CERN Accelerating science

Article
Report number arXiv:2206.07952
Title Picosecond Avalanche Detector — working principle and gain measurement with a proof-of-concept prototype
Related titlePicosecond Avalanche Detector -- working principle and gain measurement with a proof-of-concept prototype
Author(s) Paolozzi, L. (Geneva U. ; CERN) ; Munker, M. (Geneva U.) ; Cardella, R. (Geneva U.) ; Milanesio, M. (Geneva U.) ; Gurimskaya, Y. (Geneva U.) ; Martinelli, F. (Geneva U.) ; Picardi, A. (Geneva U. ; CERN) ; Rücker, H. (IHP, Frankfurt) ; Trusch, A. (IHP, Frankfurt) ; Valerio, P. (Geneva U.) ; Cadoux, F. (Geneva U.) ; Cardarelli, R. (Geneva U.) ; Débieux, S. (Geneva U.) ; Favre, Y. (Geneva U.) ; Fenoglio, C.A. (Geneva U.) ; Ferrere, D. (Geneva U.) ; Gonzalez-Sevilla, S. (Geneva U.) ; Kotitsa, R. (Geneva U. ; CERN) ; Magliocca, C. (Geneva U.) ; Moretti, T. (Geneva U.) ; Nessi, M. (Geneva U. ; CERN) ; Medina, A. Pizarro (Geneva U.) ; Iglesias, J. Sabater (Geneva U.) ; Saidi, J. (Geneva U.) ; Pinto, M. Vicente Barreto (Geneva U.) ; Zambito, S. (Geneva U.) ; Iacobucci, G. (Geneva U.)
Publication 2022-10-20
Imprint 2022-06-16
Number of pages 15
In: JINST 17 (2022) P10032
DOI 10.1088/1748-0221/17/10/P10032
Subject category physics.ins-det ; Detectors and Experimental Techniques
Abstract The Picosecond Avalanche Detector is a multi-junction silicon pixel detector based on a $\mathrm{(NP)_{drift}(NP)_{gain}}$ structure, devised to enable charged-particle tracking with high spatial resolution and picosecond time-stamp capability. It uses a continuous junction deep inside the sensor volume to amplify the primary charge produced by ionizing radiation in a thin absorption layer. The signal is then induced by the secondary charges moving inside a thicker drift region. A proof-of-concept monolithic prototype, consisting of a matrix of hexagonal pixels with 100 $\mu$m pitch, has been produced using the 130 nm SiGe BiCMOS process by IHP microelectronics. Measurements on probe station and with a $^{55}$Fe X-ray source show that the prototype is functional and displays avalanche gain up to a maximum electron gain of 23. A study of the avalanche characteristics, corroborated by TCAD simulations, indicates that space-charge effects due to the large primary charge produced by the conversion of X-rays from the $^{55}$Fe source limits the effective gain.
Copyright/License preprint: (License: arXiv nonexclusive-distrib 1.0)
publication: © 2022-2025 CERN (License: CC-BY-4.0)



Corresponding record in: Inspire


 记录创建於2022-11-02,最後更新在2023-12-14


全文:
2206.07952 - Download fulltextPDF
Publication - Download fulltextPDF