunt impedance of the resonant modes
of the cavity.

Bead-pull Radio Frequency (RF) measurements involve two types of per-
turbations:

1. Small material perturbation, like a small dielectric bead, enters a large
volume of the cavity.
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Figure 3.1: Material perturbation due to the introduction of a dielectric bead
in the DUT.

2. Small cavity volume change, like a small metallic bead, enters a large
volume of the cavity.

Figure 3.2: Volume perturbation due to the introduction of a metallic bead
in the DUT.

Before the perturbation, the EM field inside of cavity can be described as:

E = E0e
jωt H = H0e

jωt (3.2)

Here E0 and H0 are function of position before perturbation. Following the
perturbation, the field gains two new values, E1 and H1 , and the resonance
frequency is altered by a value ∆ω.

E′ = (E0 + E1)e
j(ω+∆ω)t H ′ = (H0 +H1)e

j(ω+∆ω)t (3.3)

Here E1<<E0 and H1<<H0 are the effect of small material perturbations or
small volume changes. Taking into account the first and the second Maxwell’s
equation:

∇× E = −δB
δt

(3.4)
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∇× H =
δD
δt

(3.5)

Applying Eq.3.2 and Eq.3.3 to Eq.3.4:

∇× E0 = −jωB0 (3.6)

∇× (E0 + E1) = −j(ω +∆ω)(B0 + B1) (3.7)

It’s possible to obtain:

∇× (E0 + E1) = ∇× E0 +∇× E1 = −jωB1 − j∆ω(B0 + B1) (3.8)

Similarly applying Eq.3.2 and Eq.3.3 to Eq.3.5:

∇× H0 = jωD0 (3.9)

∇× (H0 + H1) = j(ω +∆ω)(D0 + D1) (3.10)

It is feasible to get:

∇× (H0 + H1) = ∇× H0 +∇× H1 = jωD1 + j∆ω(D0 + D1) (3.11)

Multiplying H∗
0 to Eq.3.8 and E∗

0 to Eq.3.11:

H∗
0 · ∇ × E1 = −j[ωH∗

0 · B1 +∆ωH∗
0 · (B0 + B1)] (3.12)

E∗
0 · ∇ × H1 = j[ωE∗

0 · D1 +∆ωE∗
0 · (D0 + D1)] (3.13)

Evaluating the difference between Eq.3.13-Eq.3.12:

E∗
0 · ∇ × H1 − H∗

0 · ∇ × E1 =

j(ω +∆ω)(E∗
0 · D1 + H∗

0 · B1) + j∆ω(E∗
0 · D0 + H∗

0 · B0) (3.14)

Now is it possible to use the vector differential operation and the Eq.3.6 and
Eq.3.9 relationship to obtain:

∇ · (E∗
0 × H1 − H∗

0 × E1) = H1 · ∇ × E∗
0 − E∗

0 · ∇ × H1 + E1 · ∇ × H∗
0+

H∗
0 · ∇ × E1 = jω(H1 · B∗

0 + E1 · D∗
0)− (E∗

0 · ∇ × H1 − H∗
0 · ∇ × E1)

(3.15)

This leads to:

E∗
0 · ∇ × H1 − H∗

0 · ∇ × E1 =

jω(H1 · B∗
0 + E1 · D∗

0)−∇ · (E∗
0 × H1 − H∗

0 × E1) (3.16)
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That can be applied to Eq.3.14:

jω(H1 · B∗
0 + E1 · D∗

0)−∇ · (E∗
0 × H1 − H∗

0 × E1) =

jω(E∗
0 · D1 + H∗

0 · B1)+

j∆ω[(E∗
0 · D0 + H∗

0 · B0) + (E∗
0 · D1 + H∗

0 · B1)] (3.17)

Integrating over the whole volume of cavity V0 on both sides of Eq.3.17

jω

�
V0

[(E∗
0 · D0 + H∗

0 · B0) + (E∗
0 · D1 + H∗

0 · B1)]dv =

jω

�
V0

[(E1 · D∗
0 − E∗

0 · D1) + (H1 · B∗
0 − H∗

0 · B1)]dv−

�
V0

∇ · (E∗
0 × H1 − H∗

0 · E1)dv (3.18)

According to the divergence theorem, the second term of the Eq.3.18 can
become the surface integration on the cavity inner wall S0 where E0 and H0

vanish:�
V0

∇ · (E∗
0 ×H1 −H∗

0 ·E1)dv =

�
S0

∇ · (E∗
0 ×H1 −H∗

0 ·E1)ds = 0 (3.19)

So Eq.3.18 becomes:

∆ω

ω
=

�
V0
[(E1 · D∗

0 − E∗
0 · D1) + (H1 · B∗

0 − H∗
0 · B1)]dv�

V0
[(E∗

0 · D0 + H∗
0 · B0) + (E∗

0 · D1 + H∗
0 · B1)]dv

(3.20)

Equation 3.20 accurately expresses the change in cavity relative frequency
brought on by the perturbations introduced by the bead-pull method on the
distribution of the EM field. The second term in the denominator is close
to zero since | D1 |<<| D0 | and | B1 |<<| B0 |. Additionally, the values of
E1, D1, H1 and B1 in volumes V0−V1 (where V1 is the volume of the cavity
after the introduction of the bead) are essentially identical to their values in
volumes V0. Therefore, the volume integration in the numerator of Eq.3.20
can be roughly over volume V1 alone.

∆f

f
=

∆ω

ω
=

�
V1
[(E1 · D∗

0 − E∗
0 · D1) + (H1 · B∗

0 − H∗
0 · B1)]dv�

V0
[(E∗

0 · D0 + H∗
0 · B0)]dv

(3.21)

If V1 is due to a metallic bead, inside the cavity it’s possible to measure:

E′ = 0 D′ = D0 B′ = 0 H′ = H0 (3.22)
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Then the field variations inside the cavity are:

E1 = E′ − E0 = −E0 D1 = D′ − D0 = 0 (3.23)
B1 = B′ − B0 = −B0 H1 = H′ − H0 = 0 (3.24)

Applying Eq. 3.23 and 3.24 to Eq. 3.21, the cavity frequency change due to
a metallic boundary perturbation is obtained:

∆f

f
=

�
V1
[(H∗

0 · B0 − E0 · D∗
0)dv�

V0
(E∗

0 · D0 + H∗
0 · B0)]dv

(3.25)

If V1 is deformed in such a way that can be considered as a small perturba-
tion, the new surface S1 is parallel to the original surface S0, then metallic
boundary volume of δV:

B0 = µH0 D0 = εE0 (3.26)

∆f

f
=

�
δV [(µ | H0 |2 −ε | E0 |2)dv�
V0
(µ | H0 |2 +ε | E0 |2)]dv

(3.27)

If V1 is due to a dielectric object, the frequency change can be similarly
obtained:

∆f

f
=

�
δV [((µr − 1)µ0H1 · H∗

0 − (εr − 1)ε0E1E∗
0]dv�

V0
(µ | H0 |2 +ε | E0 |2)]dv

(3.28)

Both E and H field perturbations can cause the cavity frequency going down.
A metallic bead is actually measuring both E and H fields inside a cavity.

1. To get an independent E and H field, one needs two types of bead,
metallic and dielectric, by pulling them separately;

2. Pulling a dielectric bead with εr > 1, µr = 1 is actually measuring E
field only.

3. High material µr can be used to make a bead to measure the H field,
but it might be under performed than a metallic bead

4. When εr >> 1 or µr >> 1, E1 and H1 can not be approximated to
zero.
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3.2 Estimation of the accuracy of the simulations

As already mentioned in the preamble of Chapter 3, for a given electromag-
netic field, the amplitude of the perturbation depends only on the geometry
of the perturbing object. Therefore, the calibration of the bead can be done
in different resonant structures without loss of generality. In this thesis, a
method to perform an accurate calibration of the bead with electromagnetic
simulations is proposed using a circular Pill-Box Cavity since it allows ac-
curate studies due to its simplicity. A pill-box cavity is a specific type of
cylindrical resonant cavity consisting of a closed metal structure, either hol-
low or filled with a dielectric material, that confines electromagnetic fields
inside it, storing their energy. They are used to accelerate the particle beam.
The cavity’s walls serve as a rebounding surface for electromagnetic waves
and in particular, standing wave fields are created when they reinforce one
another at the cavity’s resonance frequencies. In order to accelerate the par-
ticles that pass throughout the cavity, the electromagnetic field inside an RF
cavity is the solution to the wave equation:(

∇2 − 1

c2
δ2

δt2

){E
H

}
= 0 (3.29)

with the boundary conditions n̂ × E = 0 and n̂ · H = 0, where n̂ is the
unit vector normal to the surface. Solutions to Eq. 3.29 with the specified
boundary conditions can be separated into two families of resonant modes
with different eigenfrequencies, based on the direction of the electric and
magnetic field:

• TEmnl modes having only transverse electric fields, and

• TMmnl modes having only transverse magnetic fields (but a longitudi-
nal component of the electric field),

where n, m, l are the mode numbers in the θ, ψ, and z directions, respec-
tively, in cylindrical coordinates. The magnetic field is concentrated near the
cylindrical wall, which is responsible for RF losses and the electric field is
concentrated near the axis, which is responsible for the acceleration. The res-
onant frequency of this mode can be calculated analytically for the pill-box
geometry:

fnml =
c

2π

√(ρnm
r

)2
+
( lπ
L

)2
(3.30)

Where:
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• c is the speed of light;

• ρnm is the m-th zero of the Bessel’s function of n-th order;

• r, L are the geometrical dimensions of the cavity.

The fundamental mode of a pill-box cavity is the TM010 mode, where n =
ρ = 0 (azimuthal symmetry), m = 1 (no nodes of Ez with r), l = 0 (constant
Ez in the z direction).

Figure 3.3: Electric and magnetic fields for the TM010 mode inside a pill-box
cavity.

These modes have the electric field component directed along the axis of the
cylinder and arise when the cavity is excited with particular frequencies. In
particular, where ρ = 0 indicates that there is no axial field dependence—the
eigenfrequency is actually the cutoff frequency of the TM010 mode of the
round waveguide. The fields of the TM010 mode of the cavity are given by:

Ez =
1

jω0ε0

ρ01
r

√
J0(ρ01

l
r )

πaJ1(ρ01)
Bφ = µ0

√
J0(ρ01

l
r )

πaJ1(ρ01)
(3.31)

where J0 and J1 are Bessel functions of the zero-th and first order, respec-
tively. Other resonant modes that are sometimes used are the TE011 mode
and the TM110 mode. The first of these has a zero electric field on the cavity
surface and is used to study the surface resistance of superconductors in RF
magnetic fields. The second has a transverse component of the electric field
on axis, tilting the beam, which is sometimes necessary in collider accelera-
tors in order to provide a head-on collision between two beams and thereby
increase the luminosity. The deflecting TM110 mode has also been used in
a Superconductive RF separator cavity to separate beams of different types
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of particles.[3]
The fields in the pill-box cavity can be given in the closed and exact form,

but in the general case, the electromagnetic fields are calculated numerically
by a number of specialized simulation programs that are commercially avail-
able. To perform simulations, a finite-element electromagnetic solver CST
was used. This software allows to perform advanced simulations to char-
acterize the electric and magnetic fields of a created model. To properly
validate the analysis of the bead pull method is it necessary to estimate the
accuracy of the simulation tool used to implement the model. Three domains
of simulation have been explored:

• Eigenmode Solver is used to calculate the frequencies and the corre-
sponding electromagnetic field patterns when no excitation is applied.

• Wakefield Solver calculates the so-called wake-potentials for a given
structure from electromagnetic fields. Wakefield problems are driven
by a bunch of charged particles, which is passing the observed structure
parallel to a main coordinate axis. These particles cause electromag-
netic fields, which are calculated with a time domain solver.

• Frequency Domain Solver: when a time-harmonic dependence of the
fields and the excitation is assumed, Maxwell’s equations may be trans-
formed into the frequency domain. The frequency domain solver uses
special broadband frequency sweep techniques in order to derive the
full broadband spectrum from a relatively small number of frequency
samples.

Figure 3.4: Pill-box cavity implemented in simulation.
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The model used to evaluate the consistency of the simulation software is a
pill-box cavity with r = 90mm, L = 60mm and beam pipe of l = 200mm.
A resonant cavity is characterized by its resonant frequency f0, the quality
factor of the resonance Q and its shunt impedance R.

3.2.1 Resonant Frequency

Resonant frequency is the oscillation of a system at its natural or unforced
resonance. Resonance occurs when a system is able to store and easily trans-
fer energy between different storage modes. In this simple case, some ana-
lytical results can be compared with the numerical ones. Recalling Eq.3.30
and using the values from Table 3.1:

ρnm n
1 2 3 4 5

1 2.4048 3.8317 5.1356 6.3802 1 7.5883
2 5.5201 7.0156 8.4172 9.7610 11.0647

m 3 8.6537 10.1735 11.6198 13.0152 14.3725
4 11.7915 13.3237 14.7960 16.2235 17.6160
5 14.9309 16.4706 17.9598 19.4094 20.8269

Table 3.1: Zeros of Bessel’s Functions.

It’s possible to obtain the following table. 1

Mode CST (GHz)1 CST (GHz)1 CST (GHz)1 Analytical (GHz)
TM010 1.3115 1.3111 1.3118 1.3049
TM110 1.9606 1.9596 1.9596 1.9714
TM210 2.6978 2.6940 2.6940 2.7126

Table 3.2: Comparison between analytical and numerical results in the anal-
ysis of the resonant frequency in the Eigenmode Solver.

As it is shown in table 3.2, between the analytical calculation and the nu-
merical one there is an insignificant difference mainly due to the fact that the
length of the pipes was neglected in the analytical calculation for simplicity.

To evaluate the resonant frequency in the Wakefield Solver it is necessary
to analyze the transversal wake impedance. The latter is computed by the

1A different algorithm of meshing has been used and it is explained in details in para-
graph 3.2.4
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Mode Eigenmode Solver Wakefield Solver High-frequency Solver
(GHz) (GHz) (GHz)

TM010 1.3106 1.3111 1.3122

Table 3.3: Comparison of the results in the analysis of the resonant frequency
in different solvers.

Fourier-transformation of the transversal component of the wake potential,
which is divided by the Fourier-transformed charge distribution function
λ(s):

Z⊥ =

´∞
−∞W⊥(s)e

−jωsds´∞
−∞ λ(s)e−jωs

(3.32)

Table 3.3 shows the result of the comparison of the result in the calculation
of the resonant frequency in different solvers.

3.2.2 Quality Factor

The quality factor of a mode relates the stored energy to the energy loss
during one RF period:

Q =
ω0W

P
(3.33)

For a cavity mode, where the electric and magnetic fields are 90◦ out of
phase, the energy is continuously swapping between the magnetic energy
and the electric energy such that, on average, the electric and magnetic
stored energies are equal. The energy stored in a mode is given by:

W =WE +WM =

˚ (ε
2
| E |2 +µ

2
| H |2

)
dV (3.34)

where the volume integral is to be extended over the entire cavity volume.
On the other hand, a number of mechanisms can lead to energy loss in a
cavity, but for a vacuum cavity, the dominating losses are ohmic losses in
the not perfectly conducting walls. The tangential magnetic field near the
metallic surface is equal to a surface current J⃗A = n⃗×H⃗ (in A/m, describing
a current concentrated in the thin ‘skin depth’). This surface current sees
a surface resistance RA =

√
ωµ
2σ (in Ω), which will cause a small tangential

voltage drop and thus resistive losses. To determine the total wall losses,
this power density has to be integrated over the entire cavity surface to yield

Pwall =
1

2

�
wall

RA| Ht |2dA (3.35)
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This is a perturbation method since we are assuming that the effect of the
tangential voltage drop can be neglected compared to the dominating normal
electric field of the mode. Note that the surface resistance RA = defined and
used above is directly related to the skin depth δ via the formula:

δσRA = 1 (3.36)

where σ is the conductivity of the surface wall material. Other loss mecha-
nisms can readily be considered, e.g. losses in dielectric or magnetic materials
inside the cavity, losses caused by radiation through openings, or even losses
due to discharges inside the cavity. Also, the power lost through the main
power coupler can be included. This latter is called the external Q (Qext).
Since the power lost due to these different loss mechanisms must be added,
the total resulting Q also referred to as QL (the loaded Q) is calculated from:

1

QL
=
Pwall + Pext + ...

ω0W
=

1

QL
+

1

Qext
+

1

...
(3.37)

A quantity often used is the coupling factor β that is the ratio Pext/Pwall.
Consequently, the loaded QL of the cavity is reduced from the unloaded Q
by a factor (1 + β)−1:

QL =
Q0

1 + β
(3.38)

The larger Q is, the less power will be needed to sustain stored energy inside
the cavity. Similarly to the study of the resonance frequency, the Q factor was
also analyzed both analytically and numerically for the modeled pill-box (see
Tables 3.4 and 3.5). While the Eigenmode solver calculates the frequencies

Mode CST Q-factor Analytical Q-factor
TM010 2.9714e3 2.9587e3
TM110 3.6020e3 3.6111e3
TM210 4.1554e3 4.2361e3

Table 3.4: Comparison between analytical and numerical results in the anal-
ysis of the Q factor in the Eigenmode Solver.

and the corresponding electromagnetic field patterns (eigenmodes) directly,
in the wakefield solver the field monitors are necessary. The simulated wake
length (WL) and the conductivity of the wall’s material limit the calculation
of the wakes to a certain distance WL from the source and plays an important
role on the accuracy of the impedance results and in the duration of the
simulation.
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Mode Eigenmode Solver Wakefield Solver High frequency Solver
TM010 2.9714e3 2.9951e3 2.9376e3

Table 3.5: Comparison of the results in the analysis of the Q-factor in dif-
ferent solvers.

3.2.3 Shunt Impedance

Shunt impedance is a measure of the strength with which an eigenmode of
a resonant radio frequency structure interacts with charged particles on a
given straight line.

R =
| Vacc |2

P
(3.39)

Where Vacc is the accelerating voltage and P is the power dissipation. The
accelerating voltage is defined as the integral of the axial electric field along
the particle trajectory, taking the finite speed β of the particle into account:

Vacc =

ˆ ∞

−∞
Eze

j ωz
βc dz (3.40)

The exponential term takes care of the fact that the field is varying while the
particle is traversing the gap. The integral is extended here from −∞ to +∞
assuming that the beam tube diameter is small enough to form a wave guide
well below its lowest cutoff at the resonance frequency ω, such that the fields
extending from the cavity into the beam tube are rapidly decaying to zero.
Maximizing the shunt impedance R allows optimization of the accelerating
voltage that can be obtained for a given available power. Table 3.6 shows

Mode Eigenmode Solver (Ω) Wakefield Solver (Ω)
TM010 2.0439e5 1.9841e5

Table 3.6: Comparison of the results in the analysis of the Shunt ImpedanceR
in different solvers.

the result of the comparison of the result in the calculation of the resonant
frequency in different solvers.

3.2.4 Convergences study on mesh

CST Studio Suite offers a variety of meshes type and mesh generation al-
gorithms, with the easy possibility of cross-verifying different methods and
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meshes in the same GUI. The available numerical methods within the soft-
ware include FIT (Finite Integration Technique) and TLM (Time Domain
Solver) for the hexahedral meshing algorithm and FEM (Finite Element
Method) for the tetrahedral one. Since the mesh influences the accuracy
and speed of the simulation, so it is important to spend time in order to
make the choice of the best-fitting solver. In general, hexahedral meshes are
very robust even for most complex imported geometries, and in particular,
the TLM solver offers a very efficient octree-based meshing algorithm which
drastically reduces the overall cell count. Nevertheless, both FIT and TLM
Hexahedral meshing algorithms do not conform to material jumps. On the
other hand, CST tetrahedral meshes conform to solid-boundaries and con-
sequently conform to material jumps. Moreover, adaptive mesh refinement
schemes can be effectively applied to unstructured meshes, but their use
may require special attention: sometimes inaccuracies of the CAD model
will eventually interrupt the mesh generation. To control the mesh genera-
tion, there are different parameters that have either local or global influence
on the mesh:

• Maximum Cell: the largest allowed cell size that is given by cells per
wavelength or geometrical dimensions of the structure. The highest
frequency of interest determines the smallest wavelength and thus dom-
inates this value for high-frequency applications.

• Minimum Cell: the smallest allowed cell size that is defined as a frac-
tion (ratio) from the maximum cell or as the absolute value.

• Refinement at PEC-edges: factor which determines how much finer the
cells should be around PEC edges, which are known to have singular
behavior of electric field values.

In fig.3.5 is possible to observe how the noise distortion is dramatically re-
duced using a number of cells per wavelength greater than 32.
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Figure 3.5: Convergences studies on the number of Maximum Cells per wave-
length.

Figure 3.6: Tetrahedral Algorithm on a pill-box cavity. On the right 4 cells
per wavelength, on the left 32 cells per wavelength.

Figure 3.7: Simulated bead-pull method to implement convergences studies
on the number of maximum cells per wavelength.
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Fig. 3.6 shows the discretization of the used model in the first phase of the
study with a value of 4 tetrahedral cells per wavelength and the discretiza-
tion that has actually been implemented for the analysis on the numerical
calibration of the bead pull method with a value of 32 cells per wavelength.
Figure 3.7 shows the reason for this choice. As can be observed, increasing
the number of cells is achieved a consistent convergency in the results of
simulations.

3.3 Numerical Calibration of the Bead-Pull Method

As mentioned in paragraph 3.1, the bead-pull method is based on Slater’s
small signal perturbation theory which states that when a resonant cavity
is perturbed by a small bead, the resonant frequency varies from the initial
frequency and this change is proportional to the electric field. Shaped beads
are used to enhance perturbation and give directional selectivity among dif-
ferent field components. For calibrated beads (knowing the bead constants)
and controlled bead speed in the traversal of the structures, the bead-pull
method allows a full characterization of resonances.
Once the cavity can be considered as known it’s possible to start characteriz-
ing the bead implemented in the method. Its dimensions must be chosen so
that the field does not vary significantly over its largest linear dimension and
at the same time introduces a disturbance large enough to be distinguishable
from the measurement noise. Two different forms of bead have been studied,
spherical and cylindrical, depending on the respective parameters of radius
(r) and length (l).

Figure 3.8: Bead modeled in the simulation.

Fig. 3.8 shows how the beads were modeled in the simulation. Despite
the differences in shape and size, all have a central hole that represents the
hole in which the wire of non-conductive material must be passed. Recalling
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Eq.3.1 with the boundary condition whereby the magnetic field is zero along
the center of the cavity is obtained:

∆ω

ω0
=
ω − ω0

ω0
= −kSLE

| E |2

U
(3.41)

The frequency shift of the resonance depends on the local electric and mag-
netic fields at the position of the perturbing object: the higher the field,
the higher will be the frequency perturbation. An example of the frequency
perturbation as a function of the longitudinal position for centered metallic
beads in a circular pillbox cavity is displayed in Fig. 3.9: The mathematical

Figure 3.9: Top: longitudinal cross-section of the circular pillbox cavity
simulated, in the center of the cavity a cylindrical bead is visible. Bottom:
frequency perturbation of the TM010 mode for transversely centered beads
having different lengths and radii as a function of the longitudinal position.

equation that describes the system together with Eq.3.41 is:

R

Q0
=

V 2

2ω0U
(3.42)

41



Chapter 3. Numerical Calibration of The Bead-Pull Method

Eq. 3.42 describes the well-known ratio of R/Q that depends on the square
of the electrical potential V, the original resonant angular frequency of the
cavity ω0 and the stored energy U. Rearrangement of Equations 3.41 and
3.42 gives:

V√
U

=

ˆ L

0

√
− ∆ω(z)

kSLEω0
dz (3.43)

V√
U

=

√
2Rω0

Q0
(3.44)

That combined provide:

kSLE =
Q0

2Rω0

(ˆ L

0

√
−∆ω(z)

ω0
dz

)2

(3.45)

where the parameters ω0, Q0, R are obtained from eigenmode simulations
on the reference circular pillbox cavity. The amplitude of the frequency
perturbations obtained from simulations are displayed in Fig.3.10 and some
values of the respective kSLE are shown in Table 3.7 and in Table 3.8.2

Cylindrical Bead kSLE
a kSLE

b Percentage Change
Radius=2mm
Lenght=6mm 2.180e-4 2.658e-4 17.8%

Radius=3mm
Lenght=6mm 4.121e-4 4.701e-4 12.3%

Radius=4mm
Lenght=6mm 5.151e-4 5.677e-4 9.1%

Table 3.7: Values obtained from the calculation of the calibration constant
for a cylindrical bead for cavities of different radius for the mode TM010.

Tab. 3.7 shows the values of the calibration constant kSLE obtained by
simulating transversely centered cylindrical beads having different lengths
and radii as a function of the longitudinal position, while Tab.3.8 displays
the results for spherical beads having a different radius. In both cases, the
error is found to be well below 20 %. This allows to conclude that for suitable
dimensions of the bead the calibration in simulation is consistent.

2Since the amplitude of the perturbation depends only on the geometry of the perturb-
ing object simulations have been performed for cavities with different radius:
a r=90 mm
b r=120 mm.
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Figure 3.10: Frequency perturbation of the TM01 mode for transversely
centered cylindrical beads having different lengths and radii as a function of
the longitudinal position.

Spherical Bead kSLE
a kSLE

b Percentage Change
Radius=2mm 3.005e-5 3.439e-5 12.6%
Radius=3mm 2.771e-5 3.104e-5 10.7%
Radius=4mm 4.552e-5 4.977e-5 8.5%

Table 3.8: Values obtained from the calculation of the calibration constant
for a spherical bead for cavities of different radius for the mode TM010.

To confirm the reliability of the method, the calibration of the beads was also
studied for off-centered bead positions. In this case it must be underlined
that the value of the shunt impedance has been calculated exactly where the
bead is positioned (see Fig.3.11).

kSLE =
Q0

2ω0R |x =xt

(ˆ L

0

√
−∆ω(z)

ω0
dz

)2

(3.46)
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Figure 3.11: Transverse position of the bead into the cavity.

Figure 3.12: Comparison between the simulated longitudinal shunt
impedance without the bead and the bead-pull numerical calibration method
as a function of the transverse position of the bead.

Figure 3.12, as an example, shows a comparison between the simulated
longitudinal shunt impedance obtained from CST eigenmode simulations
without the bead and the bead-pull simulation technique for a calibrated
bead obtained as a function of the transverse position of itself. The good
agreement obtained shows the potential of the method for an accurate eval-
uation of the transverse beam coupling impedance. In fact, the transverse
impedance can be obtained from the variation of the longitudinal impedance
by using the Panofsky-Wenzel theorem as discussed in paragraph 2.2. Tab.
3.9 shows the values of the calibration constant kSLE obtained by simulat-
ing cylindrical beads having different lengths and radii as a function of the
longitudinal and transverse position.
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kSLE
Spehrical Bead

r = 2mm
l = 6mm

r = 3mm
l = 6mm

r = 4mm
l = 6mm

Trasverse
Position

of the bead

posxyz = (0, 0, z) 1.978e-4 3.22e-4 4.944e-4
posxyz = (0, 5, z) 1.981e-4 3.292e-4 5.034e-4
posxyz = (0, 10, z) 2.149e-4 3.332e-4 4.941e-4
posxyz = (0, 15, z) 1.962e-4 3.288e-4 4.875e-4
posxyz = (0, 20, z) 2.016e-4 3.377e-4 5.056e-4

Percentage Change 0.79≈7.9% 0.32≈2.8% 0.07≈12.5%

Table 3.9: Value of the calibration constant kSLE of bead-pull method ob-
tained as function of the transverse position of the bead.

45



Chapter 4

Direct benchmark of the
measurement setup of the
model with Eigenmode domain
simulations

In order to assess the consistency of the calibration method, bead-pull mea-
surements have been physically performed. The hardware of the Bead-Pull
system consists of a:

• Pill-box like cavity with rectangular pipes that resonates at the fre-
quency of f0 = 2.4255GHz. The resonant structure is made of 316LN,
nitrogen alloyed austenitic stainless steel with molybdenum addition
while the pipes are made of Copper;

• Pulley system;

• Dielectric wire;

• Two spherical metallic beads (D1 = 2.48mm, D2 = 3.05mm)

• Antennas;

• Network analyzer: is a device that can measure the complex scattering
parameters (S-parameters) in a broad range of frequencies (usually
from kHz up to several GHz).

• Step Motor: consists of a permanent magnet rotating shaft called a
rotor. The Step Motor converts digital pulses into mechanical shaft
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rotation. Every rotation is divided into many discrete steps and it can
stop at any step making it suitable for small movements. It has an
excellent response to starting, stopping and reversing. However, it is
hard to operate at high speeds and resonance can occur if not properly
controlled.

• Arduino: Arduino is an open-source solution for developing electrical
projects. It consists of a physical programmable circuit board, also
known as a microcontroller, and software, known as IDE (Integrated
Development Environment) [14], which is used to develop and upload
computer code to the physical board. In the framework of this thesis,
it has been used to set the parameters of the Step Motor, such as
the velocity, the direction of movement, the acceleration rate and the
deceleration rate.

Figure 4.1: Pill-box like cavity with rectangular pipes where bead-pull mea-
surements have been physically performed.

The bead-pull measurement setup is shown in Fig.4.1. The logic of the
system is housed in the PC, which is running software to control the stepper
motor drivers. The open-source Arduino software is used to execute the
bead-pull measurements (IDE). A nylon wire is going longitudinally through
the beam-pipe; it is organized in a closed loop and is powered by a motor
linked to a pulley. A small metal or dielectric bead is then positioned on
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this wire and is moved through the cavity perturbing the local distribution
of the electric field. The latter is connected to the variation of resonance
frequency, which is measured by the network analyzer in the form of phase
shift. This data may be used to assess the tuning or field distribution of an
RF resonant structure. A python script has been developed to analyze the
measurement data.
During the first preliminary measurements a Variable voltage Power Supply
(VVPS) has been used instead of the Arduino microcontroller to supply the
step motor. Although, if properly calibrated, the results obtained between
the two systems were congruent (as it is shown in Fig.4.2), the use of the
VVPS introduces many degrees of uncertainty:

1. It was not possible to check the vibration of the wire;

2. It was not possible to set low speeds (necessary for small structures)
due to the lower limit of the field of operability;

3. It was not possible to reverse the direction of movement except by
manually reversing the polarization of the inputs.

Its use has however allowed to emphasize the critical aspects of the mea-
surement system and to implement more efficiently the command file for the
Arduino board.

Figure 4.2: Comparison of the bead-pull technique obtain by a step motor
supply by a microcontroller and a simpler DC source.
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4.1 Bead-pull Measurements

The bead-pull measurement technique makes use of Slater’s perturbation
theorem, which links the bead to the frequency perturbation. Although
the latter may be measured directly, it may be difficult to quantify it for
minor fluctuations. As a result, it is interesting to detect the frequency
shift indirectly, by measuring the phase shift of a transmitted signal at the
resonance frequency [4]. The relationship between frequency shift and phase
shift is given by:

∆ω

ω0
=

1

2QL
tan∆ϕ (4.1)

where QL is the loaded quality factor, and ∆ϕ is the phase shift in radians
of the S21 transmission parameter at ω0. Because of the non-linearity of the
tan function, ∆ϕ should be kept small enough (in practice, ∆ϕ < 25◦) so
that errors in the ∆ϕ measurement do not lead to considerable errors in the
frequency shift estimation.

As a first step, bead-pull measurements were performed for different po-
sitions of the measuring antenna inside the cavity. Since the method is itself
already disruptive, the position of the antennas has been suitably studied
in order not to introduce further distortions. Depending on how far the an-
tennas penetrated into the pipes, the only thing that can vary to ensure the
correct evaluation of the method is the module of the scattering parameter
| S21 | (see Fig.4.4). The position of the antennas affects (see Fig.4.3) the
Q factor that is measured, in fact, the Q of a resonant circuit (in this case a
resonant cavity) shows a sharp rise in gain over a narrow band centered at
the resonant frequency fR.

Q =
ω0

ω1 − ω2
(4.2)

where ω0 is the resonance frequency of the cavity, ω1 is the upper −3dB
frequency, and ω2 is the lower −3 dB frequency.
As explained below, in paragraph 3.2.2, Q may be defined as the ratio of the
energy stored in the system to the energy dissipated per cycle, while ω1 and
ω2 are often referred to as the half-power points. From the definition of the
shunt impedance R of Eq.3.39, it is possible to obtain the power dissipated
in the cavity as:

P =
| Vacc |2

R
(4.3)
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Figure 4.3: Zoom on the positioning of the antenna inside the rectangular
pipe of the pill-box like cavity involved in the bead-pull measurements.

If the power is halved, then:

P

2
=

| Vacc |2

2R
=
(Vacc√

2

)2
× 1

R
(4.4)

Thus the power is halved when the voltage is divided by
√
2. Expressing this

in dB:
20 log10

1√
2
= 20 log10 0.7071 = −3dB (4.5)

Once the extremes of penetration of the antennas were defined, it was
possible to proceed with real bead-pull measurements. Under this assump-
tion of small perturbation, the frequency shift of the cavity resonance is given
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Figure 4.4: For different values of penetrations of the antennas into the pipes,
the only thing that varies is the module of the scattering parameter | S21 |.

in an extended formula by:

∆ω

ω0
= αE⊥ε0

| E⊥ |2

U
+αE∥ε0

| E∥ |2

U
+αH⊥µ0

| H⊥ |2

U
+αH∥µ0

| H∥ |2

U
(4.6)

where ε0 and µ0 are the vacuum permittivity and permeability, respectively;
and E⊥, H⊥ , E∥ and H∥ are the electric and magnetic fields perpendicular
and parallel to the perturbing object. The coefficients αE⊥ , αH⊥ , αE∥ and
αH∥ are the form factors associated to the respective fields, and they are
proportional to the electric and magnetic polarizability of the perturbing
object. Once the corresponding form factors are known, the absolute values
of the measured electric and magnetic fields can be determined. Firstly, the
electric field is directly obtained from the dielectric-sphere measurements.
Secondly, the magnetic field is derived from metallic-sphere measurements.
As a perturbing object, the sphere is chosen to measure the transverse
components of the electromagnetic fields, both E⊥ and H⊥ due to its non-
directional geometry. The perturbation effect becomes also non-directional
as well.

∆ω

ω0
= −πr3ε0

| E⊥ |2

U
+

1

2
πr3µ0

| H⊥ |2

U
(4.7)

where r is the radius of the sphere. From Eq. 4.7, it is readily seen that a
metallic sphere cannot distinguish between electric or magnetic fields sepa-
rately, and the observed frequency shift will always be due to a combination
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of both E and H. In order to be able to separate both components, a di-
electric sphere need to be used. It will only interact with the electric field in
the following way:

∆ω

ω0
= −πr3 εr − 1

εr + 2
ε0

| E⊥ |2

U
(4.8)

where εr is the relative permittivity of the material. Fig. 4.5 displays the
bead-pull measurements of phase perturbation of the TM010 mode for trans-
versely dielectric centered beads detected from antennas having different val-
ues of penetration inside the cavity pipes. The bead calibration already in
simulation allows to choose the most suitable one depending on the purpose
of the study. When using dielectric beads, for bead-pull measurements, it
has the advantage of having three degrees of freedom: shape, dimension and
material of the bead.

Figure 4.5: Measurements of phase perturbation of the TM010 mode for
transversely dielectric centered beads detected from antennas having differ-
ent value of penetration inside the cavity pipes.

The relative frequency variation is obtained from phase variation as from
Eq. 4.1. and it is shown in Fig.4.6. We obtain:

∆f =
∆ω

2π
=

1

2π

ω0

2QL
tan∆ϕ (4.9)
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Figure 4.6: Simulation of frequency perturbation of the TM010 mode for
transversely dielectric centered beads having different different values of the
relative permittivity of the material.

Figure 4.7: Characteristics of the shunt impedance of the cavity for different
values of the relative permittivity of the material as obtained from simula-
tions.

Fig. 4.7, as an example, shows a comparison between the simulated
longitudinal shunt impedance obtained from CST eigenmode simulations for
different values of the relative permittivity of the material. This graph gives
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some preliminary information about the type of materials that should be
preferred in order to achieve the most accurate results. Since the aim of this
thesis is to develop a calibrated bead-pull method, the attention is focused
on the bead itself and not on the distribution of the fields inside the cavity.
Thus, measurements have been mostly taken with metallic beads.

The frequency shift shown in Fig.4.8 highlights the robustness of the
method that for a given metallic bead independently of the value of the QL,
i.e., penetration of the measuring antennas into the cavity, gives the same
relative frequency perturbation.

Figure 4.8: Relative variation of the resonant frequency as obtained from
bead-pull measurements of ∆ϕ and using Eq. 4.1 for two different loaded Q
values and spherical metallic beads.

As a second step, CST eigenmode simulations of the DUT (see Fig. 4.10)
have been performed considering a deviation of 100µm on the nominal value
of radius of the beads. This has been represented with an error bar on the
expected value of the frequency perturbation (see Fig.4.9). Measurements
and simulations exhibit a reasonable agreement.

Figure 4.9: Virtual model of the cavity used in simulation.
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Figure 4.10: Comparison between measurements and simulations for metallic
beads.

A lot of measurements have been performed in order to find the best
parameters and therefore obtain a good agreement with the simulated results.
Thus, a good database has been created. Unfortunately, some measurements
will be totally unusable due to some mechanical/software problems with
Arduino or the stepped motors.

As a final step to validate the virtual calibration method, the circular
pillbox shown in Fig.3.9 has been adopted to obtain the calibration constant
kSLE for the beads used in the experimental setup. Therefore, by using Eq.
3.45 to calculate R, the impedance of the DUT is obtained by means of the
Resonator Model:

Z =
R

1 = jQ0

(
f
f0

− f0
f

) (4.10)

Figures 4.11 and 4.12 show the comparison between measurements and
simulations respectively for the real and imaginary part of the impedance.
The curves obtained with standard impedance simulations (without bead)
are in very good agreement with the experimental measurements proving
the high accuracy of the proposed calibration method for beam coupling
impedance measurements.
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Figure 4.11: Zoom on the measurements performed with the 3.05 mm spher-
ical metallic bead. Real part of DUT’s impedance.

Figure 4.12: Zoom on the measurements performed with the 3.05 mm spher-
ical metallic bead. Imaginary part of DUT’s impedance.
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Conclusion

In this master’s thesis, the potential of the bead-pull method to perform
beam coupling impedance measurements of cavity-like structures has been in-
vestigated. First of all, the available methods to compute the beam coupling
impedance, have been discussed with a special focus on the Wire method
(WM) and its limitations. In order to overcome these limitations, an al-
ternative method, which does not require the modification of the DUT, has
been proposed. The fundamental deflecting mode was originally studied us-
ing electromagnetic full-wave models. The bead-pull technique was used to
measure the distinct components of the electric and magnetic fields where
the transverse field components were measured using spheres made of various
materials. A simulation procedure has been established for accurate calibra-
tion of the beads. A calibrated bead-pull configuration allows to measure
the electric field and hence the shunt impedance of the cavity’s resonant
modes. The beam coupling impedance obtained with the calibrated bead-
pull arrangement has been compared with well-established electromagnetic
models. A good agreement between simulation and measurements has been
found, confirming the reliability and accuracy of the measurement method.
In comparison to the conventional technique of measuring a reference cavity,
the simulation method’s flexibility in studying alternative bead shapes and
sizes may be useful in optimizing the measurement setup. The bead calibra-
tion already in simulation allows to choose the most suitable one depending
on the purpose of the study fully exploring the three degrees of freedom:
shape, dimension and material of the bead. Moreover, since the magnitude
of the perturbation for a particular electromagnetic field is solely determined
by the geometry of the perturbing item, as evidenced several times in this
document, calibration of the bead may be performed in a variety of resonant
topologies without loss of generality.
The method has been experimentally validated for the derivation of the lon-
gitudinal beam coupling impedance and it has been shown to have potential
also to measure the transverse beam coupling impedance.
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Appendix

CAD Computer Aided Design

DUT Device Under Test

EM ElectroMagnetic

FD Frequency domain

FDTD Finite Differences Time Domain

FIT Finite Integration Technique

IDE Integrated Development Environment

kSLE SLater Electric calibration constant

kSLE SLater Magnetic calibration constant

LHC Large Hadron Collider

LW Lines per Wavelength

PS Particle Studio

REF Reference

RF Radio-Frequency

SPS Super Proton Synchrotron
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TD Time Domain

TEM Transverse ElectroMagnetic

VNA Virtual Network Analyzer

VVPS Variable voltage Power Supply

WL Wake Length

WM Wire Method
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