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The Advanced Wakefield (AWAKE) Experiment is a proof-of-principle experiment demonstrating the
acceleration of electron beams via proton-driven plasma wakefield acceleration. AWAKE Run 2 aims to
build on the results of Run 1 by achieving higher energies with an improved beam quality. As part of the
upgrade to Run 2, the existing proton and electron beamlines will be adapted and a second plasma cell and
new 150-MeV electron beamline will be added. The specification for this new 150-MeV beamline will be
challenging as it will be required to inject electron bunches with micron-level beam size and stability into
the second plasma cell while being subject to tight spatial constraints. In this paper, we describe the
techniques used (e.g., numerical optimizers and genetic algorithms) to produce the design of this electron
line. We present a comparison of the methods used in this paper with other optimization algorithms
commonly used within accelerator physics. Operational techniques are also studied including steering and
alignment methods utilizing numerical optimizers and beam measurement techniques employing neural
networks. We compare the performance of algorithms for online optimization and beam-based alignment in
terms of their efficiency and effectiveness.
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I. INTRODUCTION

A. The use of optimizers in beamline design
and operation

Numerical optimizers are powerful tools for beamline
design and have been used at many particle accelerators;
examples can be found in [1–5]. While there are many
instances of using optimization algorithms to design optics
or select settings of a pre-existing line, there are fewer that
focus, as we do here, on optimizing the magnet positions as
well as their strengths, see [6] for an example of this type of
optimization.
The AWAKE experiment aims to produce a high-energy,

low-emittance beam with a small energy spread as such a
beam could have applications for an electron-proton

collider or for fixed target experiments. The design for
the “witness” electron transfer line, used to inject bunches
into the second plasma cell for acceleration, is therefore
driven by these requirements. The specifications and
constraints on the design, described in Sec. II A, are
particularly challenging because of demanding beam size
and stability requirements, as well as tight tolerances.
Often, design optimization is done within beamline sim-
ulation tools like MAD-X [7]; however, we found that for our
problem, the choice of optimization algorithms was too
limited and there was insufficient control provided over the
algorithms.
In this paper, we consider the various stages of the

AWAKE electron transfer line design process and consider
for each which numerical optimization algorithms and
methods were most effective. In Sec. III A, we begin by
designing a simplified transfer line comprising only dipoles
and quadrupoles. We compare the performance of genetic
algorithms for this task with the Nelder-Mead algorithm [8]
and Powell’s method [9]. We also study the interplay
between the horizontal and vertical components of the
objective function using multiobjective optimization.
In Sec. IV, we discuss the need for online optimization

and possible algorithms for this. We study the suitability of
the Bound Optimization BY Quadratic Approximation
(BOBYQA) algorithm [10] for the beam-based alignment
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of the sextupoles and octupoles. For examples of the
application of BOBYQA to online optimization problems
see [11,12], and for alternative algorithms, see [13,14]. The
performance of the BOBYQA algorithm is compared with
that of the Robust Conjugate Direct Search (RCDS)
algorithm [15] which was designed for optimization within
a noisy environment.
We discuss the operational challenges expected for the

witness electron line in Sec. V and highlight where machine
learning or optimization techniques could be exploited. We
overview a technique using physics-guided neural networks
(PGNNs) to predict the electron beam trajectory, supple-
menting the limited available diagnostics with predictions
from the optics model. Reconstructing beam parameters
from limited diagnostics and the use of “virtual diagnostics”
are common techniques in particle accelerators and examples
of this can be found in [16–19]. We show results from testing
PGNNs for beam trajectory prediction on the existing Run 1
beamline, compared with the performance of using only the
optics model. Due to the challenging requirements for the
electron beam alignment, described in Sec. II A, a technique
like this to constantly and nondestructively measure the
beam alignment will be crucial.
The AWAKE experiment is a proof-of-principle experi-

ment and so, to fully study the plasma wakefield accel-
eration mechanism, it would be desirable to have the
capability to scan the electron beam parameters to measure
any dependencies. Therefore, a framework to frequently
reoptimize the optics will be required. In Sec. VI, we
consider the suitability of the Nelder-Mead algorithm for
changing the optics of the witness transfer line and
demonstrate the effectiveness of this algorithm for rematch-
ing the optics to incorporate two thin scattering foils.

B. AWAKE Run 1

The AWAKE Run 1 experiment at CERN demonstrated
that electron beams could be accelerated to GeV-energies
using plasma wakefield acceleration driven by self-modu-
lated 400 GeV proton bunches [20,21]. The plasma was
produced via the ionization of Rubidium in a 10-m long
vapor cell with a high-power laser pulse, forming a 1-mm-
radius plasma channel [22]. The wakefield driver consisted
of a 400 GeV, 12-cm long proton beam from the CERN
Super Proton Synchrotron (SPS) which was injected with a
beam size of 200 μm into the plasma where it underwent
self-modulation into a train of microbunches [23,24]. The
microbunches had lengths approximately equal to half of
the plasma wavelength and together resonantly drove large-
amplitude plasma wakefields. The laser pulse used to ionize
the plasma copropagated in the plasma cell with the proton
driver beam and the self-modulation of the proton-bunch
behind the laser pulse was seeded by the ionization front of
the laser pulse. In this way, the proton bunch behind the
laser pulse underwent the phase-reproducible seeded self-
modulation (SSM) [25].

With a plasma electron density of 7 × 1014 cm−3, the
maximum accelerating gradient was of the order GV/m
[26]. To probe the accelerating gradients of the wakefields,
18.84-MeV witness electron bunches were injected into the
wakes [20]. The electron beamline comprised an S-band,
rf photocathode gun producing electron bunches which
were accelerated with a traveling-wave booster structure to
16–20MeV.A transfer line [27] transported and focused these
beams so that they could be injected on axis into the plasma
cell with a beam size of 250 μm [28]. Electrons trapped in the
focusing, accelerating phase of thewakefieldwere accelerated
to 2.0(1)GeV [20], asmeasuredwith amagnetic spectrometer.

C. AWAKE Run 2

The goal of AWAKE Run 2 is to achieve acceleration to
∼10 GeV while maintaining a smaller emittance and
energy spread than Run 1 [29]. Toward this objective,
Run 2 will be split into four intermediary stages [30]: (i) 2a:
demonstrate the seeding of the self-modulation of the full
proton bunch with an electron beam to ensure modulation
of the whole bunch is phase reproducible and stable [31],
(ii) 2b: introduce a density step in the plasma to stabilize the
proton bunch self-modulation [32], (iii) 2c: separate the
proton bunch self-modulation and the electron bunch
acceleration into separate plasma cells to isolate the
defocusing fields of the unmodulated proton bunch from
the electron bunch [33], and (iv) 2d: demonstrate the
scalability of the experiment to longer plasma cells and
higher energies.
Run 2a studies the electron seeding of the proton bunch

self-modulation and Run 2b will investigate the use of a
density step to stabilize the self-modulation process; both
of these features will then be incorporated into Run 2c.
In this paper, we discuss the studies toward the baseline

design of the Run 2c transfer line needed to inject witness
electron bunches into the second plasma cell to probe the
accelerating gradients of the wakefields. The existing 18-
MeV Run 1 electron line will be adapted to provide electron
bunches to the first plasma cell to seed the self-modulation
of the proton bunch. The parameters for this line will be
determined as a result of the Run 2a studies.
A schematic of the proposed Run 2c beamline layout is

shown in Fig. 1 showing the configuration of the proton and
electron beamlines. Several changes will be needed to adapt
the Run 1 experimental setup for Run 2c. To incorporate the
additional seeding electron transfer line, the Run 1 plasma
cell is to be moved 40 m downstream, requiring the
reconfiguration of the proton beamline. To minimize the
defocusing of the proton beam between the two plasma
cells, the gap should be <1m [34], and ideally as short as
possible, constraining the footprint of the witness transfer
line. To achieve both a small energy spread and emittance
conservation throughout acceleration, the injected electron
beam parameters must be carefully chosen; this is discussed
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in Sec. II A [35]. The witness beam parameters for Run 2c
compared with Run 1 are presented in Table I.

II. TRANSFER LINE DESIGN

A. Witness electron transfer line specifications

The specifications for beam parameters at the injection
point derive from the need for the witness beam to be
“matched” to the plasma to mitigate transverse betatron
oscillations of the beam envelope propagating in the plasma
which would cause emittance growth. For the electron beam
to be matched to the plasma, the beam size should satisfy

σ4 ¼ 2ε0mec2γ
npee2

ϵ2; ð1Þ

where the Lorentz γ ¼ 293.5,me is themass of an electron, c
is the speed of light, ε0 is the vacuum permittivity, e is the
electron charge, the normalized emittance ϵ ¼ 2 mmmrad,
and the plasma density npe has baseline values: 2×1014 cm−3

or 7 × 1014 cm−3. For beam energy of 150 MeV with the
higher plasma density, this would correspond to a matched
beam size of

σ� ¼ 5.75 μm: ð2Þ

Further specifications for the beam at the injection point are
given in Table II.
The injected witness bunch should have a length of

∼60 μm, a specification deriving from the need to be within
the regime of optimal beam loading so that a small energy
spread is conserved during acceleration [35,36]. To min-
imize emittance growth throughout acceleration, there

should be sufficient charge density in the witness bunch
to be able to drive a full blowout of the electrons remaining
in the plasma wakefield “bubble” [35]. The emittance
growth during electron acceleration increases quickly with
the transverse relative offset between the proton and
electron beam. Simulations of the witness beam propaga-
tion in the plasma have shown that, for a nominal 2-mm
mrad emittance beam to maintain an acceptable beam
quality, the relative beam offset should not exceed
13 μm and the beam size should not exceed 1.5 times
the nominal value [37].
The footprint of the witness beamline is constrained by

the placement of the two plasma cells, the limited tunnel
width, and the location of the seeding electron beamline.
This constrains the width of the beamline to <3 m and the
length to <25 m; a two-dipole dogleg design was selected
to satisfy these restrictions. The dimensions of the dogleg
are determined by the position and bending angle of the
dipoles.
A 15° bending angle was selected as this was large

enough that the beam pipe would not intersect with the
plasma cell but not so high that the beamline exceeded the
tunnel width. For a two-dipole achromatic dogleg, the first-
order isochronous parameter, R56, cannot be compensated,
so that the transfer line would not be both achromatic and
isochronous. To meet the bunch length specification of
σz ¼ 60 μm at the plasma injection point, it is proposed
that the line have a shortening effect on the bunch,
counteracted by injecting a correspondingly longer bunch
into the transfer line. For the transfer line to have a
shortening effect on the bunch, there must be a positive
correlation between energy and longitudinal position,

FIG. 1. Schematic of the configuration of the two-electron beamlines, plasma cells, and a section of the proton transfer line. Dipoles
are shown in cyan, the quadrupoles in red, the sextupoles in yellow, and the octupoles in white.

TABLE I. Beam parameters of the witness electron transfer
lines for AWAKE Runs 1 and 2c [20,36].

Parameter Unit Run 1 Run 2c

Beam energy MeV 18.84 150
Charge pC 656 100
Bunch length fs 4000 200
Energy spread % 0.5 0.2
Normalized emittance mmmrad 11–14 2

TABLE II. Specification for the bunch parameters at the
injection point of the AWAKE Run 2c witness transfer line.

Parameter Specification

βx;y 4.87 mm
αx;y 0.0
Dx;y 0 m
σx;y 5.75 μm
σz 60 μm
ϵx;y 2 mmmrad
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which based on simulations of the electron injector is
expected to be feasible.

B. Transfer line simulations

The simulation code MAD-X [7] was used to model the
beam transport, with the bunch tracking simulation using a
MAD-X implementation of PTC (polymorphic tracking code)
[38]. The nonlinear effects were challenging for this design,
so six-dimensional particle tracking was essential for
modeling the behavior of the line.
Simulations of the electron injector were used to produce

an input bunchwhichwas tracked through the transfer line to
calculate the beam parameters at the injection point. The
input bunch had 100,000 macroparticles and was designed
such that the distributions in the x, y, px, and py planes were
Gaussian distributions cut at 3σ, with standard deviations
matching simulations of the beam from the electron injector.
The E-z distribution was taken from the electron injector
simulation and scaled to match the nominal Run 2 bunch
length and energy spread, thus preserving the simulated
correlation from the electron gun.

C. Numerical optimization for transfer line design

Optimization is the problem of finding a set of inputs for
an “objective function” which corresponds to a maximum
or minimum of that function. An optimization algorithm
specifies the method used to iteratively choose inputs,
evaluate the objective function, and compare solutions
with the aim of moving toward the optimal solution. If
multiple parameters need to be optimized, a single objec-
tive function can be formed as a weighted sum of the
individual objectives (“scalarization”) or they can form
multiple objective functions (multiobjective optimization).
For the design of the witness transfer line, both single- and
multiobjective optimization were tested. Multiobjective
optimization problems seek to optimize two or more
objective functions simultaneously. If there is not a single
solution that simultaneously optimizes all objectives, a set
of optimal solutions called a “Pareto set” may be found.
The objective functions were adjusted at every step of the

design process to take into account the current status of the
design. For example, as the design progressed, higher order
parameters became increasingly important and their
weightings in the objective function were increased. The
objective functions were formed as a weighted mean
squared error (MSE),

1

n

Xn
t¼1

wiðyi − yi;targetÞ2; ð3Þ

where wi are weights, and yi and yi;target are the simulated
and target parameters, respectively. Depending on the
progress of the design, yi;…;n may include parameters such
as the beam size, dispersion, or Twiss parameters. The input

variables and target parameters were each normalized by
their respective maximum values.
Simulations of the electron propagation in plasma have

shown that the beam distribution at the injection point is an
important parameter for maintaining a high beam quality
during acceleration. In order to optimize the beam distri-
bution, the Kullback-Leibler (KL) divergence [39] was
used to quantify the difference between the tracked bunch
distribution and an ideal distribution. The K-L divergence
is defined as

DKLðpjjqÞ ¼
Xn
i¼1

pðxiÞ log
�
pðxiÞ
qðxiÞ

�
; ð4Þ

where qðxÞ is the distribution under test and pðxÞ is the true
distribution. This was particularly useful for producing
transfer line designs where the injected bunch needed to
be Gaussian in six dimensions (x, px, y, py, z, pz).
Alternatively, if, rather than a Gaussian beam, a higher
charge density is needed in the bunch core, then this
corresponds to a high-kurtosis design, where the kurtosis is
a measure of the tailedness of the distribution, defined as
Kurt ¼ μ4=σ4, where μ4 is the fourth central moment and σ
is the standard deviation. In this case, the kurtosis was a
helpful parameter to include in the objective function. For
the AWAKE Run 2c experiment, the effect of the beam
distribution on the quality of the acceleration is important to
study and, so, being able to optimize the optics to achieve a
given distribution or kurtosis would be helpful.
For the initial design stages, the simulations were

performed with fewer macroparticles, sacrificing accuracy
for speed. Once a coarse solution was found, fine-tuning
was performed with a larger number of macroparticles. An
essential parameter to include in the objective function was
the fraction of the macroparticles lost throughout the
transfer line due to aperture constraints. When optimizing
magnet positions, it was also important to heavily penalize
the overlap of magnets in the model.

D. Optimization problems

The choice of the optimization target and the way it is
calculated make this a black-boxlike optimization problem.
The code is not differentiable which constrains the choice
of algorithms to derivative-free optimizers, random search
algorithms, and genetic algorithms. A range of optimization
algorithms was used throughout the design process for the
Run 2cwitness transfer line.When selecting an optimization
algorithm, considerations may include whether there are
constraints on the input variables or objective functions, the
cost of each function evaluation, and whether the function is
convex. A brief overview of the main optimization algo-
rithms used for this design is given below.
(a) Genetic Algorithm A genetic algorithm (GA) is an

optimization method based on a natural selection process
akin to biological evolution. A population is a group of
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individual solutions and at each step, the GA randomly
selects individuals from the population and uses them as
“parents” to produce the “children” for the next generation.
GAs use three basic operators: selection, crossover (mat-
ing), and mutation; over successive generations, the pop-
ulation evolves toward an optimal solution [40,41].
Nondominated Sorting Genetic Algorithm II (NSGA-II)

[41] is a multiobjective optimization algorithm using GAs,
exploiting the concept of dominant and nondominant
solutions to help quantify the fitness of solutions in a
population.
(b) Powell’s method A gradient-free, unconstrained

optimization algorithm that minimizes a function by using
sequential line searches along search vectors, often the axes
of the input variables [9]. After each line search, the
algorithm moves to the minimum found before progressing
to the next vector.
(c) Nelder-Mead The Nelder-Mead algorithm is a search

method to find the optimum value of an objective function
in an n-dimensional space by using a simplex shape to
explore the domain [8]. At each iteration, one vertex of the
simplex moves toward a more optimal solution, where for
each step, several possible adjustments may be tested
before one is selected.
(d) BOBYQA The Bound Optimization BY Quadratic

Approximation (BOBYQA) algorithm [10] uses a quad-
ratic approximation to the objective function FðxÞ at each
iteration. It seeks to minimize FðxÞ while respecting the
bounds ai and bi,

ai ≤ xi ≤ bi; i ¼ 1; 2;…; n: ð5Þ

BOBYQA is particularly useful for problems where eval-
uations of the objective function are time consuming,
computationally intensive, or costly.

III. DESIGN OF THE RUN 2C WITNESS
TRANSFER LINE

The full design of the witness transfer line was created
over several intermediary stages, with the optimization
algorithm and objective function adapted for each specific
stage. To begin with, a transfer line design was produced
from only dipoles and quadrupoles. The dipole position and
bending angle were fixed by the desired geometry of the
line and the quadrupole strengths and positions were the
variables to be optimized. As the design for the transfer line
progressed, nonlinear effects proved significant, requiring
the addition of sextupoles and octupoles. These were added
sequentially as required and the transfer line was iteratively
reoptimized until a design was achieved which met the
experimental specifications. The process used to evaluate
the objective function and the full optimization process are
presented in pseudocode in Algorithms 1 and 2, respec-
tively, found in the Appendix.

A. Optimization of quadrupole positions
and strengths

Typically for a transfer line with a very small focal point,
the distances between the final focusing magnets and the
focal point are minimized so as to reduce chromatic
contributions to the beam size. Due to the proximity of
the transfer line to the plasma cell (Fig. 1), to prevent the
intersection of the final quadrupole with the plasma cell, the
distance between the quadrupole and the focal point must
be at least 1.9 m.
An initial transfer line design was constructed with the

two dipoles, a quadrupole triplet before the dogleg, and five
quadrupoles within the dogleg. The triplet was intended to
focus the beam to a waist before the dogleg so that the
dogleg can transport the waist to the injection point. To
quantify the performance of the transfer line, a 6D beam
distribution was tracked through the beamline to the
injection point. The input variables for optimization were
the positions and strengths of the eight quadrupoles. Within
the dogleg, the symmetric pairs of quadrupoles have
strengths of equal magnitude so there were 14 dimensions
to the optimization problem.
Initially, the tracked beam distribution had only 5000

macroparticles which were increased at later stages. To
produce a coarse initial design, only a reduced set of
parameters was included in the objective function to
prioritize the most challenging and important parameters
for the overall design. The objective function, Eq. (6),
included the horizontal and vertical beam sizes (σx, σy),
dispersion (Dx, Dy) at the injection point, and the number
of particles lost (Nloss). The number of particles lost was
heavily weighted to penalize the algorithm if the beam
envelope exceeded the apertures. Any overlap between
magnets was penalized with a large weight to the whole
objective function, M. A logarithmic transformation was
used to aid convergence,

f0ðxÞ ¼ M logfw1ðσx − σtargetx Þ2 þ w2ðσy − σtargety Þ2
þ w3ðDx −Dtarget

x Þ2 þ w4ðDy −Dtarget
y Þ2

þ w5Nlossg: ð6Þ

As a first step, a GA was tested to try to find a global
minimum. A population size of 200 with 300 offspring per
generation was used. The mutation distribution index was
set to 20 to encourage the exploration of the parameter
space and to prevent the algorithm from getting trapped in
local minima. The evolution of the mean objective function
with successive generations of the GA is presented in Fig. 2
where the minimum objective function in the generation
decreased over ∼60 generations before stabilizing. The
solution corresponding to the minimum objective function
evaluation had horizontal and vertical bunch sizes at
injection of 17.6 and 30.9 μm, respectively. The bunch
distributions at the injection point are presented in Fig. 3
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with the macroparticles color-coded by their ΔE=pc
values, highlighting the chromatic contributions to the
beam size. In order to minimize the beam size, this effect
was mitigated by the addition of sextupoles to the design.
Results from testing a GA for optimizing this transfer

line design suggested that the horizontal and vertical beam

sizes could each be reduced but at the expense of the other
plane. To investigate the limits for minimizing the beam
sizes, the multiobjective optimization algorithm NSGA-II
was used to optimize the horizontal and vertical parameters
in Eq. (6) separately. Figure 4 shows the results from 250
generations with a population of 100, after which the final
Pareto front was found to be in good agreement with the
single-objective GA results. Figure 4 shows that even when
minimizing the horizontal and vertical beam sizes inde-
pendently, it is not possible to satisfy the experimental
requirements. Separately, horizontal and vertical beam
sizes of 16.0 and 20.8 μm were achieved, neither of which
meet the target of 5.75 μm.
To compare the performance of GAs with other

optimization algorithms, this optimization was performed
also using the Nelder-Mead algorithm and Powell’s
method; the results are presented in Fig. 5. The perfor-
mance of these algorithms is heavily dependent on the
initial values, requiring the algorithms to be restarted 20
times with random initial conditions. The best solution
found with the Nelder-Mead algorithm corresponded to
σx ¼ 19.4 μm and σy ¼ 48.9 μm, and with Powell’s
method, σx ¼ 19.6 μm and σy ¼ 42.4 μm. It can be seen
in Fig. 5(a) that GAs achieve the lowest value of the
objective function. It should be noted that Fig. 5(b)
shows the number of function evaluations for single
applications of the Nelder-Mead and Powell’s method
algorithms, thus not taking into account the need to
restart these algorithms multiple times. Considering the
total evaluations from the 20 applications, the Nelder-
Mead algorithm used 32000 total evaluations and
Powell’s method used 86000 iterations.

FIG. 2. Mean (data points) and range (shaded region) of the
objective function evaluations from a population of solutions
used by a genetic algorithm for the optimization of quadrupole
strengths and positions.

FIG. 3. 2D projections of the distribution of a bunch tracked
through the transfer line to the plasma injection point. The color
of the data points denotes the ΔE=pc value.

FIG. 4. Points on the Pareto front at the final evaluation (red)
and the population from the first evaluation (gray) of the
multiobjective optimization of quadrupole strengths and posi-
tions; the axes are the two objective functions constructed from
the horizontal and vertical components of Eq. (7). The inset
shows an expanded view of the final Pareto front. Only viable
solutions with no magnet overlap are included.
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B. Addition and optimization of sextupoles
and octupoles

To combat the chromatic contributions to the beam size
at the injection point, sextupoles were added, initially
chosen to be at regions of high Dx=x and Dy=y and at
phase advances to have maximum impact at the injection
point. The sextupole positions were then included, along
with the strengths of the sextupoles, in the list of inputs for
the optimization algorithm. Powell’s method proved to
perform well for this stage, as it coped well with the high
dimensionality and was explorative of the parameter space.
Once an initial optimization of the layout of the transfer line
with sextupoles had been performed, finer adjustments
were made, for which the weights in the objective function
were adjusted and higher-order parameters like αx;y, D0

x;y

and the K-L divergence were included or given a higher
weighting. This objective function could be written as

f1ðxÞ ¼ M logfw1ðσx − σtargetx Þ2 þ w2ðσy − σtargety Þ2
þ w3ðDx −Dtarget

x Þ2 þ w4ðDy −Dtarget
y Þ2

þ w5ðαx − αtargetx Þ2 þ w6ðαy − αtargety Þ2
þ w5Nloss þ w6KLdivg; ð7Þ

where αx;y are Twiss parameters and KLdiv. is the K-L
divergence.
Even after a solution was found for which the sextupoles

would mitigate the chromatic effects, there were remaining
detuning with amplitude effects contributing to the beam
size. Without the addition of octupoles to correct for these
effects, it seemed impossible to reduce the beam size below
8 μm either horizontally or vertically. Octupoles were
added incrementally and their positions and strengths were
optimized using the same process as for the sextupoles.
Detuning with amplitude effects could not be corrected
locally throughout the entire line, so the focus was on
reducing these effects at the injection point. The optics for
the resulting transfer line is presented in Fig. 6 showing the
final placements of the six sextupoles and four octupoles.
The beam parameters at the injection point are given in

FIG. 5. (a) The minimum objective function [fðxÞ] values from
the optimization of quadrupole strengths and positions using
GAs, the Nelder-Mead algorithm and Powell’s method. The
Nelder-Mead algorithm and Powell’s method were started 20
times with random starting values. The minimum and maximum
values for each are indicated. (b) The number of function
evaluations to reach the minimum fðxÞ for each of the 20
optimization attempts.

FIG. 6. MAD-X simulation of the transfer line design after the
optimization of the sextupole and octupole positions and
strengths. Twiss parameters βx (black), βy (red), and dispersion
Dx (green) and Dy (blue) are shown below, with a synoptic
overview of the transfer line above, with dipoles (green), quadru-
poles (black), sextupoles (blue), and octupoles (red).

TABLE III. Beam size and linear optics parameters at the
injection point for the transfer line shown in Fig. 6.

Parameter x plane y plane

σx;y (μm) 6.0 6.1
σz (μm) 59.9
βx;y (mm) 4.8 5.4
αx;y 0.0 0.0
Dx;y (m) 0.0 0.0
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Table III, showing that this transfer line design meets
experimental requirements for the beam size. For the
transfer line to meet the nominal bunch length,
σz ¼ 60 μm, the input bunch length should be 40% longer.

IV. BEAM STEERING AND ALIGNMENT

To understand the impact of sources of error or misalign-
ment on the beam parameters, studies of the errors
individually were performed and used to specify upper
bounds on the error tolerances. For example, tracking
simulations as a function of the magnitude of the quadru-
pole misalignments are presented in Fig. 7 showing that,
after beam-based alignment and steering have been per-
formed, a beam-quadrupole alignment of better than 10 μm
should be achieved. Similar studies for other error sources
were used to determine suitable values to be used for error
studies of the transfer line, these values are given in
Table IV. The magnet misalignments specified in the table
are before any beam-based alignment has been performed.
To achieve the required levels of magnet beam align-

ment, the magnets would need to be on movers with a step
size of approximately 1 μm and with a range of 100 s of
microns. Multiple steering and alignment methods will be
required. From simulations of the transfer line in the
presence of the errors in Table IV, a procedure for
beam-based alignment was developed. The locations of
the beam position monitors (BPMs), beam screens (BTVs),
and correctors for this process are indicated in Fig. 8. First,
it is proposed to use a quad shunting technique, varying the
quad strength (between 80% and 100%) and measuring the
deflection of the beam at a downstream BPM. This
deflection could be used to estimate the beam-quadrupole
offset to be corrected with the magnet mover. Dispersion
free steering (DFS) would then be used to minimize
the parasitic dispersion by using the correctors to steer
the beam through the center of quadrupoles. With DFS, the

beam offset is measured at all BPMs at different beam
energies, the beam is then steered to both minimize the
offset of the beam in the BPMs and to minimize the
difference in trajectory for different beam energies. DFS is
first performed with higher order magnets switched off.
The deflections of the beam from sextupole or octupole
offsets are likely to be difficult to resolve with the BPMs,
although they will affect the beam size. Therefore, it is
suggested to use the measured beam size at the injection
point BTV to quantify their alignment. We proposed to use
an optimization algorithm to align the sextupoles and
octupoles offsets by minimizing the beam size at the
injection-point BTV.
The proposal for a procedure for beam steering and

alignment is given below and is estimated to be feasible in
under an hour, (1) quadrupole shunt—two iterations, gain
0.7, (2) quadrupole shunt—one iteration, gain 1, (3) DFS—
higher order magnets off—three iterations, gain 0.7, and
(4) align sextupoles and octupoles using an optimization
algorithm to vary magnet mover settings 100–400 iterations.
Multiple iterations of the quadrupole-shunting and DFS

methods are performed with gains set lower than unity. This
is desirable to prevent the alignment process from becom-
ing unstable and also because the nonlinearity of the system
is sampled better with smaller steps. A lower gain is also
helpful to reduce the impact of the finite BPM and BTV
resolutions.
For the beam-based alignment of the sextupoles and

octupoles, the BOBYQA algorithm was employed because,
as previously mentioned, it is a useful algorithm when func-
tion evaluations are costly. Specifically, the Py-BOBYQA
[42] Python implementation of BOBYQA was used. The
Py-BOBYQA implementation has a flag, objfun_has_
noise, which should be set when the objective function has
stochastic noise in order to increase the number of inter-
polation points used. Here, the lifetime of themagnet movers
restrict the number of times their settings can be changed.

FIG. 7. Horizontal and vertical beam sizes averaged over 50
seeds with quadrupole misalignments sampled randomly from a
Gaussian distribution with standard deviation given by the x axis.

TABLE IV. The rms values for the distributions of errors and
resolutions used for simulations of the Run 2c witness transfer
line.

Parameter Error Unit

Magnet mover position 1 μm
Corrector kick 1 μrad
BPM resolution 10 μm
BTV beam size resolution 1 μm
BTV position resolution 10 μm
Momentum jitter 1000 ppm
Input position jitter 10 μm
Dipole misalignments 50 μm
Magnet field error 10 ppm
Quadrupole misalignments 100 μm
Sextupole misalignments 100 μm
Octupole misalignments 100 μm
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It may also be desirable to minimize the magnitude of the
steps taken by the magnet movers so that large changes are
avoided when possible.
We have compared the performance of Py-BOBYQA,

with objfun_has_noise both True and False, with
the robust conjugate direct search algorithm (RCDS) [15].
The RCDS algorithm was developed specifically for online
optimization, for which the objective function may be
noisy. The RCDS method is a combination of a conjugate

direct search (like Powell’s method) and a 1D line opti-
mizer to make it more robust against noise. The comparison
between the methods is shown in Fig. 9. The Py-BOBYQA
algorithm (objfun_has_noise = False) reaches a
minimum value quicker than the other two methods, at the
expense of a poorer minimum value. The median perfor-
mance of Py-BOBYQA (objfun_has_noise = True)
and RCDS is comparable in terms of both the minimum
objective function evaluation and the number for iterations
taken to reach it. If the BOBYQA algorithm was chosen,
the setting of the flag objfun_has_noise would
depend on whether speed or accuracy were more desirable.
After the setting-up procedure is performed, an efficient

way to maintain the optimal conditions is to apply shot-to-
shot feedback loops on trajectory using the available
correctors. The change should be small enough not to
significantly perturb the beam size. The same could also be

FIG. 8. Schematic showing the locations of BPMs (cyan), a
BTV (yellow), and correctors (purple). Magnet positions are
shown as outlines. The beam goes from left to right.

FIG. 9. (a) The minimum objective function [fðxÞ] values from
the minimization of the injection-point beam size by optimizing
sextupole and octupole transverse offsets using (left) Py-BO-
BYQA (objfun_has_noise = True), (center) RCDS, and
(right) Py-BOBYQA (objfun_has_noise=False). (b) The
number of function evaluations to reach the minimum fðxÞ. The
algorithms were tested on 20 error seeds; the minimum and
maximum values for each are indicated.

FIG. 10. Distributions of (a) beam sizes and (b) relative proton-
electron transverse bunch offsets at the injection-point for 100
seeds with errors as defined in Table IV after beam-based align-
ment. The orange lines denote the experimental specifications.
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applied to the beam size, but the main problem there is
measuring with a nondestructive technique.
Simulations of these alignment techniques were per-

formed with the errors and resolutions specified in Table IV.
As the relative proton-electron offset is of interest, also
modeled was the proton beam jitter, with 81.7 μm and
10.5 μm rms jitter in the horizontal and vertical planes,
respectively. The proton beam jitter was determined from
measurements of the Run 1 jitter scaled for the Run 2
configuration. About 100 seeds were simulated and after
the full process of beam-based alignment, 85% of seeds
satisfied the experimental beam size requirements
[Fig. 10(a)] and 6% satisfied the relative offset tolerances
[Fig. 10(b)]. It should be noted that the proton beam jitter
was the dominant source of the offset between the beams,
with the electron beam jitter and static misalignment
contributing only a few microns.

V. BEAM TRAJECTORY RECONSTRUCTION
USING NEURAL NETWORKS

As described in [37], the alignment of the AWAKE
driver and witness beams is critical. This will require a
method to measure the proton and electron trajectories
through the plasma cell constantly during operation.
During operation, the injection-point BTV cannot be used
and, instead, the beam trajectory through the plasma cell
should be reconstructed from the diagnostics which are
available.
In this section, we describe how physics-guided neural

networks (PGNNs [43]) could be used to estimate the beam
alignment of the witness and seeding electron beams when
direct measurements are not possible. Although the full
design for the seeding line has not been completed, it is
expected to be similar to the Run 2a electron line and
consequently face similar issues. Here we propose a
dedicated beam measurement technique for the relative
proton-electron alignment for Run 2c. In order to demon-
strate the effectiveness of this method, we describe tests of
using this method on the Run 2a experiment.
Within the AWAKE Run 2a common line (Fig. 11), in

which the electron and proton beams copropagate, the
proton beam dominates the BPM signals so that electron
measurements are not possible while there are protons.
Additionally, the signals from the BPMs closest to the
plasma cell are corrupted in the presence of plasma and
cannot be used for either protons or electrons. Without
these measurements, the beam trajectory through the
common line needs to be reconstructed based on measure-
ments from upstream BPMs. There is ongoing work to
study whether it would be possible to use a BPM exploiting
Cherenkov diffraction radiation to simultaneously measure
the electron and proton beam positions [44]. If such a BPM
were to become available operationally in the AWAKE
electron line, this could be incorporated into the PGNN
reconstruction method.

The Run 2a ∼18-MeV electron beamline (TT43) is used
to inject bunches on axis into the plasma cell. The electron
beamline has five BPMs before the common line and five
BPMs within the common line (Fig. 11). The beam
trajectory, as characterized by measurements from the first
five BPMs, can be propagated into the common line using
the optics model and these studies are summarized in [45].
This study concluded that with this method, the beam
position could be predicted at the final BPM, BPM.412351,
with rms errors of ∼370 μm horizontally and ∼150 μm
vertically. Here, we describe a method to improve these
predictions with the addition of PGNNs.

A. Beam trajectory predictions

PGNNs use predictions from a physics model of the
system alongside measured data as the inputs to the NN.
In cases where the measured data are inaccurate or noisy,
the physics model may give better prediction, whereas, if
the model has significant shortcomings in representing the
system, the measured data would be more trustworthy.
The beam trajectory through the common line can be

predicted for every pulse by propagating the electron
trajectory using the transfer line model with the following
method. First, with the plasma off and no proton beam, the
mean beam trajectory was measured at all ten BPMs in
the electron line. The mean trajectory was subtracted
from the measurements so as to keep the pulse-to-pulse
variation only. Second, the momentum offset, δp, was
calculated for every pulse, using the method described in
[46], by exploiting that the BPMs, BPM.30103 (103), and
BPM.430129 (129), have a phase advance of almost π
between them so that,

FIG. 11. Schematic of the proton beamline (blue), electron
beamline (red), and common line (green). The relevant BPMs are
shown as rectangles and the electron line dipoles as triangles;
quadrupoles are not shown in this diagram. The beams propagate
from left to right. The iris marker highlights the start of the
plasma.
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ffiffiffiffiffiffiffiffi
β103
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From δp, the dispersion contribution was calculated and
subtracted from the beam trajectory leaving the betatron
contribution. The optics model was used to propagate the
betatron contribution into the common line and, finally, the
dispersion component and mean trajectories were added
back to get beam position estimates. The predicted beam
trajectories for a representative pulse are shown in Fig. 12.
The discrepancy between the horizontal trajectory mea-
surements and predictions, seen in Fig. 12, was due to a
difference between the optics model and the beamline,
where in [45], this is hypothesized to be an offset of
quadrupole 430311.
A PGNN was tested to predict the residual errors from

the optics model propagation of the beam trajectory. The
PGNN had 30 features consisting of the first 5 BPM
measurements, both horizontally and vertically, and the
corresponding beam trajectory predictions for all 10 BPMs.
The input values

½xmeas
1 ;…; xmeas

5 ; xpred1 ;…; xpred10 ;

ymeas
1 ;…; ymeas

5 ; ypred1 ;…; ypred10 �: ð9Þ

were normalized to lie in the range of 0–1. The NN output
comprised the errors on the optics model predictions
compared with the BPM measurements for the final five
BPMs,

½xmeas
6 − xpred6 ;…; xmeas

10 − xpred10 ;

ymeas
6 − ypred6 ;…; ymeas

10 − ypred10 �: ð10Þ

As the PGNN output is compared with BPM measure-
ments to calculate the PGNN output error, the resolution of
the BPMs sets a limit to the PGNN performance that can be
measured. To propagate the predictions from the BPMs to
the iris, the beam angle was calculated from the ballistic
trajectory through the final two BPMs. This propagation
should take into account the effect on the beam trajectory
from the Earth’s magnetic field.
The PGNN had six hidden layers with the number of

nodes per layer stepping from 30 to 60 and back to 30 in
steps of 10. The hidden layers had tanh activation func-
tions. During training, the learning rates were decreased
stepwise throughout training and this process was opti-
mized empirically. The data were split 80%/20% into
training and test data sets. Of the training data, 10% were
used as a validation set to optimize the hyperparameters and
highlight any overfitting of the model. A batch size of 64
was used for training and of order 1000 epochs. An MSE
loss was used to quantify the PGNN performance.

B. Results

PGNNs were tested on data at three different charges,
300, 650, and 750 pC, as measured with a Faraday cup. The
BPM resolution scales with the BPM signal-to-noise ratio
and, consequently, with the beam charge so that these data
could be used to study the variation in PGNN performance
with BPM resolution. Three separate NNs were trained for
the three charges. The 750 pC data set had ∼4000 events
with 80% used for training and validation. The training was
performed over 1500 epochs as the MSE loss typically
converged in 1000–1500 epochs. The predictions of the
PGNN compared with the measured data and optics model
prediction are given in Fig. 12 for a single test event. The
PGNN performances at BPM 51 are shown in Fig. 13 for
the three charges, where the degradation in measured
PGNN performance with decreasing charge can be seen.
The AWAKE BPMs are expected to have resolutions of up
to 20 μm which agree well with the high-charge results.
For the low charge data, the BPM signal level was

approximately a tenth of that for the high charge data. With
this lower resolution, neither the optics model prediction
nor the PGNN prediction is measured to perform much
better than the level of the beam jitter. This is likely a result

FIG. 12. A comparison of the optics model beam trajectory
prediction (orange) and the PGNN prediction (green) with the
measured high-charge BPM data (blue), shown for the horizontal
(a) and vertical (b) planes. The start of the common line is
denoted by a vertical black line.
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of the BPM resolution being of the same order as the
measured beam jitter, meaning that the jitter measurements
are resolution limited. In this case, better results may be
achieved by assuming always the mean beam trajectory

rather than trying to predict the trajectory pulse-to-pulse.
For the horizontal predictions at BPM 51 [Fig. 13(a)], the
optics model estimates for the end of the line give poor
results, and thus the inclusion of these as inputs to the NN
yields no additional improvement. In the vertical plane, the
improvement from the inclusion of the optics model to the
NN is 10–20%.
The resolution is expected to scale linearly with the BPM

signal-to-noise ratio, where the sums of the BPM signals
for the three charges were 2850 arb. units (300 pC), 22500
arb. units (650 pC), and 28500 arb. units (750 pC). The best
PGNN performances, as measured at BPM 51, are pre-
sented in Fig. 13 along with the estimated resolution
scaling calculated by assuming the performance of the
low-charge case was resolution limited. There is good
agreement vertically but horizontally the higher charge
predictions underperform compared to the resolution scal-
ing. The BPMs with the largest horizontal jitters also
demonstrate the poorest horizontal predictions, requiring
further study.
The results from propagating the beam trajectory to the

iris are presented in Table V. There is a clear improvement
in the position and angle predictions at medium and high
charge with the PGNN. The resolution of the position
measurement extrapolated to the iris can be calculated from
the geometry of the system. This can then be compared
with the measured PGNN performance. For example, if the
final two BPMs have a resolution of 20 μm at high charge,
this would correspond to a 48-μm resolution at the iris.
The PGNN error propagated to the iris is in good agree-
ment with this. If we assume that the low-charge results
are resolution limited, then the final two BPMs have a
resolution ∼140 μm, which would correspond to a 340-μm
resolution at the iris.
It has been shown that PGNNs can be used to reconstruct

the beam trajectory through the Run 2a AWAKE common
line. This method could be adapted for use with the Run 2c
seeding electron line and even developed into an applica-
tion to give real-time predictions of the relative alignment
between the proton and electron beams. Ideally, the Run 2c
seeding electron line would also have BPMs in the dogleg

FIG. 13. The data points show the horizontal and vertical rms
values for beam jitter and position predictions at BPM 51; the
error bars give 95% confidence interval. The resolution scaling
from the low charge is given as a dashed line under the
assumption that the low-charge results were resolution limited.
The NN error denotes the error from a neural network without
including predictions from the beamline model.

TABLE V. Angle jitter and position jitter propagated to the iris, both calculated using measurements at the last two
BPMs. Comparison with the rms errors from the optics model predictions and PGNN model predictions.

Horizontal Vertical

Charge Low Medium High Low Medium High

Angle jitter (μrad) 200 118 119 181 91 113
Angle optics error (rms) (μrad) 170 92 61 179 25 46
Angle PGNN error (rms) (μrad) 164 24 22 178 24 19

Iris jitter (μm) 604 161 488 495 182 194
Iris optics error (rms) (μm) 527 133 161 508 86 95
Iris PGNN error (rms) (μm) 446 69 58 496 66 53
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at π-phase-advance so that the momentum offset could
again be easily measured.

VI. SCATTERING FOILS

The AWAKE experiment will require two thin foils to be
placed in the beamline just upstream of the focal point [47].
The first will be a vacuum window for the plasma cell and
the second will be a dump for the laser used to ionize the
second plasma cell. Due to the thickness and radiation
length of the material traversed, and the energy of the beam,
the main contributor to the change of emittance and optics
is multiple Coulomb scattering. This translates into a net
angular deflection from the original particle direction
which can be modeled as Gaussian. The angular dispersion,
θ0 is given by [48]

θ0 ¼
13.6
βcp

z

ffiffiffiffiffiffi
t0
X0

r �
1þ 0.038 ln

t0
X0

�
; ð11Þ

where c is the speed of light, β ¼ v
c, p is the momentum in

MeV/c, X0 is the material’s radiation length, and t0 is the
material thickness. The laser beam dump and vacuum
window were modeled as two aluminum foils, with X0 ¼
8.9 cm and 1 mm separation both between the two foils
and between the final foil and the injection point.
The scattering of the beam within the foil causes the

beam emittance to increase [49], with the emittance
increase depending on the beta function at the foil. The
beta function after the foil is reduced, thus requiring the
optics to be reoptimized to return the beam focal point to
the injection point.
The Nelder-Mead algorithm was tested for rematching

the optics while keeping the magnet locations fixed. The
Nelder-Mead algorithm proved useful for making small
adjustments to the transfer line optics, typically finding a
solution within a few hundred iterations. This framework
could be used, for example, to adapt the optics to produce a
larger beam size, alter the beam distribution, or shift the
beam waist. It is foreseen that the AWAKE Run 2c
experiment will scan the witness bunch parameters such
as the beam size and waist position, so this capability is
essential. The Nelder-Mead algorithm was selected as it is
easy to use and understand. This is important because it will
be used frequently during operation and possibly by those
with limited experience in numerical optimization.
To ensure the emittance blowup in the x and y planes

were equal, the term jσx − σyj was incorporated into the
objective function. The emittance after the scattering foil
was left as a free parameter during optimization. The
injection-point beam parameters for the rematched transfer
line, including the scattering foils, are presented in
Table VI. The injection-point beam sizes are 17.2 and

17.6 μm horizontally and vertically, respectively, which are
within approximately 5% of the matched beam sizes. The
effect of this 5% beam size deviation on the emittance
growth during acceleration would depend on the bunch
charge and would be only a few percent.

VII. OUTLOOK

Genetic algorithms and numerical optimizers for beam-
line design are particularly useful for cases where consid-
ering only linear optics is not sufficient and accounting for
all aberrations is nontrivial. Supervision is clearly still
needed and any additional information, including con-
straints, is invaluable. Establishing constraints, often with
a physical basis, can help converge toward more elegant
solutions that are more robust with respect to errors.
Potential developments of this technique could be the

employment of hierarchical structures in multilayer opti-
mizers to further automate the design of transfer lines. This
could include design optimization where the quantities and
types of magnets are also determined by an optimizer. The
ultimate goal would be a fully automatic design process, for
which a complete beamline design is produced based on the
desired start and end points, required beam parameters, and
physical constraints.
The use of PGNNs for trajectory predictions is a very

general concept for accelerators. As optics knowledge is
frequently available, this could represent a way to circum-
vent invasive or expensive beam diagnostics. A natural way
to extend this further would be to exploit raw BPM
waveforms to try to estimate the beam size.

VIII. CONCLUSION

In this paper, we have described how numerical opti-
mization and neural networks were used during the design
of the AWAKE Run 2c electron transfer lines. The baseline
design of a 150-MeVelectron transfer line to inject witness
bunches into the second plasma cell was presented. The
spatial constraints and experimental requirements for
micron-level beam size and stability were challenging
and various optimization techniques were used during
the design process.

TABLE VI. Beam parameters at the injection point for a
transfer line with two 100 μm aluminum foils.

Parameter x plane y plane

σx;y (μm) 17.2 17.6
αx;y 0.0 0.0
Dx;y (m) 0.0 0.0
ϵx;y (mmmrad) 17.0 16.9
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GAs were exploited to produce an initial dogleg design
comprising only dipoles and quadrupoles. Within 250
generations with a population of 100, a design with an
injection-point beam size of 17.6 μm horizontally and
30.9 μm vertically was achieved. This did not meet the
experimental specification of a 5.75-μm beam size and
multiobjective optimization with the NSGA-II algorithm
was used to analyze the interplay between minimizing the
beam size horizontally and vertically. These results showed
that the beam size requirements could not be met even
when only considering a single plane. The perfor-
mance using a GA was contrasted with the Nelder-Mead
algorithm and Powell’s method, each restarted 20 times
with random starting values. The GAwas shown to reach a
smaller value of the objective function, with fewer function
evaluations.
The strong focusing that was needed to produce small

beam sizes led to the rise of significant nonlinearities, such
as betatron chromatic effects and detuning with amplitude.
Sextupoles and octupoles were added to mitigate these
effects and their positions and strengths were optimized
with Powell’s method.
The effects of errors and misalignments on the beam size

and stability were studied and a correction process was
developed and simulated. These studies suggest that after
beam-based alignment, 85% of the pulses should satisfy
the experimental beam size specification. For the relative
proton-electron beammisalignment, only 6% of pulses were
within the tolerances, but this was dominated by the proton
beam jitter. The optimization algorithm BOBYQA was
studied for the beam-based alignment of the sextupoles
and octupoles using beam size measurements from a BTVat
the injection point. While this was successful in simulation,
further studies into the feasibility of this method are required,
in particular, accounting for the mover limitations and
lifetime. The Py-BOBYQA implementation of the
BOBYQA algorithm was compared with the RCDS algo-
rithm in terms of the minimum objective function value and
the number of function evaluations required. The median
performance of the two algorithms was shown to be similar.
An optimization framework based on the Nelder-Mead

algorithm was created which could facilitate the reoptim-
ization of the transfer line optics if minor adjustments are
needed. This was used to rematch the transfer line to
include two thin scattering foils upstream of the focal point.
These foils increased the emittance so that the matched
beam size was 16.7 μm. The Nelder-Mead algorithm was
selected due to its speed and ease of use.
Studies were also presented toward developing a method

for reconstructing the electron beam trajectory through
regions with no available direct position measurements. As
the alignment tolerances for Run 2c are very challenging,
such a method for continuously measuring the electron
beam trajectory will be essential. A method suitable for
Run 2c was tested on the Run 2a beamline and the addition

of PGNNs was shown to offer significant improvements
compared with using only the optics model. The results at
high charge were consistent with the expected resolution
limit of the BPMs, with PGNN rms errors at the final BPM
of <20 μm. The performance of the vertical predictions at
different charges scaled well with the expected resolution,
however, the horizontal results deviated, thus requiring
further study.
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APPENDIX: OPTIMIZATION PROCESS
PSEUDOCODE

Algorithm 1: Calculation of the objective function used to
optimize magnet positions (Pos) and strengths (Str).

/* Inputs are the magnets’ positions and
strengths (x), which magnets to optimize
(magnetList), which parameters to include in
the objective function (objParams), and the
number of macro-particles to track
(nParticles) /*

1 Function Objective (x, magnetList, objParams,
nParticles):

2 M ← 1; i ← 1;
3 for magnets in magnetList do

set: magnetPos, magnetStrStr ← x[i]
4 i ← iþ 1;
5 end
6 M ← overlap penalty;
7 if tracking code error then
8 f(x) ← penalty f(x);
9 f(x) ← f(x) × M;

reset: tracking code
10 return f(x)
11 end

track: nParticles
12 Calculate parameters at injection-point;
13 nLoss ← number of macro-particles lost;
14 if nLoss > 0.7 × nParticles then
15 f(x) ← penalty f(x);
16 else
17 for parameters in objParams do
18 f(x) ← f(x) þ (weight(parameter—target)2)
19 end
20 f(x) ← log(f(x)þ weight × nLoss) × M;
21 return f(x)
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