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1 Introduction

The Super-Kamiokande (SK) water Cherenkov detector is utilized to study a wide range of physics; it
has measured neutrinos from various sources (solar [1], atmospheric [2], and accelerator [3]), while
searching for nucleon decay [4] and supernova neutrinos [5]. While SK efficiently detects relativistic
charged particles with small masses, like electrons, muons, and pions, heavy particles with low
momentum or no charge, such as protons and neutrons, produce little or no Cherenkov light and
cannot be easily detected. However, the ability to detect neutrons, though challenging, is expected
to improve the sensitivity of various analyses [6]. As an example, the detection of neutrons can
improve the statistical separation of neutrinos and anti-neutrinos since neutrino events are expected to
produce fewer neutrons than anti-neutrino events. The clearest example is the anti-neutrino charged
current quasi-elastic (CCQE) interaction, which produces neutron in the final state but the neutrino
CCQE produces proton instead. Improving this separation can enhance sensitivity to the neutrino
mass ordering via analysis of atmospheric neutrino oscillations. Further, the observed number of
neutrons is correlated with the incident neutrino energy, making it possible to improve estimations
of the parent energy in atmospheric neutrino interactions. Detection of neutrons can also help to
reduce backgrounds to nucleon decay searches, since their main backgrounds, atmospheric neutrino
events, are frequently associated with neutrons, while neutron ejection from nucleon decay in oxygen
is expected to be rare. Neutron tagging has been demonstrated as a powerful tool for background
reduction in recent nucleon decay searches [7].

The neutron detection method presented here relies on observing the gamma ray produced
in neutron capture on hydrogen. Neutrino or anti-neutrino interaction produces neutrons and the
produced neutrons travel in the SK water and thermalized. The thermalized neutron will eventually
be captured by an oxygen or hydrogen nucleus, with capture cross sections of 0.19 mb and 0.33 b,
respectively. Therefore, almost all the neutrons are captured by hydrogen, with a characteristic
capture time of 204.8 ± 0.4 μs [8]. This results in the emission of a 2.2 MeV gamma ray,

𝑛 + 𝑝 → 𝑑 + 𝛾 (2.2 MeV) (1.1)

as shown in figure 1.
The gamma ray may then scatter electrons (Compton scattering) in the water, accelerating some

of them above the Cherenkov threshold. Identifying the light from those electrons can be used to
infer the presence of the gamma ray and hence its parent neutron. However, it is not simple to identify
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Figure 1. A sketch of neutron production and capture by hydrogen. Anti-neutrino charged current quasi-elastic
scattering produces a neutron. The neutron travels in the SK detector (water), thermalized, and eventually
capture by hydrogen. When the neutron is captured by hydrogen, 2.2 MeV gamma ray is emitted.

2.2 MeV gamma rays from neutron captures on hydrogen; the conventional event reconstruction
threshold at SK is∼ 4 MeV, which corresponds to 34 hit PMTs, while the typical number of hits from a
2.2 MeV gamma ray is 7. As a result of our inability to fully reconstruct neutron captures on hydrogen,
we instead developed dedicated neutron tagging techniques. This neutron tagging technique was first
demonstrated in SK in 2009 [9] as a means to reduce background events in the search for supernova
relic neutrinos [5]. Neutron tagging was used in previous atmospheric neutrino and proton decay
analyses by Super-Kamiokande [10–12]. However, a detailed description of the neural network has
not yet been published. In this paper we provide that description. We also document improvements
and extensions being used for current analyses. Differences between the present method and that used
in previous analysis’s are described in section D. In this paper we also demonstrate the performance
of the algorithm by applying our tagging algorithm to atmospheric neutrino MC and data.

2 Super-Kamiokande

2.1 Detector

Super-Kamiokande is located 1,000 meters (2,700 meters-water-equivalent) below Mount Ikenoyama
in Gifu, Japan [13]. It consists of a 50 kiloton (kton) cylindrical tank filled with ultra-pure water,
which is divided into a 32 kton inner detector (ID) surrounded by an 18 kton outer detector (OD). The
ID and the OD are optically separated by Tyvek sheeting. The ID is observed by 11,129 inward-facing
20-inch photo multiplier tubes (PMTs), while the OD is observed by 1,885 outward-facing 8-inch
PMTs. The ID provides most of the information used in event reconstruction, while the OD is used
as an active cosmic ray veto and to provide information regarding particles escaping from the ID.

2.2 Event categories

Generally speaking, events in SK with more than 100 MeV of deposited energy in the detector are
separated into three categories during data reduction. Fully-contained (FC) events are events with
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PMT activity only in the ID. Partially-contained (PC) events have activity in both the ID and the OD
but are reconstructed to have originated from inside the ID. Upward-going muon (UPMU) events are
events with both ID and OD activity but which are reconstructed to have originated from outside
the ID and enter from below the horizon. Accordingly, nearly all UPMU events are muons from
neutrino interactions in the rock around the detector. In this paper, the neutron tagging method is
only applied to the FC event sample.

2.3 Triggers and events

The SK data acquisition system was upgraded for the start of the SK-IV run period from October
6th, 2008 [14]. The hardware trigger used during the previous periods, SK I-III, was replaced with
a software trigger in SK-IV. This new software trigger allows different timing gate widths to be
set depending on the nature of a particular event. There are five standard triggers used in SK-IV,
which are summarized in table 1. For example, the SHE (Super High Energy) trigger threshold of 70
hits (reduced to 58 hits later on in SK-IV) in a 200 ns window corresponds to the number of hits
an electron of about 10 MeV (8 MeV) produces in the detector. While the 40 μs gate width of the
SHE trigger is long enough to record the hits from relativistic particles and their decay products, the
longer neutron capture lifetime means that only around 15% of thermal neutrons are captured before
the end of the SHE gate. In order to detect hits from later neutron captures, all SHE triggers which
do not have a corresponding OD trigger are followed by an additional trigger called AFT (AFTer
trigger), which records from 35 μs to 535 μs after the SHE trigger was issued. At the beginning of
SK-IV, the event gate width was up to 385 μs, instead of 535 μs. During this period, the efficiency
is ∼ 14% lower than the later data taking period with the longer event gate width. However, this
configuration was used for just 30 days, representing less than 1% of the current data set. Therefore,
the effect of this period is neglected in the discussions that follow. In order to reduce the total amount
of data, the AFT trigger is not issued following an OD trigger, because an OD trigger indicates that
the event is not categorized as FC but as cosmic ray, PC, or UPMU. As a result, the neutron tagging
method can only be applied to FC atmospheric neutrino or nucleon decay candidate events. We
estimate that the combined SHE and AFT triggers cover 93% of neutron captures from FC events.

Table 1. Trigger information for SK-IV. The abbreviations are as follows: OD (Outer Detector), SLE (Super
Low Energy), HE (High Energy), SHE (Super High Energy) and AFT (After). There are ∼9 hits of dark noise
in 200 ns, and 6 hits correspond to ∼1 MeV electron-equivalent energy. There are two trigger threshold values
for SLE and SHE in the table. In the beginning of SK4, we set the threshold of SLE to 34 hits but later the
threshold value was lowered by 3 hits. Similarly, the SHE threshold was changed from 70 to 58 during SK4.

SK-IV Triggers Hits/200 ns Threshold Event Width (μs)
OD 22 (in OD) −5 → 35
SLE 34–31 −0.5 → 1.0
HE 50 −5 → 35
SHE 70–58 −5 → 35
AFT SHE, no OD 35 → 535

– 3 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
1
0
0
2
9

3 Simulation

The atmospheric neutrino Monte-Carlo (MC), corresponding to a 500 years exposure of the detector,
is used to optimize and estimate the performance of the neutron-tagging software. The atmospheric
neutrino flux is provided by Honda et al. [15]. The interactions of neutrinos in water are simulated
using the NEUT simulation software (v5.3.6) [2, 16]. NEUT also simulates nuclear interactions to
propagate particles through the nuclei in which they were created. Particles are then propagated
through the detector; its response is simulated by a GEANT3 [17] based simulation of SK called
SKDETSIM [18]. Hadrons except for low momentum pions are simulated by the GEANT3
interface with the CALOR [19] package, which uses HETC [20] for hadrons below 10 GeV, FLUKA
(GFLUKA) [21] for hadrons above 10 GeV, and MICAP [22] for neutrons below 20 MeV. The
propagation of pions below 500 MeV/c in the water are simulated by NEUT. The low energy cutoff
for neutral hadrons is set to 10−5 eV so that neutrons continue to be simulated until they are captured.

Uncorrelated PMT dark noise is the only source of background hits simulated by SKDETSIM.
PMT after-pulsing, which occurs between 12 and 18 μs, creates a slight increase in the hit rate as seen
in figure 2, but it is not modeled in SKDETSIM. Therefore, the search for neutron capture begins
18 μs after the primary trigger in order to avoid possible biases due to this after-pulsing. Based on the
MC result, assuming the previously measured capture lifetime of neutrons in water, 204.8 μs [8], this
reduces the maximum efficiency for neutron capture from 93% to 84%. Other low energy sources
in the detector, such as radioactive decays from the surrounding rock, radon contamination in the
water, and radioactive contaminants in the tank structure [23, 24] also generate random background
hits. These backgrounds do not affect the reconstruction of higher energy particles, so they have
been neglected in the simulation program for the atmospheric neutrino samples. In addition, hits
from low energy sources are correlated in space and time, yet the low energy sources are difficult to
model. Background hits from low energy backgrounds could mimic a 2.2 MeV gamma ray signal
from neutron capture, which only produces around 7 hits in the detector. Therefore, it is necessary
to accurately account for them. Our method is to overlay randomly triggered data events to account
for both noise from the PMTs and these unmodeled processes.

In total, about 1.9 million random trigger events with a gate width of 1 ms were collected in
2009. When an MC event is produced, PMT dark noise is simulated by SKDETSIM up to 18 μs and
thereafter the dark noise is provided by real hits from the random trigger events. The 900 ns channel
dead-time of the SK-IV digitizer is modeled by removing any hit occurring less than 900 ns after a
previous hit. This hybrid MC technique is illustrated in figure 3. Our 500 year MC samples contain
about 2.5 million FC events, which means that some random trigger events are shared between two
MC events due to the shortage of the random trigger events. In these cases the first 517 μs of a
random trigger event is used for one event and the hits from 483 μs to 1 ms are used for the other
event, a slight overlap with negligible effect on the analysis.

4 Neutron tagging algorithm

Before the neutron tagging is performed, all FC events are analyzed using the standard SK
atmospheric neutrino event reconstruction software (APFit) [18]. This software reconstructs
information associated with the primary event, including finding its vertex position in the detector,
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Figure 2. Hit rates over the course of an event, taken from the average of SK-IV events. Note the suppressed
zero on the 𝑥-axis. The falling exponential on the left of the plot is due to decay electrons. The increase due
to PMT after-pulsing in the 12 to 18 μs region can be clearly seen. After the PMT after-pulsing, the hit rate is
flat for the rest of the event window.

Figure 3. Diagram of MC construction procedure. Random trigger data are superimposed on simulated PMT
hits from neutron capture events 18 μs after the primary interaction.
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counting the number of the Cherenkov rings, identifying each Cherenkov ring as showering-like or
non-showering-like, reconstructing its momentum, and finding 𝜋0 candidates and decay electrons.
Neutron tagging is then performed as a two-step process. Approximately seven Cherenkov photons
are expected to be detected from a 2.2 MeV 𝛾, as shown in figure 4. The number of hits in 10 ns after
time-of-flight (ToF) subtraction is slightly smaller than the total number of PMT hits even though
the duration of the Cherenkov photon emission is nearly instantaneous. This is because some of
the Cherenkov photons are scattered in the detector and as a result travel a longer distance before
detection. Therefore, the first step in the neutron tagging process is to search in time for clusters of

Number of hits
0 5 10 15 20 25 30

A
rb

itr
ar

y 
un

it

0

200

400

600

800

1000

1200

Number of hits

Number of hits in 10ns

Figure 4. Number of hit PMTs in SK for 2.2 MeV 𝛾 using the SK detector simulation program. No noise is
simulated and only the Cherenkov photons from the 2.2 MeV 𝛾 are recorded. The black histogram shows the
total number of PMT hits. The blue histogram shows the largest number of hit PMTs in 10 ns obtained by
using the 10 ns sliding window. In searching for the largest number of hit PMTs, the time-of-flight (ToF) from
the generated point of 2.2 MeV 𝛾 is subtracted from each timing of PMT hit.

hit PMTs. These clusters are chosen as candidate neutron captures. During the second step, a neural
network is used to differentiate real neutron capture candidates from backgrounds. Details of the
neural network are described in section 4.2.

4.1 Step one: initial candidate selection

The MC sample shows that 70% of neutrons are captured within 200 cm of the initial interaction
vertex. In the search for clusters of hits in time, each PMT’s hit timing is corrected for each photon’s
ToF from the primary event vertex (neutrino vertex), which is reconstructed by APFit, to give a
residual time.

– 6 –
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A 10 ns sliding window is then used to search for clusters of hits in the residual time. This
width was selected to take into account the distance from the actual neutron capture to the neutrino
vertex, the 2.2 ns timing resolution of the PMT, and contamination from accidental background hits,
which is expected to be ∼ 0.5 hits per event in a 10 ns window. If there are five or more hits in the
10 ns window, the cluster is selected as a possible neutron candidate. The number of hits in the 10 ns
sliding window is defined as 𝑁RAW

10 , and the earliest timing of the hit in the 10 ns sliding window is
defined as 𝑡0. If multiple candidates are found with their 𝑡0 values within 20 ns of each other, only
the candidate with the largest 𝑁RAW

10 is considered. If there are two or more candidates which have
the same 𝑁RAW

10 , the last one is taken. This procedure avoids double counting the same neutron
capture as multiple candidates. The candidate is rejected if 𝑁RAW

10 is larger than 50, or the number of
hits in a 200 ns window around the candidate (𝑁200) is larger than 200. The maximum distance of a
point in the detector volume to a PMT is 50 meters. Therefore, 200 ns is sufficient to collect most of
the photons reaching a PMT without scattering. Accordingly, 𝑁200 is a good variable to roughly
estimate the total visible energy in the detector.

Scintillation from radioactivity in the PMT glass creates a time-clustered noise signal, which
can potentially increase the number of observed hits as described in section A. Such spurious hits
are removed using the variable, 𝑁10, which is similar to 𝑁RAW

10 . Here, 𝑁10 is the maximum number
of hits in a 10 ns sliding window around the 2.2 MeV 𝛾 candidate after removing the time-clustered
noise hits. In order to eliminate the time-clustered noise, hits are removed when there are multiple
hits from the same PMT within 12 μs when 𝑁RAW

10 is smaller than 7, and when there are multiple
hits from the same PMT within 6 μs otherwise. A hit cluster, with 𝑁10 5 or greater, is regarded
as a neutron candidate. Figure 5 shows the distributions of 𝑁RAW

10 and 𝑁10 for the neutron signal
and the background from the simulation. Removing noise hits is shown to be effective in reducing
background clusters without a significant loss of signal clusters.

(a) (b)

Figure 5. Distributions of 𝑁RAW
10 and 𝑁10 (see text for definitions) for background clusters (left) and true

neutron clusters (right). Both histograms were made using the same number of primary atmospheric neutrino
MC events.

In order to evaluate the efficiency and background rate of the neutron tagging method using the
MC sample, the time difference between the 𝑡0 obtained from the neutron tagging algorithm and
the true capture time of the neutron is used. If the time difference is less than 100 ns, the candidate
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Figure 6. Absolute time difference between neutron candidates and the nearest true neutron capture in MC.
The flat tail is assumed to be the background candidate event rate, the spike above the background rate near
zero is from true neutron candidates. The dotted black line represents the cut dividing true neutron candidates
from fake neutron candidates.

is labeled as correctly-tagged, otherwise, it is labeled as fake. Figure 6 shows the absolute time
difference between each neutron candidate and the nearest true neutron capture in the MC. The flat
tail is used to estimate the background rate of fake candidates, while the excess on top of this flat rate
corresponds to true neutron candidates. By extrapolating the stable background rate into the region
around zero where the true neutron candidates appear, it is estimated that about 1.3% of neutrons
labeled in MC truth as true candidates are in fact fake, while 0.07% of true neutron candidates are
labeled in MC truth as fake. Based on MC truth, the simulation indicates an efficiency of 49% for
the candidate selection with a background rate of 22% fake candidates per event.

4.2 Step two: final candidate selection with neural network

Following the initial candidate selection, a neural network is used to separate the neutron capture
signal from various backgrounds. In the field of particle physics, neural networks are commonly used
as a tool for signal-background classification, and in this analysis, TMulitLayerPerception(TMLP)
library in ROOT software framework [25] is used to implement a feed-forward Multi-Layer Perceptron
(MLP). In total, twenty-three variables are used as the inputs to the neural network. The neural
network was trained on a 250-year-equivalent atmospheric neutrino MC using the MLP method. A
separate statistically independent 250-year-equivalent MC data set is then used for testing the trained
neural network. After the initial candidate selection process, there are about 1.7 million true neutron
candidates, and about 15 million background candidates in the full atmospheric neutrino MC.

Neutrons are typically captured within a few meters of the primary neutrino vertex and a
2.2 MeV 𝛾 ray is emitted if proton captures a neutron. The 2.2 MeV 𝛾 signal produces ∼ 7 PMT hits

– 8 –



2
0
2
2
 
J
I
N
S
T
 
1
7
 
P
1
0
0
2
9

with a timing distribution whose width is typically less than 10 ns after applying the ToF correction.
In SK, Cherenkov photons from highly relativistic particles are emitted on a cone with a 42 degree
opening angle with respect to the direction of the incident particle, while the azimuthal distribution
is uniform as shown in figure 7

Figure 7. Image of Cherenkov photon emission from a 2.2 MeV 𝛾. The yellow line shows the direction of 𝛾,
whose starting point is the neutron capture vertex, the orange filled circles show the hit PMTs, the red line
shows the direction to the 𝑖-th PMT viewed from the neutron capture vertex, and 𝜃𝑖 is the angle between the 𝛾

direction and the direction to the 𝑖-th PMT (opening angle), respectively.

Based on these general characteristics we have selected 23 variables to distinguish neutron-
induced signals from backgrounds as summarized in table 2.

These variables are classified into three categories, those related to the timing distribution of the
PMT hits, those related to the spatial distribution of the hits, and those related to the reconstructed
event’s vertex and energy.

The variables related to the timing distribution of the PMT hits are: the number of hits in
10 ns after ToF correction (𝑁10), the number of hits in 300 ns without ToF correction (𝑁300), the
root-mean-square of hit timing after ToF correction (𝑡rms), the minimum root-mean-square of the hit
timing distribution after ToF correction (min(𝑡rms)), the difference of 𝑁10 using the reconstructed
primary neutrino interaction vertex and the neutron vertex (Δ𝑁10), and the difference of 𝑡rms using
the reconstructed primary neutrino interaction vertex and the neutron vertex (Δ𝑡rms).

Variables that describe the event topology, such as the spatial charge distribution are: the
mean opening angle (𝜃mean) of PMT hits, the root-mean-square of the azimuthal angle (𝜙rms) of the
PMT hits, the number of clustered hits (𝑁c), the acceptance parameter (𝑃Acceptance), the Cherenkov
angle likelihood parameter (𝐿Cherenkov), the isotropy parameter (𝛽𝑙), and the number of hits on
low-probability PMTs (𝑁low).

– 9 –
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Finally, variables related to the event reconstruction are: the reconstructed energy using the
BONSAI fitter [26] (𝐵𝑆energy), the reconstructed neutron capture vertex position using BONSAI
(𝐵𝑆wall), the reconstructed neutron capture vertex position using the Neut-Fit fitter 𝑁𝐹wall, the
distance from the reconstructed primary neutrino interaction vertex and the reconstructed neutron
capture vertex ((𝑁𝐹 − 𝐴𝑃)dis), the agreement of the reconstructed neutron capture positions of
the two different reconstruction algorithms (𝑁𝐹 − 𝐵𝑆)dis), and the vertex distance to the ID wall
(𝐿towall). Details of the two vertex fitters, BONSAI and Neut-Fit, are described in section B.

Among the input parameters, 𝑁10 and 𝑁𝑐 have the first and the second most significant
correlation to the Neural Net output.

Table 2. List of neural net input variables.

Timing distribution of the PMT hits related parameters
𝑁10 the number of hits in 10 ns after ToF correction
𝑁300 the number of hits in 300 ns without ToF correction
𝑡rms the root-mean-square of hit timing after ToF correction
min(𝑡rms) the minimum root-mean-square of the hit timing

distribution after ToF correction
Δ𝑁10 the difference of 𝑁10 using the reconstructed primary

neutrino interaction vertex and the neutron vertex
Δ𝑡rms the difference of 𝑡rms using the reconstructed primary

neutrino interaction vertex and the neutron vertex
Event topology related parameters
𝜃mean the mean opening angle of PMT hits
𝜙rms the root-mean-square of the azimuthal angle of PMT hits
𝑁c the number of clustered hits
𝑃Acceptance the acceptance parameter
𝐿Cherenkov the Cherenkov angle likelihood parameter
𝛽𝑙 the isotropy parameter
𝑁low the number of hits on low-probability PMTs
Event reconstruction related parameters
𝐵𝑆energy the reconstructed energy using the BONSAI fitter
𝐵𝑆wall the reconstructed neutron capture vertex position

using BONSAI fitter
𝑁𝐹wall the reconstructed neutron capture vertex position

using the Neut-Fit fitter
(𝑁𝐹 − 𝐴𝑃)dis the distance from the reconstructed primary neutrino

interaction vertex and the reconstructed neutron capture
vertex

(𝑁𝐹 − 𝐵𝑆)dis the agreement of the reconstructed neutron capture
positions of the two different reconstruction algorithms

𝐿towall the vertex distance to the ID wall

– 10 –
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In the following subsections all neural network input variables are reviewed. Comparisons of
data and the Monte-Carlo simulation for each variable are summarized in section C.

4.2.1 Number of hits in 10 ns: 𝑵10

This is the same variable which is used to search for the initial candidates of the 2.2 MeV 𝛾 cluster.
As above, 𝑁10 is the maximum number of hits in a 10 ns sliding window around the 2.2 MeV 𝛾

candidate after the time-clustered noise cuts. The signal events tend to give larger 𝑁10 compared to
the background as shown in the left plot of figure 20.

4.2.2 Number of hits in 300 ns: 𝑵300

Cherenkov photons from a true neutron capture are almost completely contained in a 10 ns window in
residual time. However, a fake peak could be detected if there are a sufficient number of Cherenkov
photons emitted from a higher energy particle at a different vertex (as explained in figure 8).
Therefore, if there is a coincident higher energy event the reconstructed vertex may not be correct.

Figure 8. The usefulness of the 𝑁300 cut: (a) shows a typical neutron capture event and (b) shows a
hypothetical background signal to be rejected. The blue bars show dark noise hits and the red bars show the
hits from Cherenkov photons.

Considering the size of the detector and the effect of the ‘incorrect’ ToF subtraction, we have decided
to use 300 ns as the timing window for this variable. In order to reject these fake candidates, 𝑁300

is defined as the total number of hits in a ±150 ns window around the candidate peak. Then, the
variable 𝑁300 −𝑁10 is used as an input for the neural network because 𝑁10 is expected to have a larger
fraction of 𝑁300 for the signal compared to the background, as shown in the right plot of figure 20.

4.2.3 Root-mean-square of hit timing: 𝒕rms

The residual timing distribution is expected to have a narrower peak for signal events than for
background events. Therefore, the root-mean-square of the candidate hit timing, which is defined
in equation (B.1), is selected as one of the neural network input variables. In order to obtain the
ToF-corrected timing, we used the reconstructed vertex obtained by the Neut-Fit. The signal events
tend to give smaller min(𝑡rms) compared to the background as shown in the top plot of figure 21.
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4.2.4 Minimum root-mean-square of hit timing: 𝒎𝒊𝒏(𝒕rms)

Background PMT hits can sometimes occur in the 10 ns residual time window along with the hits
from a true neutron capture. For further reduction of these background hits, the RMS of the hit
timings is calculated for every set of three consecutive hits in the 10 ns window, as shown in figure 9).
Here, the Neut-Fit vertex is used to correct for the ToF.

t3rms

t6rms

0 ns 10 ns

Figure 9. The selection of 𝑚𝑖𝑛(𝑡rms) hit clusters. Optimal selections for clusters of 3–6 hits are shown for an
example candidate where 𝑁10 = 8. Possible background hits on the fringes of the candidate time are ignored.

The smallest value of all the sets is passed on as min(𝑡3rms). A similar quantity is also calculated
for sets of six hits and defined as min(𝑡6rms) and these two variables are used as the neural network
inputs. The hits from the signal are expected to be concentrated in time, and thus these variables are
smaller for the signal compared to the background, as shown in the bottom plots of figure 21.

4.2.5 Neut-fit root-mean-square of hit timing variable and number of hits in 10 ns: 𝚫𝒕rms,
𝚫𝑵10

The variable 𝑡rms is calculated twice, once with the hits which are ToF-corrected to the primary
event vertex, and again with the hits which are ToF-corrected to the Neut-Fit vertex. The difference
between the two 𝑡rms values is defined as Δ𝑡rms, and is used in the neural network. Note that when
𝑡rms is recalculated using the Neut-Fit vertex, additional hits can be moved into the 10 ns window
and can have the effect of increasing 𝑡rms. This means that sometimes Δ𝑡rms can be negative. Instead
of using the reconstructed vertex from APFit, 𝑁10𝑛 is defined as the value of 𝑁10 recalculated using
the vertex from Neut-Fit. The difference, Δ𝑁10, is defined as 𝑁10𝑛 − 𝑁10. These two variables are
expected to be close to 0 for the signal because the vertexes between the two reconstructions are
expected to be close for signal but not necessarily same for the background, as shown in figure 22.

4.2.6 Mean opening angle: 𝜽mean

In water, Cherenkov photons from highly relativistic particles are emitted on a cone with a 42
degrees opening angle with respect to the direction of the incident particle. Therefore, Cherenkov
photons from electrons that are Compton-scattered by a 2.2 MeV 𝛾 are expected to have a peak
opening angle around 42 degrees. In contrast, background candidates are not expected to form such
a peak. The direction of the Compton-scattered electron is reconstructed as the vector sum of the
directions from the Neut-Fit vertex to each PMT hit in the 10 ns window. Here, the timing of each hit
is ToF-corrected using the Neut-Fit vertex, and the opening angle to each hit PMT is then calculated
from this direction. The mean value of these angles is used as an input variable. The top left plot of
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figure 23 shows distributions of the mean opening angles for the signal and the background; a clear
peak around 42 degrees is observed for the signal.

4.2.7 Hit vector root-mean-square of the azimuthal angle: 𝝓rms

Cherenkov hits from a true neutron capture are expected to be distributed uniformly in the azimuth
of the reconstructed direction of the Compton-scattered electron. Background candidates, on the
other hand, are often geometrically concentrated and form compact clusters of hits. The variable
𝜙rms is computed by calculating the azimuthal angle of each hit with respect to the reconstructed
direction of the Compton-scattered electron, where the definition of the direction is same as the
one used to calculate 𝜃mean. Angles between consecutive hits in the azimuth are then calculated
such that the variable 𝜙rms is the root-mean-square of these angular differences. This variable is
expected to be small for a true neutron capture, since the steps between consecutive hits are fairly
uniform. For background events with spatial clusters, this variable is larger, since the steps are small
when stepping through hits in a spatial cluster and then become larger when moving away from the
cluster to other hits in the event. The top right plot of figure 23 shows the signal and the background
distributions for 𝜙rms.

4.2.8 Number of clustered hits: 𝑵c

Background candidates are often found to have geometrically-clustered PMT hits. Radioactive
contaminants in the PMT glass could be the source of these backgrounds, and since radioactive
products emit weak Cherenkov light, they may be detected by nearby PMTs. Conversely, because
the primary event vertex is required to be at least 200 cm from the wall, hits from a true neutron
capture are not expected to be clustered tightly together. This clustering tendency can thus be used
to separate the signal from the background.

Clusters are defined based on the opening angles between hits, viewed from the Neut-Fit
reconstructed vertex. Clusters are built starting with a single hit and hits are then added to the cluster
iteratively according to the following rule: if a hit is within 14.1 degrees of any hit in a cluster, it
is added to the cluster. The number of clustered hits, 𝑁𝑐, is defined as the total number of hits in
clusters of 3 or more hits.

The neural network uses 𝑁10 − 𝑁c as an input variable. Since the spatial distribution of PMTs
for signal events is expected to be broad, 𝑁10 is much larger than 𝑁𝑐 . On the other hand, 𝑁10 − 𝑁c is
expected to be small for background events, as shown in figure 23.

4.2.9 Acceptance parameter: 𝑷Acceptance

The probability to detect photons from a signal 𝛾 depends on the position of the PMT and its relative
orientation to the incoming photon. Most noise hits on the other hand do not have this dependency.
Therefore, it is possible to discriminate the signal from noise using this difference. First, we define
the probability 𝑃𝑖 for each PMT to detect Cherenkov photons using the distance from the neutron
capture position to the PMT and the direction. Then, the acceptance parameter, 𝑃Acceptance, is
obtained by multiplying the probability 𝑃𝑖 for all the PMTs used to calculate 𝑁10. Here 𝑃𝑖 and
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𝑃Acceptance are defined as follows:

𝐴𝑖 =
𝐹 (𝜃𝑖)
𝑅2
𝑖

𝑒−𝑅𝑖/𝐿 , (4.1)

𝐴Total =
∑︁
𝑖

𝐴𝑖 , (4.2)

𝑃𝑖 =
𝐴𝑖

𝐴Total
(4.3)

𝑃Acceptance =
log(∏𝑁10𝑛

𝑖
𝑃𝑖)

𝑁10𝑛
, (4.4)

where 𝐹 (𝜃𝑖) encodes the angular dependence of the PMT detection efficiency, 𝑅𝑖 is the distance
from the captured neutron position to the 𝑖-th PMT, and 𝐿 is the light attenuation length in water.
The Neut-Fit vertex is used in the calculation of distance (𝑅𝑖) and angle 𝜃𝑖 .

Acceptance values for signal neutron events are expected to be larger compared to those for the
backgrounds, as is shown in the left plot of figure 24.

4.2.10 Cherenkov angle likelihood parameter: 𝑳Cherenkov

Signal photons are expected to be distributed near 42 degrees from the direction of the relativistic
electron that produced them. In order to quantify this characteristic, a Cherenkov angle likelihood
parameter (𝐿Cherenkov) is defined as follows. First, cones are defined using combinations of three
PMT positions from 𝑁10𝑛 to specify a base, and the Neut-Fit vertex is used for the apex. The opening
angle of a given cone is defined as 𝜃𝑖 for the 𝑖-th PMT combination. The likelihood functions
𝐿bkg and 𝐿sig are constructed as functions of 𝜃𝑖, 𝑁10𝑛 and the products of probabilities defined
in equation (4.3) for those three hits (

∏3
𝑗=1 𝑃 𝑗). Then the Cherenkov angle likelihood parameter

(𝐿Cherenkov) is defined as:

𝐿Cherenkov =

𝑁10𝑛C3∑︁
𝑖=0

(log(𝐿bkg(𝑁10𝑛, 𝜃𝑖 ,

3∏
𝑗=1

𝑃 𝑗)) − log(𝐿sig(𝑁10𝑛, 𝜃𝑖 ,

3∏
𝑗=1

𝑃 𝑗))). (4.5)

The distribution of this likelihood parameter for the signal and the background is shown in
figure 24, where the values for the signal events are clearly smaller compared to the ones for the
background events.

4.2.11 Isotropy parameter: 𝜷𝒍

Isotropy parameters are introduced to characterize the spatial distribution of the detected photons.
First, 𝛽𝑙 is defined as follows:

𝛽𝑙 =
2

𝑁10𝑛 (𝑁10𝑛 − 1)

𝑁10𝑛−1∑︁
𝑖=1

𝑁10𝑛∑︁
𝑗=𝑖+1

𝑃𝑙 (cos 𝜃𝑖 𝑗), (4.6)

where 𝜃𝑖 𝑗 is the opening angle between two PMTs with hits as viewed from the reconstructed neutron
vertex with Neut-Fit. Here 𝑙 is a natural number which has been chosen to be smaller than 6 in this
analysis and 𝑃𝑙 is formed from spherical harmonics. These 𝛽 parameters are constructed as follows.
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At first, we define a function 𝑓 (𝜃, 𝜙), which gives 1 when there is a PMT which has detected a
photon and gives 0 otherwise. Here, 𝜃 and 𝜙 are zenith and azimuthal angles of the PMT viewed
from the Neut-Fit vertex. The 𝑓 (𝜃, 𝜙) is expressed using the spherical harmonic function 𝑌 ∗

𝑙𝑚
(𝜃, 𝜙),

𝑓 (𝜃, 𝜙) =
∞∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝛼𝑙𝑚𝑌
∗
𝑙𝑚(𝜃, 𝜙). (4.7)

Here we define the position of 𝑖-th hit PMT as (𝜃𝑖 , 𝜙𝑖), then 𝛼𝑙𝑚 is

𝛼𝑙𝑚 =

∫ ∫
𝑓 (𝜃, 𝜙)𝑌𝑙𝑚(𝜃, 𝜙)𝑑𝜃𝑑𝜙 (4.8)

=

𝑁10𝑛∑︁
𝑖=1

𝑌𝑙𝑚(𝜃𝑖 , 𝜙𝑖). (4.9)

Next we define the rotationally invariant variable 𝛽′
𝑙
,

𝛽′𝑙 =
∑︁
𝑚

|𝛼𝑙𝑚 |2 (4.10)

=
∑︁
𝑖, 𝑗

∑︁
𝑚

𝑌𝑙𝑚(𝜃𝑖 , 𝜙𝑖)𝑌 ∗
𝑙𝑚(𝜃 𝑗 , 𝜙 𝑗) (4.11)

=
2𝑙 + 1

4𝜋

∑︁
𝑖, 𝑗

𝑃𝑙 (𝑐𝑜𝑠𝜃𝑖 𝑗). (4.12)

𝛽′
𝑙

depends on the number of PMT hits and also, same combinations of PMTs are used multiple
times. Therefore, we use 𝛽𝑙, which is defined as shown in equation (4.6), instead of 𝛽′

𝑙
.

The distributions of 𝛽𝑙 used in the neural network are shown in figure 25. As shown in these
figures, the signal events concentrate around 0.35 for 𝛽1 and around 0 for other values of 𝑙, while
backgrounds have broader distributions and have peaks at around 1.

4.2.12 Alternative fit variables: 𝑩𝑺wall, 𝑵𝑭wall and 𝑩𝑺energy

It is known that Radon emanates from the SK detector components, in particular the PMTs, their
signal and HV cables, and the anti-implosion PMT housings. The subsequent decay of Radon
produces background events concentrated near these materials and hence close to the inner detector
wall. Therefore, the distance between the neutron vertexes reconstructed by alternative event
reconstruction tools and the nearest inner detector wall is selected to separate the signal from the
background. We have used two event reconstruction tools, BONSAI and Neut-Fit. The variables
𝐵𝑆wall and 𝑁𝐹wall are calculated using BONSAI and Neut-Fit, respectively and the distributions are
shown in the top plots of figure 26. BONSAI also gives the reconstructed energy and this variable
(𝐵𝑆energy) is expected to be around 2.2 MeV for true neutron captures. Therefore, this variable is
also used as one of the inputs. The bottom plot of figure 26 shows the distribution of 𝐵𝑆energy there
is a clear peak at 2.2 MeV for signal but much broader distribution for background.

4.2.13 Fit agreement variables: (𝑵𝑭 − 𝑩𝑺)dis, (𝑵𝑭 − 𝑨𝑷)dis

Neut-Fit and BONSAI use different fit criteria and procedures to search for low energy event vertexes.
When they agree well on the location of an event, it is likely to be a real low energy event, as opposed
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to simply PMT noise. Therefore, the distance between these two vertexes (𝑁𝐹 − 𝐵𝑆)dis is also
selected as an input to the neural network and the distribution is shown as the left plot of figure 27.
Furthermore, neutrons are expected to travel no further than a few meters from their production
points before thermalizing and being captured, as shown in the right plot of figure 27. Therefore, the
distance between the Neut-Fit neutron vertex and APFit primary vertex, (𝑁𝐹 − 𝐴𝑃)dis is also used
as an input to the neural network.

4.2.14 Distance to the ID wall parameter: 𝑳towall

We define the distance from Neut-Fit’s reconstructed neutron vertex to the ID wall in the direction
of the particle as “to wall” (𝐿towall). The direction of the particle is defined by the sum of the vectors
from the reconstructed neutron vertex to each hit PMT. The distribution of 𝐿towall is shown in figure 28.
As shown in the figure, the noise distribution has a larger mean value compared to the signal.

4.3 Neural network results
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Figure 10. Neural network output for selecting final neutron candidates. The plots show the output for
different values of 𝑁10: 5 in the top left panel, 6 in the top right, and 7 or more in the bottom panel. The
green histogram corresponds to the neutron capture signal, the red histogram shows the total MC, and the
overlaid black points show the data, respectively. The red histogram is normalized to the number of neutron
capture events in the atmospheric neutrino event samples from the full SK-IV data set, which spanned 3,244.4
days between October 2008 and May 2018. Black lines and arrows in each plot show the threshold values for
selecting candidates. Since noise contamination is larger for small 𝑁10 candidates, different threshold values
were chosen to ensure the mis-identification rate is below 0.018 per neutrino interaction. The threshold values
are 0.92 when 𝑁10 is 5, 0.908 when it is 6, and is 0.874 for 7 or more.
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The output of the neural network is shown in figure 10 and is defined such that it is approximately
equal to the likelihood of that candidate being a true neutron capture. The neural network successfully
separates the true neutron candidates from the fake neutron candidates. As described above, a
neutron candidate is identified as a “true candidate” if the time difference between it and the true
capture time of an MC neutron is less than 100 ns. Threshold values for selecting neutron candidates
are chosen such that the mis-identification of noise events is less than 0.018 per neutrino interaction.
Since the fraction of noise events increases dramatically when 𝑁10 decreases, the chosen thresholds
vary based on this parameter. The thresholds are 0.92 for 𝑁10 = 5, 0.908 for 𝑁10 = 6 and 0.874
when 𝑁10 > 6. When applied to the 500 year atmospheric neutrino MC data, these cut values give a
final neutron tagging efficiency of 26% with 0.016 background neutron tags per primary event as
shown in table 3. Here, there are sufficient MC statistics to make statistical error negligibly small.

Table 3. Final efficiency and background rate of the neutron tag algorithm after each stage of the selection.

Selection stage Efficiency Background / Event
Initial Selection 49% 22

After Neural Network 26% 0.016

The efficiency is heavily dependent on the distance between the neutrino interaction and the
neutron vertex and is mildly dependent on the energy deposited in the detector, as shown in the top two
plots in figure 11. Here, the total energy deposit in the detector is defined as the electron-equivalent
energy (𝐸vis). It also depends on the vertex position of the primary event in the detector. If the
primary event is close to the center of the tank, the attenuation in the water reduces the amount of
light reaching the PMTs and the detection efficiency decreases. However, if the event is too close to
the tank wall, the PMT acceptance is reduced and the efficiency also decreases. As shown in the
bottom plot in figure 11, the efficiency is maximal for events in the region between the center and
edge of the fiducial volume.

5 Comparison with SK-IV data

The neutron tagging algorithm was applied to 3,244.4 days of SK-IV FC data and compared to a 250
years sample of atmospheric neutrino MC data, which included oscillations. This SK-IV data set
corresponds to 26,473 FC events whose reconstructed vertexes are at least 200 cm from the ID wall.
The details of the atmospheric neutrino event selection are discussed in a previous article [2]. The
MC sample is livetime-normalized and oscillated using a two-flavor oscillation approximation with
Δ𝑚2 = 2.5 × 10−3 eV2 and sin2 2𝜃 = 1.0. A summary of the comparison is shown in table 4. The
agreement between the observed number of atmospheric neutrino events and the MC prediction
without any corrections is typically within ∼5%. In other analyses at SK, nuisance parameters
modeling flux or neutrino interaction uncertainties are applied to modify the MC expectation to
agree with the data. However, the present study does not include these corrections. Note that only
events whose electron-equivalent energy (𝐸vis) is smaller than 30 GeV are used here. At higher
energies, the flux is highly suppressed and neutrino interactions have a large neutron multiplicity,
which is not modeled well in our Monte-Carlo simulation programs, NEUT and SKDETSIM.
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Figure 11. Dependencies of the 2.2 MeV detection efficiency on the distance traveled by the neutron (top left),
the visible energy of the primary neutrino interaction (top right) and the efficiency of detecting neutrons as a
function of distance from the closest ID wall (bottom). The efficiency is defined as the number of selected
candidates divided by the number of true neutron capture events in each bin.

Table 4. A comparison of the expected and measured number of neutron capture events in the SK-IV
atmospheric neutrino SK-IV data. The MC data sample is normalized to the data livetime and oscillated under
a two-flavor approximation: Δ𝑚2 = 2.5 × 10−3 eV2 and sin2 2𝜃 = 1.0.

Sample SK-IV Data (3,244.4 days) MC
Fully contained events 26,473 25,845
Total neutrons tagged 18,091 18,288

Events with at least one tagged neutron 9,327 8,912.7
Events with exactly one tagged neutron 5,676 5,138.3

The difference between each tagged neutron’s timing and the primary event timing is shown
in figure 12. By fitting the data to a falling exponential with a constant offset, a capture lifetime
of 218 ± 9 μs was extracted with a 𝜒2 of 33.1 for 25 degrees of freedom. This is consistent with
the previously measured lifetime of 204.8 ± 0.4 μs [8]. By assuming that the falling exponential
part of the fit is from true neutrons while the flat constant is from backgrounds, it is estimated that
100%± 3.23% of tagged neutrons correspond to true neutron captures. Performing the same analysis
on MC resulted in 97.9% ± 3.94%, which is consistent with the results from the data. The total
number of events with neutrons, the average multiplicity, and the neutron multiplicity subdivided into
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sub-GeV (𝐸vis < 1, 330 MeV) and multi-GeV (𝐸vis > 1, 330 MeV) samples are shown in figure 13.
These plots are normalized to the data livetime and the MC includes oscillations as described above.
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Figure 12. Timing distribution of selected 2.2 MeV 𝛾 candidates. The primary trigger is at 𝑡 = 0. The blue
curve is the best fit to an exponential function with a constant offset. Data are taken from 3,244.4 days of
SK-IV and the MC is normalized as in table 4.

6 Systematic error study using the americium-beryllium source

In order to study the efficiency of neutron tagging with a well-defined control sample, calibration
data sets were collected in 2016 by deploying an americium-beryllium (Am-Be) source in the SK
detector. The 241Am emits an 𝛼-particle which interacts with 9Be and emits a neutron as follows:

𝛼 + 9Be → 12C∗ + 𝑛 (6.1)
12C∗ → 12C + 𝛾 (4.43 MeV) (6.2)

or

𝛼 + 9Be → 12C + 𝑛 (ground state) (6.3)

The intensity of the 241Am source was 97 μCi and the emission rate of 4.43 MeV 𝛾 was measured to
be 87 Hz. From this measurement the ground state transition rate was estimated to be 76 Hz [9]. As
shown in figure 14, the Am-Be source is embedded in a 5 cm cube of bismuth germanium oxide
(BGO) scintillator to amplify the light released by the 4.43 MeV 𝛾. This scintillation light is used to
trigger the SK detector and initiate a search for a subsequent neutron capture signal. The ground-state
transition produces an irreducible constant background of neutrons. Upon triggering, an extended
time window of −5 → 835 μs is stored in order to study the detection efficiency.
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Figure 13. Comparison of data and MC for tagged neutrons in the SK-IV atmospheric neutrino data. The top
left (right) plot shows the total number of neutrons (average neutron multiplicity) as a function of visible
energy (𝐸vis). The bottom left plot shows the neutron multiplicity for sub-GeV events (𝐸vis < 1.33 GeV) and
the bottom right plot shows that for multi-GeV events (𝐸vis ≥ 1.33 GeV). These plots are normalized to the
number of neutrino events observed in the data. Only statistical errors are shown.

Figure 14. Am-Be crystal embedded in a 5 cm cube of BGO scintillator. This is held in an acrylic case.

The Am-Be source was placed at three different locations in the SK tank: the position called
Center is (35.3,−70.7, 0) cm, the position called Y12 is (35.3,−1201.9, 0) cm, which is close to the
barrel wall, and the position called Z15 is (35.3,−70.7, 1500.0) cm, which is close to the top of the
tank. In order to estimate the accidental background, we have also collected randomly triggered data
with this source.
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6.1 Am-Be data selection

The primary selection criteria for 4.43 MeV 𝛾 events is based on the number of p.e. detected in the ID.
The total observed p.e. from the BGO scintillator placed at the center of SK is shown in figure 15. We
have studied the shape of the p.e. distribution from the BGO scintillator with a dedicated Monte-Carlo
simulation program based on GEANT4. A qualitative study of the simulation results suggested that
the interactions of neutrons in the BGO scintillator produce a large number of p.e. and the shape
of the tail agrees quite well with the data. The discrepancy between the data and the simulation
in the tail region is coming from the uncertainty of the light emission of BGO for neutron. In order
to select the prompt events triggered by a 4.43 MeV 𝛾, the selection criteria are defined as follows:

Center: 750 < p.e. < 1, 050
Y12: 850 < p.e. < 1, 150
Z15: 900 < p.e. < 1, 150.

Since the light attenuation from the source position to the PMTs is different for different source
positions, different cut values are used.
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Figure 15. Total photo-electrons from 4.43 MeV 𝛾 scintillation events with the Am-Be source positioned
at the center of the tank. The black points show the data. The histogram shows the distribution obtained
by the Monte-Carlo simulation. The green shaded area corresponds to the events originated by 𝛾, the blue
shaded area corresponds to the events originated by neutron and 𝛾, and the purple shaded area corresponds
to the events originated by neutron. Events with 750 < p.e. < 1, 050 were selected to trigger 4.43 MeV 𝛾

events. The Monte-Carlo histogram is normalized to the number of events of the data, whose total charge is
750 < p.e. < 1, 050. The events in the gray shaded area are not used for the analysis.

In addition, the primary 4.43 MeV 𝛾 event is required to be at least 1.5 ms later than the previous
primary event in order to avoid contamination from prior neutron emissions. A search for delayed
activity is then performed using the number of hits in a 200 ns sliding time window (𝑁200). If there
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is a timing cluster whose 𝑁200 is larger than 49 hits, this event is rejected to eliminate possible
contamination from cosmic ray muons or other background sources. In this search, the evaluation of
𝑁200 starts 200 ns after the primary event, as the BGO crystal scintillator has a long decay component.

6.2 Am-Be data analysis

Neutron tagging is applied to the selected Am-Be events and a corresponding MC sample. Here we
use the same neural network trained for the atmospheric neutrino data analysis. Since the kinetic
energy is much lower for the neutrons coming from the Am-Be source (from 2 to 10 MeV) compared
to the neutrons produced by the atmospheric neutrino interactions, the capture positions of the
neutrons are expected to be much closer. Therefore, the location of the source is used as the capture
position for the ToF corrections for both real data and MC in the analysis. The other difference
is that the total number of photons from the primary 4.43 MeV 𝛾 is small so there is no need to
take into account the after-pulsing of the PMTs. Also, the gate width for this data is enlarged to
835 μs and the neutron search timing window is accordingly enlarged from 18–535 μs to 10–835 μs.
Simulated events are produced by injecting neutrons in the detector with an energy spectrum based
on an 𝛼-Be capture (equation (6.1) to (6.3)) as given in reference [27].

6.3 Systematic uncertainty evaluation

Systematic uncertainties on the neutrino tagging method are evaluated for the initial and final
candidate selection steps independently. Since the first selection uses 𝑁10 to select candidates, a
comparison of the MC and data in this variable is used to estimate the systematic uncertainty. This
variable is known to have a strong dependence on the photon detection efficiency of the PMTs, which
is the dominant source of the uncertainty. In the error analysis, simulations with different photon
detector efficiencies are generated and compared against the background-subtracted 𝑁10 distribution
in the data. Figure 16 shows the 𝑁10 distributions of the data, together with the true neutron and
the background from the MC. Here, random trigger data taken at the same time as the calibration
run is used as the background in the MC. The MC has been normalized to the number of events
collected with the Am-Be source deployed. These distributions show good agreement indicating the
background can be safely subtracted.

The left plot of figure 17 shows the distributions of 𝑁10 for the background-subtracted data and
simulation, with the nominal value used for the photon detection efficiency in the simulation. Fitting
this data assuming different detection efficiencies yields the 𝜒2 distribution shown in the right plot
of figure 17. The minimum value of the 𝜒2 was obtained when the photon detection efficiency is
changed by −0.9%. A 2.2% change is allowed at 1𝜎 which corresponds to a 1.7% change in the
number of candidates passing the initial selection.

The final event selection is done using the neural network. The systematic uncertainty for this
step is evaluated by comparing the relative neutron tagging efficiencies between data and MC for
candidates that pass the initial selection. This relative efficiency (𝜖𝑟 ) is defined as 𝜖𝑟 = 𝜖NN/𝜖IS,
where 𝜖IS is the efficiency for identifying the neutron using the initial candidate selection and 𝜖NN is
the efficiency for identifying the neutron using the neural network selection. Before estimating the
efficiencies, we checked whether the neutron tagging algorithm is working properly with the Am-Be
data. For this purpose, the neutron capture time was fitted using the initial candidates and those
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Figure 16. 𝑁10 after the initial selection of the Am-Be calibration data. The green histogram shows the true
neutron in the MC, the blue histogram shows the sum of the true neutrons and background in the MC, and the
black filled circles with error bars show the data. The blue histogram has been normalized to the number of
real data events. The last bin contains the overflow events.

Figure 17. The 𝑁10 distribution after the initial selection (left). Black points show the data after background
subtraction and the red histogram shows the true neutron distribution from the Monte-Carlo simulation. The
photon collection efficiency is set to its nominal value in this figure. The 𝜒2 distribution from a fit to the data
as a function of the simulated photon detection efficiency (right). Black points show the data and the red line
shows the result of a fit with a parabolic function.

passing the neural network. Figure 18 shows the distribution of the neutron capture times. All the
obtained capture times are close to 200 μs, which are consistent with the past measurements.

Using three data samples taken at the three different Am-Be positions, Center, Z15, and Y12,
the efficiencies of the initial selection 𝜖IS and 𝜖NN are calculated for both data and MC sample. The
obtained 𝜖𝑟 values for the data and the MC sample are summarized in table 5 and the maximum
efficiency difference is 8.8%.

In summary, there is a 1.7% uncertainty in the initial selection and an 8.8% uncertainty in the
neural network selection. Therefore, we assign ±9.0% as the neutron detection uncertainty.
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Figure 18. Neutron capture times for data and MC with the Am-Be source. The upper two figures show the
capture time for events passing the initial selection. The bottom two figures show the capture time after the neural
net selection. Black dots show the data while the blue lines in the upper two plots are reference lines assuming
a capture time of 205 μs. Blue lines in the lower two plots show the results of fits for the neutron capture time.

Table 5. Relative neutron tagging efficiencies (𝜖NN/𝜖IS) in percent obtained for the Am-Be sample.

Data MC data (MC - Data)/Data

Center 62.7% 60.0% −4.5%

Z15 62.5% 67.0% 8.8%

Y12 68.1% 65.9% −3.2%

7 Conclusion

A new neutron tagging technique has been developed for identifying neutrons produced in the
atmospheric neutrino data sample of Super-Kamiokande-IV. A tagging efficiency of 26%, with
the accidental background rate of 0.016 per neutrino event, has been achieved. The error of the
tagging efficiency is estimated to be 9.0%. This method was verified with an americium-beryllium
neutron source. Discrepancies of up to ∼ 10% in the detection efficiencies of data and MC samples
were observed. These discrepancies seem to arise from assumptions made in the production of the
Monte-Carlo simulation and from the uncertainties in the modeling of the americium-beryllium
neutron source itself. This neutron tagging method was applied to 3,244.4 days of SK-IV data and
18,091 neutron-capture candidates were identified. This agrees well with MC predictions. Using the
detected neutron candidates, the neutron capture livetime in water was measured to be 218 ± 9 μs.
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This technique provides the ability to utilize additional information in neutrino interactions.
Measuring neutron multiplicity in an event is expected to improve the separation of anti-neutrino
events from neutrino events and improve the background rejection in nucleon decay analyses.
Although neutron information plays a crucial role in various physics studies, it is difficult to improve
the efficiency much further due to the limited number of photons emitted from the scattering of the
2.2 MeV 𝛾 from neutron capture in water. Therefore, the SK collaboration has started to dissolve
gadolinium into the water since it captures neutrons efficiently and emits several MeV in multiple 𝛾 rays.
This will enable more efficient neutron tagging and improve the capability of the SK experiment [6].

A Noise characteristics of the 20-inch PMT

The typical noise rate of a 20-inch PMT in SK is around 5 kHz at a 0.25 photo-electron (p.e.)
threshold. A careful study of the noise revealed that it consists of two components. The first
component is distributed uniformly in time while the other forms clusters in time. The timing
distribution of repeated hits following a signal pulse above the discriminator threshold (∼ 0.25 p.e.)
of a 20-inch PMT is shown in figure 19. Further study identified these time-clustered noise hits
as caused by scintillation light from radioactivity in the PMT glass. The bump around 15 μs is
caused by ionized residual gas molecules, which are produced by the collisions with the accelerated
photo-electrons. Such pulses are hereafter referred to as after-pulses.

Figure 19. Timing distribution of repeated hits (noise rate) following a signal pulse above the discriminator
threshold (∼ 0.25 p.e.) of a 20-inch PMT. The X axis shows the timing difference of a repeated hit from the initial
hit and the Y axis shows the probability of the secondary hit. The gap between 0 to 1 μs is due to the channel
dead time of the readout electronics and the peak around 1.5 μs is due to the reflection of the PMT signal. The
repeat noise rate decreases exponentially in time and the feature around 12 to 18 μs is due to PMT after-pulsing.

As the relative ratio of time-clustered noise to uniformly distributed random noise is different
from PMT to PMT, this noise is not easy to simulate. Therefore, we use randomly triggered data to
account for this time-clustered noise in the neutron tagging analysis.

B Low energy event reconstruction algorithms

We used two reconstruction algorithms to estimate the location of the neutron capture. The first is a
standard low energy reconstruction tool, BONSAI, which has been used for the solar neutrino analyses in
SK [26]. The BONSAI reconstruction uses timing information from PMT hits in a 1.3μs time window.
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It performs an iterative search from a starting position, with multiple search branches fanning out from
that starting position. Branches are stopped and pruned when the goodness of fit drops below a certain
level. In this application, the reconstructed primary event vertex is used as the starting point for BONSAI.

The second reconstruction tool is called Neut-Fit, which was developed specifically for this
analysis. Neut-Fit is a simple vertex fitter and uses the timing information from the hits within a
10 ns time window. A shrinking grid search method is used to minimize 𝑡rms, defined as

𝑡rms(®𝑥) =

√︄∑𝑁10
𝑖

(𝑡𝑖 − 𝑡mean)2

𝑁10
, (B.1)

where 𝑡mean =
∑𝑁10

𝑖
𝑡𝑖/𝑁10, and 𝑡𝑖 is the hit timing after ToF subtraction to the vertex ®𝑥, respectively.

As the search progresses, the search grid shrinks until the space between points on the grid becomes
0.5 cm. The algorithm is applied twice, first with a constraint that the reconstructed vertex must be
within 200 cm of the primary event vertex. Hits are then ToF-corrected to this constrained neutron ver-
tex, and these residual times are used for the calculation of neural network variables described below.
For example, the number of hits within 10 ns after the Neut-Fit ToF correction (𝑁10𝑛) is used instead of
𝑁10. For the second time, Neut-Fit is applied with no constraint other than requiring the vertex being in
the SK tank. This second unconstrained vertex is used for variables in the neural network which com-
pare this vertex to the BONSAI vertex and the neutrino interaction vertex from APFit (section 4.2.13).

C Distributions of the neural network input variables for neutron tagging

In this section, distributions of all the input variables to the neural net for neutron tagging are shown
from figure 20 to figure 28. In each figure, both data and the Monte-Carlo simulation outputs are
shown. In each plot, the green histogram corresponds to the neutron capture signal, the blue hatched
area corresponds to the background, the red histogram shows their sum and the overlaid black points
show the data, respectively. Also, the red histogram is normalized to the number of neutron capture
events in the atmospheric neutrino event samples from the full SK-IV data set, which spanned
3,244.39 days between October 2008 and May 2018.
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Figure 20. Distributions of the number of hits in 10 ns variable, 𝑁10 for 𝑁10 ≥ 5 (left) and the number of hits
in 300 ns variable, 𝑁300 − 𝑁10 (right). The signal events tend to give larger 𝑁10 compared to the background.
𝑁10 is expected to have a larger fraction of 𝑁300 for the signal compared to the background.
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Figure 21. Distributions of the root-mean-square of the ToF-subtracted timing of candidate hits, 𝑡rms (top),
the minimum root-mean-square of hit timing (min(𝑡rms)) of clusters of 6 hits, min(𝑡6rms) (bottom left), and 3
hits, min(𝑡3rms) (bottom right). The hits from the signal are expected to be concentrated in time and thus 𝑡rms,
min(𝑡6rms), and min(𝑡3rms) are smaller compared to the background.
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Figure 22. Distribution of the Neut-Fit root-mean-square of hit timing difference variable, Δ𝑡rms (left), and
the Neut-Fit number of hits in 10 ns difference variable, Δ𝑁10 (right). These two variables are expected to be
close to 0 for the signal because the vertexes between the two reconstructions are expected to be close for
signal but not necessarily same for the background.
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Figure 23. Distributions of mean opening angle, 𝜃mean (top left), the hit vector root-mean-square of the
azimuthal angle, 𝜙rms (top right), and the clusters of hits variable, 𝑁10 − 𝑁c (bottom). 𝜃mean has a clear peak
around 42 degrees for signal as expected. 𝜙rms is expected to be small for signal than background. 𝑁10 − 𝑁c
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Figure 24. Distributions of the acceptance parameter, 𝑃Acceptance (left) and the Cherenkov angle likelihood
parameter, 𝐿Cherenkov (right). 𝑃Acceptance is larger for the signal events and 𝐿Cherenkov is expected to be smaller
for the signal, respectively.
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Figure 25. Isotropy parameters 𝛽𝑙 . The signal events concentrate around 0.35 for 𝛽1 and around 0 for other
values of 𝑙, while backgrounds have broader distributions and have peaks at around 1.
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Figure 26. Distributions of the distance between the neutron vertex reconstructed by BONSAI and the nearest
inner detector wall, 𝐵𝑆wall (top left), the distance between the neutron vertex reconstructed by Neut-Fit and
the nearest inner detector wall, 𝑁𝐹wall (top left), and the energy reconstructed by BONSAI, 𝐵𝑆energy (bottom).
The normalization of 𝐵𝑆energy is different for the signal and the background, as many background events fail
to be reconstructed at this stage. The background events concentrate close to the wall but the signal does not,
as shown in both top plots, 𝐵𝑆wall and 𝑁𝐹wall, if signal events are correctly reconstructed. The reconstructed
energy, 𝐵𝑆energy, is expected to have peak at 2.2 MeV for signal but not for background.
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Figure 27. Distributions of the distance between the reconstructed vertices of Neut-Fit and BONSAI,
(𝑁𝐹 − 𝐵𝑆)dis (left), and the distance between Neut-Fit the reconstructed vertices of Neut-Fit and APFit,
(𝑁𝐹−𝐴𝑃)dis, (right). These two values are expected to have a peak close to 0 because the vertexes from the two
different reconstructions are expected to be similar for signal but this is not necessarily true for the background.
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Figure 28. Distribution of the distance from Neut-Fit’s reconstructed vertex to the ID wall in the direction of
the particle, 𝐿towall. The background events tend to have larger value compared to the signal.

D Previous analysis method

In previous analyses [10–12, 28] an older tagging algorithm was employed that did not make use of
the time-clustered noise rejection and used 𝑁RAW

10 instead of 𝑁10 in its selections. The initial selection
criteria required 𝑁10 to be larger than 6. In addition, the following parameters were not used in the
neural network: Acceptance, Cherenkov angle, isotropy and 𝐿towall. Instead, the number of hits on
low-probability PMTs (𝑁low, defined below) was used. The neutron tagging efficiency was estimated
to be 20.7%. With this algorithm, the neutron tagging efficiencies between Am-Be data and the
MC differed by at most 20%. This value was used as the systematic uncertainty for the algorithm.
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D.1 Number of hits on low-probability PMTs: 𝑵low

Noise hits are expected to be distributed in a geometrically uniform manner while real photons from
𝛾 induce a PMT position dependence because of their directionality. The PMT hit probability is
defined in equation (4.4). In order to define a low-probability PMT, a threshold is defined which
depends on the vertex location in the detector, as shown in figure 29.

Figure 29. Varying acceptance requirements for the 𝑁low cut as a function of tank coordinates.

First, PMTs are sorted in order of their photon detection probability. The probability value
of each PMT is summed starting from the highest value and the running sum is compared with a
threshold. When the sum exceeds this threshold the last PMT added and any remaining PMTs are
regarded as low-probability PMTs. The threshold table has a vertex position dependence.

Figure 30 shows distributions of 𝑁10 − 𝑁low which was used in as an input to the neural network.
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Figure 30. Hits on low-probability PMTs, 𝑁10 − 𝑁low. The 𝑁low parameter is expected to be small for
signal events. The green histogram corresponds to the neutron capture signal and the hatched area shows the
background. The red histogram shows the sum of the signal and the background, which has been normalized
to the number of capture events in the data (black dots).
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E Glossary

Table 6. Acronyms

General
HV high voltage
MC Monte-Carlo
MLP mulit layer perception
PMT photo multiplier tube
ToF time of flight
Super-Kamiokande detector
SK Super-Kamiokande
ID inner detector
OD outer detector
Event categories of SK
FC fully-contained
PC partially-contained
UPMU upward-going muon
Names of the event triggers
SLE super low enegry (trigger)
LE Low energy (trigger)
HE High energy (trigger)
SHE super high energy (trigger)
AFT after (trigger)
Calibration sources
Am-Be americium-beryllium
BGO bismuth germanium oxide (inorganic scintillator)
Event reconstruction tools
APFit(AP) An event reconstruction software library developed for

the atmospheric neutrino and the proton decay analyses of SK
BONSAI(BS) An event reconstruction software library developed for

the solar and supernova neutrino analyses
Neut-Fit(NF) Newly developed simple vertex reconstruction software
Software libraries
NEUT A neutrino-nucleus interaction simulation program library
GEANT3 Software library of detector description and simulation
GEANT4 Software library of detector description and simulation
FLUKA Fully integrated particle physics Monte-Carlo simulation package
GFLUKA A version of FLUKA designed to be used with GEANT3
CALOR Hadronic interaction simulation package
MICAP Low energy neutron, ion and gamma ray transport software library
SKDETSIM A detector simulation software library developed for SK
ROOT A data analysis framework
TMLP TMulitLayerPerception (TMLP) library
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