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In axion models, the global U(1) Peccei-Quinn (PQ) symmetry is explicitly broken by nonperturbative
effects of gravity, such as axionic wormholes. The gravitational violation of the PQ symmetry due to
wormholes is large enough to invalidate the PQ mechanism, which is entitled as the axion quality problem.
Recently, a novel solution to this quality problem was suggested, where the nonminimal coupling of the
axion field to gravity ξ is introduced to suppress the wormhole contribution. In this work, we revisit
the problem in a different but equally valid formulation of gravity, namely the Palatini formulation, where
the Ricci scalar is solely determined by connection. We first find the axionic wormhole solution in
the Palatini formulation, taking the full dynamical radial mode as well as the axial mode, then show that the
quality problem is still resolved with the nonminimal coupling ξ. The requested lower bound of ξ in the
Palatini formulation turns out to be slightly higher than that in the metric formulation.
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I. INTRODUCTION

The axion [1,2], which is a pseudo–Nambu-Goldstone
boson associated with the spontaneous breaking of the
global U(1) Peccei-Quinn (PQ) symmetry [3,4], is intro-
duced as a solution to the strong CP problem. Below the
QCD scale, the axion field obtains a periodic potential
induced by QCD instantons to settle down to an exactly
CP-conserving vacuum. However, even a tiny violation of
this symmetry can jeopardize the PQ solution to the strong
CP problem, leading to the mechanism being extremely
sensitive to the quality of the PQ symmetry [5].
From an effective field theory perspective, we expect that

there should be higher dimensional operators of the form

ΔV ∼ cΦn=Mn−4
P ∼ cfna

Mn−4
P

cos ðnϕfa þ δÞ where Φ is a complex

PQ scalar and ϕ is the associated axion field with a decay
constant fa [6]. Indeed, it is expected that gravity may spoil
any global symmetry at the least [7–11] and the PQ
symmetry may not be an exception. This violation of the
U(1) symmetry generally displaces the axion field from
the CP-conserving minimum of the axion potential. If the
deviation is too large, the induced value of the neutron
electric dipole moment becomes incompatible with the
experimental upper bound [12], and hence the PQ mecha-
nism does not work as a viable solution to the strong CP
problem. This is called the “axion quality problem” [13–15]
and there have been many possible solutions suggested in
the literature [16–21].
Meanwhile, an axionic wormhole [7,22,23], which is a

gravitational instanton in Euclidean spacetime, is a well-
known case that explicitly shows the gravitational violation
of the U(1) symmetry. It has a nontrivial topology charac-
terized by a global U(1) charge and induces effective local
operators that violate the U(1) symmetry through computing
quantum transition amplitudes in a semi-classical approxi-
mation [24–27]. (See also Refs. [28,29].) Assuming these
nonperturbative effects as the source of symmetry breaking,
the coefficients of these operators have a characteristic
exponentially suppressed term consisting of a coefficient
of order c ∼ e−S with S corresponding to the wormhole
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action [27,30].1 In order to issue the quality problem, the
wormhole action should be large, S≳ 190, for its effect to
be suppressed enough [7,32].
Whether these wormholes induce the quality problem

depends sensitively on the UV model that realizes the axion
at low energies [32]. In a simple model with a periodic
scalar field [22,23], the wormhole action is S ∼ nMP=fa;
thus the value becomes large enough when the decay
constant is small as fa ≲ 1016 GeV. However, the result
drastically changes if the axion corresponds to a phase
component of a complex scalar field together with a
dynamical radial component, Φ ¼ feiθ=

ffiffiffi
2

p
. In this case,

the field value of f stays near the Planck scale at the throat
of thewormhole, and the size of thewormhole also becomes
close to the Planck length. The wormhole action now scales
logarithmically as S ∼ n logðMP=faÞ and it cannot grow
sufficiently. Therefore, we still suffer from the quality
problem [7,28,32].
A recent work [33] suggested a black novel solution to the

quality problem even in the presence of the dynamical radial
field, by introducing a nonminimal gravitational coupling of
a complex scalar field, ξ. It is found that the quality problem
is avoided for ξ≳ 2 × 103 having a sufficiently large
wormhole action. We take this solution seriously, as the
nonminimal coupling ξ is allowed in any effective theory as
long as the term is consistent with the symmetries of the
theory. Indeed, the implications of the term have been widely
explored in inflationary cosmology [34–45].
One potential loophole of the suggested solution in

Ref. [33] is noted: gravity can be equally valid when
formulated in different ways. Indeed, distinctively from
the conventional metric formulation taken in Ref. [33],
we can alternatively choose the Palatini formulation of
gravity [46,47] that takes the connection as an independent
degree of freedom apart from the metric. While both the
metric and Palatini formulations are equivalent within the so-
called minimal gravity model of the Einstein-Hilbert action,
the equivalence is generally broken in nonminimal models
[48,49]. Since we are not able to distinctively rule out either
formulation at the current stage of our experimental knowl-
edge, in this paper, we pursue to reconsider the Palatini
formulation and examine if the noble solution to the quality
problem remains valid.2

II. MODEL

The action for a complex scalar field Φ ¼ fffiffi
2

p eiθ with
nonminimal coupling with gravity in the Palatini formu-
lation is given as

S¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−
M2 þ 2ξjΦj2

2
RðΓÞ þ j∂μΦj2 þVðjΦjÞ

�
;

ð1Þ

where g ¼ det gμν, the mass parameter M is defined as

M2 ¼ M2
P − ξf2a with the Planck mass MP ¼ 1=

ffiffiffiffiffiffiffiffiffi
8πG

p
≈

2.4 × 1018 GeV and VðjΦjÞ ¼ λðjΦj2 − f2a=2Þ2. The vac-
uum expectation value ofΦ is

ffiffiffiffiffiffiffiffiffiffiffiffiffi
hΦ†Φi

p
¼ fa=

ffiffiffi
2

p
such that

the gravitational coupling becomes canonical at the vac-
uum. In order to keep the correct sign of the kinetic term
of the graviton, we request M2 ≥ 0, or equivalently
ξ ≤ M2

P=f
2
a. The Ricci scalar RðΓÞ is obtained from the

Ricci tensor, which is explicitly given as

RμνðΓÞ ¼ ∂μΓλ
λν − ∂λΓλ

μν þ Γλ
μσΓσ

λν − Γσ
μνΓλ

λσ: ð2Þ

Due to the absence of second-order derivatives, unlike the
metric formulation, the Gibbons-Hawking-York boundary
term [52,53] is not necessary for the Palatini formulation.
We take the Euclidean geometry with spherical symmetry,
ds2 ¼ dr2 þ aðrÞ2d2Ω3, where r is the Euclidean time,
d2Ω3 is the line element on the three-dimensional unit
sphere and a is the radius of the sphere. We assume that f
and θ depend only on r, taking the spherical symmetry into
account.

III. ANALYSIS IN PALATINI FORMULATION

A. Wormhole solutions

In a semiclassical approximation, a wormhole is a
saddlepoint solution in the Euclidean path integral, with
a boundary condition on the canonical momentum of the
axion field [7,28,29]. Expanding Eq. (1), we have

S ¼
Z

d4x
ffiffiffiffiffi
jgj

p �
−
M2

P

2
Ω2ðfÞRþ 1

2
ð∂μfÞ2

þ 1

2
f2ð∂μθÞ2 þ VðfÞ

�
; ð3Þ

where

Ω2ðfÞ≡ 1þ ξðf2 − f2aÞ
M2

P
: ð4Þ

The variation with respect to θ gives

∂μð
ffiffiffi
g

p
f2∂μθÞ ¼ 0; ð5Þ

1See, for example, Ref. [31] for other sources of explicit PQ-
violation such as stringy instantons.

2The intrinsic difficulty of the experimental probes becomes
more transparent when one considers the Einstein frame. In this
frame, the gravity sector becomes canonical in both formulations
of gravity and all effects are recast to the scalar potential
deformation, which nonminimally couples to the Ricci scalar
in the Jordan frame. As long as we are not able to probe scalar
field values large enough for the deformation of the potential to
be significant, f ≳MP=ξ, the differences in observables become
negligible. On the other hand, for fðRÞ gravity, there could be
constraints for Palatini formulation coming from the fact that it
violates the equivalence principle [50,51].
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motivating us to define a conserved current,

Jμ ¼ ffiffiffi
g

p
f2∂μθðrÞ; ð6Þ

which is associated with shift symmetry. The conserved
charge is quantized as

2π2a3f2θ0ðrÞ ¼ n ∈ Z; ð7Þ

due to the 2π-periodicity of the axion and the spherical
symmetry of the metric. The prime( 0) denotes the derivative
with respect to r. The integer n ≠ 0 corresponds to the
charge going through the wormhole and characterizes a
wormhole solution.
To take this constraint into account properly, one can

either impose the condition Eq. (7) from the beginning and
plug this into the action in Eq. (3), or introduce the
constraint as a Lagrange multiplier [23,32].3 For sure, both
ways give identical results. Note that in the former way, the
kinetic term of θ gives an additional effective potential that
corresponds to a “centrifugal force.” As we will see, this is
the origin of the large field value at the wormhole throat
once the radial field f is taken to be dynamical.
From the variational principle with respect to Γλ

μν,
we find

∇λ½M2
PΩ2ðfÞ ffiffiffi

g
p

gμν� ¼ 0; ð8Þ

or

Γλ
μν ¼ Γ̄λ

μν þ δλμ∂νωþ δλν∂μω − gμν∂λω; ð9Þ

where

ωðfÞ≡ log jΩðfÞj: ð10Þ

The first term in Eq. (9) is the Levi-Civita connection,

Γ̄λ
μν ¼

1

2
gλαðgμα;ν þ gαν;μ − gμν;αÞ; ð11Þ

while the last three terms are additional terms that are
absent in the metric formulation and depend on the non-
minimal coupling. We also obtain

R ¼ gμνRμνðΓÞ

¼ −6
�
a00

a
þ a02

a2
−

1

a2

�
− 6

�
ω02 þ ω00 þ 3

a0

a
ω0
�
: ð12Þ

From the variation with respect to gμν, we find

Ω2½a02 − 1þ 2aa0ω0 þ a2ω02�

¼ −
a2

3M2
P

�
−
1

2
f02 þ VðfÞ þ n2

8π4f2a6

�
; ð13Þ

and

Ω2½2aa00 þ a02 − 1þ 4aa0ω0 þ a2ω02 þ 2a2ω00�

¼ −
a2

M2
P

�
1

2
f02 þ VðfÞ − n2

8π4f2a6

�
; ð14Þ

while from the variation with respect to f, we obtain

f00 þ 3
a0

a
f0 −

dV
df

þ n2

4π4f3a6

¼ 6ξf

�
a00

a
þ a02

a2
−

1

a2
þ ω02 þ ω00 þ 3

a0

a
ω0
�
: ð15Þ

We solve Eqs. (13)–(15) numerically with the following
boundary conditions,

a0ð0Þ ¼ 0; f0ð0Þ ¼ 0; fð∞Þ ¼ fa: ð16Þ

For convenience, we introduce dimensionless parameters,

ρ≡ ffiffiffiffiffi
3λ

p
MPr; A≡ ffiffiffiffiffi

3λ
p

MPa; F≡ fffiffiffi
3

p
MP

: ð17Þ

We show the graphs of FðρÞ and AðρÞ in Figs. 1 and 2,
respectively. First, for ξ ¼ 0 and ξ ¼ M2

P=f
2
a, both the

metric (dashed) and Palatini (solid) formulations give
identical results. In particular, as found in Ref. [33], the
solution for ξ ¼ M2

P=f
2
a (the induced gravity model) is

identical to the Giddings-Strominger (GS) wormhole cor-
responding to fðrÞ ¼ fa [22].

FIG. 1. FðρÞ for several values of ξ. The solid and dashed lines
are for the Palatini and metric formulations, respectively.3For rigorous treatments on this point, see Ref. [30].
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To understand this trend, it is illuminating to consider
the action Eq. (3) in the Einstein frame, with a metric
redefinition gμν → Ω−2gμν [54]. In this frame,

SE ¼
Z

d4x
ffiffiffi
g

p �
−
M2

P

2

�
R −

3ζð∂μΩ2Þ2
2Ω4

�

þ 1

2Ω2
ð∂μfÞ2 þ

1

2Ω2
f2ð∂μθÞ2 þ

V
Ω4

�
; ð18Þ

where ζ ¼ 0, 1 in the Palatini and metric formalisms,
respectively, and we have not canonicalized the kinetic
term of f as it is irrelevant for the discussion. Note that, in
the induced-gravity limit with Ω2 ¼ f2=f2a, the coefficient
of ð∂μθÞ2 becomes constant. This shows the decoupling
between f and θ in this limit, hence the reason for staying
in the GS solution with the absence of the additional force
more explicitly.
For intermediate values of ξ, the behavior of the

solutions differs between the metric and Palatini formula-
tions. The difference is especially noticeable at the worm-
hole throat, as shown in Fig. 3. This figure shows that in the

Palatini case, the radial field f stays near the Planck scale
(corresponding to Fð0Þ ∼ 1) except for extremely close
values to ξ ¼ M2

P=f
2
a and quickly transits to the GS

wormhole near the induced-gravity limit ξ ¼ M2
P=f

2
a. As

ξ increases from 0, the radius of the wormhole throat að0Þ
initially decreases and then increases drastically near ξ ¼
M2

P=f
2
a in the Palatini case, while it monotonically

increases in the metric case. We have also confirmed that
the λ-dependence of the wormhole solutions for small λs is
negligible, resulting in identical wormhole geometries for
both the metric and Palatini cases, leading to robust
predictions.
One may wonder if there is no problem with the size of

the wormhole throat being comparable to or even smaller
than the Planck length. In fact, such a large nonminimal
coupling also introduces a perturbative unitarity cutoffΛJ to
the theory, where J denotes the Jordan frame [39,55–61].4 It
is known that,5 for small field values

ΛJ

�
f ≪

MPffiffiffi
ξ

p
�
≃
�
MP=ξ ðmetricÞ
MP=

ffiffiffi
ξ

p ðPalatiniÞ ð19Þ

while for large field values

ΛJ

�
f ≫

MPffiffiffi
ξ

p
�
≃
�
ξf2=MP ðmetricÞffiffiffi
ξ

p
f2=MP ðPalatiniÞ: ð20Þ

Near the throat, the field value of f can be as large as the

Planck scale, but the cutoff scale also increases as ΛðMÞ
J ∼

ξMP and ΛðPÞ
J ∼

ffiffiffi
ξ

p
MP for the metric and Palatini cases,

respectively, giving a cutoff much larger than the Planck
scale. This partly justifies the self-consistency of our
calculation6 in the semiclassical regime while the wormhole
throat becomes smaller than the Planck length for large ξ in
the Palatini case, as depicted in Fig. 2.

FIG. 2. AðρÞ for several values of ξ. The solid and dashed lines
are for the Palatini and metric formulations, respectively.

FIG. 3. Fð0Þ and Að0Þ as functions of ξ. The solid and dashed
lines are for the Palatini and metric formulations, respectively.

4The cutoff scales in the Einstein frame, ΛE, and in the Jordan
frame, ΛJ , are related through a conformal factor Ω, as
ΛJ ¼ ΩΛE.

5We note that the perturbative unitarity cutoff of the complex
U(1) scalar is higher than the SU(2) scalar doublet as the SM
Higgs. This difference is nicely discussed and summarized in the
addendum of Ref. [61].

6We, however, note in passing that although our calculation
for wormholes is self-consistent, if we consider f as an inflaton,
a large value of ξ as in Eq. (22) may still give rise to a unitarity
problem at the stage of preheating for the metric formulation
[62–64]. On the other hand, if the quartic coupling λ is less than
Oð1Þ, the unitarity problem may not occur for the Palatini
formulation, for any value of ξ [64]. This difference between the
two formulations is highly related to the dependence of the
cutoff scale on ξ as given in Eq. (19).
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B. Quality problem

The PQ-violating operators are exponentially suppressed
by the wormhole action. The wormhole action is almost
proportional to the PQ charge n for a given ξ. Thus, we
focus on the contributions of the wormholes with n ¼ 1 to
the quality problem. We now compute the wormhole
action,

S¼2π2
Z

∞

0

dra3
�
f02þ3M2

PΩ2

�
a00

a
þa0

a
ω0 þω00

��
: ð21Þ

In Fig. 4, we show the wormhole action as a function of ξ in
both Palatini and metric formulations. For 0 < ξ < M2

P=f
2
a,

the wormhole action in the Palatini formulation is found to
be smaller than that in the metric formulation. For ξ ¼ 0

and ξ ¼ M2
P=f

2
a, both formulations give the same result, as

expected. Note that the quality problem can be solved for
S≳ 190 [7,32]. This corresponds to ξ≳ 1 × 104 in the
Palatini case, which is roughly an order of magnitude more
stringent than that in the metric case, ξ≳ 2 × 103 [33]. It is
also worth noting that, for the Palatini case, the wormhole
action increases even when the radius of the throat of the
wormhole decreases.
In Fig. 5, we also depict the fa − ξ plane which shows

the parameter space that solves the axion quality problem
with axionic wormholes, for both Palatini (blue-solid) and
metric (red-dashed) formulations. Note that the required
values of ξ not to have the quality problem hardly depend
on the PQ symmetry breaking scale fa. This fa independ-
ence may be understood as follows. As shown in Fig. 6,
for a fixed value of ξ, the solutions of FðρÞ and AðρÞ are
almost independent of fa except for a large value of ρ. On
the other hand, the contribution to the action S is dominated
by the region of small ρ near the wormhole throat. Thus,
the region of large ρ (which is sensitive to fa) hardly
contributes to the S.

IV. CONCLUSION AND DISCUSSIONS

In this work, we have discussed the effect of the
nonminimal coupling to gravity ξ on the axion quality
problem in the Palatini formulation. In this formulation, the
affine connection and the metric are independent a priori.
Hence, for nonzero ξ, the affine connection is different
from the Levi-Civita connection of metric formulation, and
so are the physical consequences compared to the usual
metric formulation.
We have found that the presence of additional terms in

the affine connection does affect the wormhole solution,
resulting in a smaller wormhole action compared to that in
the metric formulation. As a result, a larger value of the
nonminimal coupling, ξ≳ 1 × 104, is required in order to
avoid the quality problem. We have also checked that our
calculation does not violate the perturbative unitarity of the

FIG. 4. Values of wormhole action as a function of ξ. The blue-
solid and red-dashed lines are for the Palatini and metric
formulations, respectively. The horizontal gray line shows a
lower bound to solve the quality problem, S ¼ 190.

FIG. 5. fa − ξ boundaries that marginally solve the quality
problem in the Palatini (blue-solid) and metric (red-dashed)
formulations. Regions above each line correspond to values that
are safe from wormhole solutions spoiling the axion quality. The
right gray region corresponds to values ξ > M2

P=f
2
a.

FIG. 6. FðρÞ for several values of fa. The solid and dashed lines
are for the Palatini and metric formulations, respectively.
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theory with large nonminimal coupling thanks to large
radial field values at the wormhole throat.
More specifically, as ξ increases, the wormhole throat

decreases at first while the wormhole action value
increases. For larger ξ near the induced gravity limit, there
is a rapid convergence to the Gidding-Stronminger solu-
tion. This coincidence happens in both the metric and
Palatini formulations, and could be understood as a
decoupling between the axion θ and the radial mode f,
as explicitly shown in the Einstein frame.
Lastly, as mentioned in the introduction, a scalar field

with a large nonminimal coupling is sometimes considered
in the context of inflation which gives a consistent fit to
CMB observations. In our case, the radial field f can play
the role of the inflaton. To be consistent with the meas-
urement of the scalar amplitude of the power spectrum As ≃
2.1 × 10−9 [65] with about 60e-folds, we request a sub-
stantial value of ξ for successful inflation [35,37],

ξ ≃
�
4.9 × 104

ffiffiffi
λ

p ðmetricÞ
1.4 × 1010λ ðPalatiniÞ: ð22Þ

Note that a larger value of ξ is needed for the Palatini case
and it can easily satisfy the condition to solve the axion
quality problem when λ > 10−6.
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