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natural candidate of such a superfield. We show that the scenario provides a convincing basis of focus
point gaugino mediation, where the electroweak scale is explained with a moderate tuning among the
parameters of the theory.
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1. Introduction

An axion with a large decay constant between the unification scale and the Planck scale is one of interesting predictions in string
theory [1], which solves the strong CP problem in QCD [2-5], and is a good candidate for the dark matter (DM) observed today. In this
paper, we consider a framework where the string axion causes a spontaneous supersymmetry (SUSY) breaking under the condition of the
vanishing cosmological constant, via the mechanism of the gravitational SUSY breaking [6].

The framework provides a convincing basis of focus point gaugino mediation [7]' with vanishing soft masses for sfermions at a high
energy scale. The electroweak symmetry breaking (EWSB) scale is explained with O (1)% tuning between the gaugino mass and the SUSY
invariant mass of the Higgs multiplet. This is highly non-trivial since there are severe lower bounds on the masses of SUSY particles from
the Large Hadron Collider (LHC) [14-17] as well as the observed Higgs mass of 125 GeV [18,19], which requires large stop masses [20-23].
The mild tuning to explain the EWSB scale is achieved with relatively large bino and wino masses compared to a gluino mass at a high
energy scale.? In our setup, the mass ratios of the gauginos are fixed at the Planck or string scale by the anomaly coefficients of the shift
symmetry, i.e., integer numbers.

The framework would be also attractive from the view point of minimality; a single chiral multiplet, an axion multiplet, is responsible
for SUSY breaking, its mediation to the standard model sector at a high energy scale with focus point gaugino mediation, dark matter, and
a solution to the strong CP problem.

This paper is organized as follows. In section 2, we briefly review the axion-induced SUSY breaking. In section 3, focus point gaugino
mediation and its LHC signals are discussed. We also show that the light Higgsino can be detected at future direct-detection experiments.
In section 4, the cosmological aspects of our model, especially an imprint on the cosmic microwave background, are discussed. Finally
section 5 is devoted to the conclusion and discussion.

* Corresponding author.
E-mail address: n.yokozaki@gmail.com (N. Yokozaki).
1" We refer readers to [8,9] for an original proposal for a focus point scenario where scalar masses are much larger than gaugino masses, and to [10-13] for recent discussion
on focus point scenarios.
2 The importance of the non-universal gaugino masses to reduce the fine-tuning has been noticed in Refs. [24-30].
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2. Axion induced SUSY breaking

In this section we briefly review the mechanism of SUSY breaking by a string axion multiplet .A. We will see that SUSY is necessarily
broken by the F-term of .4 when the cosmological constant vanishes. The string axion multiplet .A enjoys a shift symmetry A — A+iR,
where R is a real constant. A Kdhler potential K and a super potential W consistent with the shift symmetry are given by

K=KA+AH=Kx), W=¢. (1)

Note that the superpotential is independent of A due to the shift symmetry. Here, we assume the constant C # 0.
The scalar potential of A is given by
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where we take the units of the reduced Planck mass Mp; = 1. The condition of the vanishing cosmological constant, V =0, is satisfied if
=3, 3)

AK\? [ 32K
X ax2
X=(X)

where (x) is a vacuum expectation value determined by the stationary condition,
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which is non-zero as long as Eq. (3) is satisfied, i.e., the cosmological constant vanishes [6]. Notice that the argument of F 4 is aligned to
that of C* since K is a real function of x. This alignment is an important feature of our framework; the dangerous SUSY CP problem is
absent, as discussed in section 3.

3. Focus point gaugino mediation

Gaugino mediation was proposed to suppress the flavor-changing neutral currents taking the sequestered Kdhler potential [31-33].
Explicitly, we consider

(6)
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where M, is a cut-off scale around Mp; and fys is a function of quark, lepton, gauge, and Higgs multiplets. With the sequestered Kdhler
potential all soft SUSY breaking masses beside the gaugino masses vanish at a high energy scale.> Therefore, the gaugino masses are only
parameters of the SUSY breaking, determining the low-energy mass spectrum of the SUSY particles. In the axion-induced SUSY breaking
scenario the gaugino masses are given by the couplings of the (canonically normalized) axion multiplet A; to the gauge multiplets.* The
couplings are fixed by the anomaly indices of the shift symmetry. The relevant part of the Lagrangian is

V2

LD ———
3272 f,

/d26 Ac [laW? + ka3 + kW], (7)
where ki, kp, and k3 are integers corresponding to the anomaly indices of the shift-symmetry®; Wy, W,, and Ws are field strength
superfields of U(1)y, SU(2)r, and SU(3)c, respectively; f; is the decay constant of the string axion, which is ~ Mi/Mp] (see Appendix
A). The coupling with W3 is responsible for the mass of the axion, and hence the solution to the strong CP problem. The integers ki, k
and k3 can arise from string theory (see e.g., [41], although the SUSY breaking field there is not identified with the QCD axion and the
sequestered Kahler potential is not constructed). They can also arise in four-dimensional field theory from [38],

W = Me 9%eAplagls (8)

where a represents a gauge index, I, =1...Ng is the number of charged matters, and \IJ(';’ are assumed to be fundamental representations
of the gauge groups. \IJ(IJ” \Il,’f transforms as \IJ(II“ \IJ(II“ — exp[iqaR]\L’(’f \IJ{{’ under the shift symmetry. In this case, k; = q,N, (the charge qq is

assumed to be quantized). The gaugino masses read

3 As is shown in [12,34], the vanishing soft mass may be also understood by a Nambu-Goldstone nature of chiral multiplets [35-37].

4 Mediation of SUSY breaking by an axion multiplet without a focus point is discussed in [38-40].

5 Here we assume the quantization of the U(1)y charge, which is the case for U(1) gauge theories in low energy effective theories of the string theory, embedded into
non-abelian gauge symmetries, embedded into the diffeomorphism of higher dimensional theories, or with a Dirac monopole in the spectrum. The quantization is also
supported by the argument from the absence of exact global symmetries [42].
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Fig. 1. The contours of A (black solid line) and my, (red dashed line). In the left (right) panel, M1 = M = M3 (M : My : M3 =6:2:1). On the green dotted lines, B, -term
vanishes at Mj,. Here, as(mz) =0.1181 and m; = 173.34 GeV.

2
M = kaga (‘/EMPl>m3/2. (9)
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It should be stressed that the ratios of the gaugino masses are fixed by the anomaly indices of the shift symmetry. This feature leads
to the scenario of focus point gaugino mediation, where the EWSB is relatively insensitive to the masses of the SUSY particles. In the
following we explain how the focus point behavior is achieved.

The EWSB scale is determined by the stationary conditions:

2, 2 2, 1 0AV a2 2 . 1 9AV
8y T8 2 [_ o My, + oy Gy B My 5 G }
Mstop

4 tan2 8 — 1 tan? g — 1
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where gy and g are gauge coupling constants of U(1)y and SU(2); respectively; v (=,/vZ + vﬁ) is the EWSB scale and tan 8 (= vy /vq)

is a ratio of vacuum expectation values of H, and Hy; w is the SUSY invariant Higgsino mass term; mf_,u and m%_,d are soft SUSY breaking
masses for H, and Hg, respectively; AV is one-loop contributions to the Higgs potential. The above stationary conditions are evaluated

at the stop mass scale Msop.
For a large value of tan g, the EWSB scale is dominantly determined by mf,u and p2. The soft SUSY breaking mass for the up-type

Higgs at the stop mass scale can be written as

mj;, (4 TeV) ~0.012M7 + 0.246M3 — 1.025M3
—0.004M1 M3 — 0.113M3M3 — 0.017M1 M3,

for tan 8 = 30, m; = 173.34 GeV, and o5(mz) = 0.1181. Here, My, M», and M3 are bino, wino, and gluino mass at the scale Mj, =2 x 1016

GeV, respectively. We see that, for instance, when M1 : My : M3 =kq :ky :k3=6:2:1, mf,u becomes significantly smaller than the gluino

(11)

mass scale.’
The required ratio is different from unity and cannot be embedded into a simple SU(5) unification. The ratio kq # ky # k3 is consis-

tently obtained, for instance, in the framework of product group unification [46,47] as shown in [48] (see also [13]). In product group
unification, the unification of quarks and leptons into SU(5) multiplets is maintained, and the gauge coupling unification is predicted
if gauge couplings other than that of SU(5) is large at the symmetry breaking scale. It should be noted that four dimensional SU(5)
unification theories necessarily suffer from the doublet-triplet splitting problem and a too large R symmetry breaking scale [49-51], while

product group unification does not.
In Fig. 1, the contours of the fine-tuning measure A (black solid lines) and the Higgs boson mass my (red dashed lines) are shown,
dlnv dlnv

where A is defined by [52,53]
— |, ). 12
olnMs | |91n|u| ) (12)

The Higgs boson mass my is computed using FeynHiggs 2.13.0 [54-61] and mass spectra of SUSY particles are evaluated using
SOFTSUSY 4.0.3 [62]. In the left panel, we take M1 = M, = M3 as in usual gaugino mediation, while in the right panel we take

|

A:max(‘

6 If the R charge of H,Hy is zero and the matter fields are unified into 10 and 5* representations of SU(5), the anomaly coefficients of ZN R -SU@3)? and ZNR- SU(2)?
are 6 and 2 (mod N), respectively [43]. The desired ratio, M3 : My = 1:2, may be explained by further assuming Z1o g and the anomaly cancellations through the Green-
Schwartz mechanism [44] with the shift of Z. (See discussion in Ref. [45].) The zt-term can be written as p = cms3, in this case. In the case where three pairs of 5+ 5* are
introduced and the R charge of 55" is 2, the requirement of the non-anomalous Zg g may explain M3 : M, =1:3.

3



K. Harigaya, T.T. Yanagida and N. Yokozaki Physics Letters B 833 (2022) 137386

Table 1

Mass spectra in sample points. At the point
11, three pairs of 5+ 5 are introduced at the
scale Ms. Here, tan g8 is determined to satisfy

B;L(Min) =0.
Parameters Point I Point II
M3 (GeV) 2500 2600
M1/M3 6 5
M3 /M3 2 3
M5 (GeV) - 10%
Particles Mass (GeV) Mass (GeV)
z 5250 2380
g 4730-5420  3300-4910
t12 4490, 4830 1750, 4110
i 837 576
5 4100 2880
70 835 575
bes 837 577
% 4100 2750
% 6630 2880
LR 4190, 5520 4410, 4060
1.2 4150, 5460 3940, 4350
H* 4120 4180
hsM-like 125.4 1263
i (GeV) -814 -564
tan B 14.2 18.6
A 171 137

M1:M:M3=6:2:1 at Mj,. On the green dotted lines, B, -term vanishes at Mj,: corresponding tan g is a prediction rather than a free
parameter. In the case with M1 = My = M3, A > 1500 for my = 125 GeV. On the other hand, A ~ 170 in the case of M{ : My : M3 =6:2:1
(focus point gaugino mediation). We see that A is significantly reduced in focus point gaugino mediation.

A mass spectrum and A of a sample point are shown in Table. 1. At the point I, the spectrum is evaluated in the minimal supersym-
metric standard model (MSSM). The squarks and gluino are ~ 5 TeV while the Higgsino is light compared to the gluino mass and squark
masses.

Further reduction of A is possible if there are extra matter multiplets at an intermediate mass scale [63,64]. This is because the
trilinear coupling among the Higgs and the stops is enhanced due to larger gauge coupling constants at higher energy scales, and hence
the required stop mass to explain the Higgs mass is reduced. At the point II, we introduce three pairs of 5+ 5 of SU(5) at M5 = 10% GeV.
The mass spectrum of the SUSY particles is computed using SuSpect 2.4 .3 [65] with a modification of two-loop level renormalization
group equations including effects from the vector-like matters. Here, A can be as small as A = 137. Also, the gluino mass (and squark
masses) can be significantly smaller for my ~ 125 GeV, which can be tested in the future LHC experiment. At both points in the table, the
mass of the lightest CP-even Higgs is calculated by FeynHiggs.

In our set up the higgsino-like neutralino is the lightest supersymmetric particle (LSP). With an R parity conservation, the LSP composes
a part of dark matter in the universe. The LSP dark matter interacts with nuclei via the Higgs exchange,

ca V(8B & )00 (13)
=272 \ My (Tev) My (Tev) ) X141

where we assume a large-tang limit. In Fig. 2, the spin-independent LSP-nucleon scattering cross section is shown as a function of
0.6M1 (TeV) = M, (TeV) for ;& =800 GeV. The constraint from XENON 1T (2018) [66], the future prospect of LZ [67], and so-called the
neutrino floor [68] are also shown. It can be seen that future experiments can cover the parameter space of our model with A ~ 100.

We comment on the effect of anomaly mediation [69,70]. If fq = O(Mp), the gravitino mass ms3,; is as large as 0(100) TeV and
anomaly mediation generically generates the soft masses of 0(1) TeV, which ruins focus point gaugino mediation. However, in our setup
with the SUSY breaking by the Kdhler and super potential in Eq. (1), the vacuum expectation value of the scalar auxiliary component of
the supergravity multiplet vanishes [6]. Thus unavoidable anomaly mediation determined by the super-diffeomorphism invariance [71]
also vanishes. (A too large B, term of the Higgs multiplet is also avoided.) Anomaly mediation caused by the couplings between the F
term of the SUSY breaking field and the MSSM fields from the Kdhler potential [72] also vanishes as we assume the sequestering. The
remaining possibility is the mediation effect caused by the couplings between the SUSY breaking field and the MSSM fields in path-integral
measures. We assume that the path-integral measures of the SUSY breaking field and the MSSM fields are also sequestered from each
other. The focus point behavior is then not disturbed by anomaly mediation in our setup even if m3,; = O(1) TeV.

Finally, we note that the CP violation in the MSSM sector vanishes [73]. The sequestering ensures that CP phases from sfermion masses
vanish. Due to the shift symmetry of .4, the phases of the gaugino masses are aligned with each others, and hence an R rotation that

4
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Fig. 2. The spin-independent LSP-nucleon scattering cross section as a function of 0.6M; (TeV) = M, (TeV) for © = 800 GeV.

makes the constant C real ensures that all of the gaugino masses are real. The p term can be made real by a PQ rotation. The B,, term is
radiatively generated from the gaugino masses, and is also real.”

4. Cosmology of the axion multiplet

In this section we discuss the cosmological issues of the axion multiplet. The scalar component of the multiplet is composed of an
axion, which obtains its mass from the QCD strong dynamics, and a saxion, which obtains the mass from the SUSY breaking through
the Kdhler potential. The fermion component of the multiplet is absorbed into the longitudinal component of the gravitino. We first
consider the case where the cutoff scale of the SUSY breaking sector is equal to the Planck scale (M, = Mp;) and discuss several possible
cosmological problems and observational constraints on the axion. We then consider the case with a (slightly) lower cutoff scale and
argue that all of the problems are avoided.

The saxion in general has a large initial field value and a large energy density in the early universe. It is long-lived and may cause
cosmological problems. We first derive the condition such that the saxion decays before Big Bang nucleosynthesis (BBN). With the cutoff
scale around the Planck scale, the coefficients of the Kdhler potential are O (1) in the Planck units. The saxion mass ms is then expected
to be O(m3/z). The decay rate of the saxion becomes maximum when its decay into a pair of gravitinos is kinematically allowed. The
decay rate is given by [74]

I'(s— 2y3/) ! m? (14)
V3R = aer m2 M2
967 mj /2MP1
The gravitino decays into MSSM particles with a decay rate
3
121 M3
M3p=—"——5. 15
32 = Jo5 v (15)

For m3/; 2 100 TeV, the saxion as well as the produced gravitino decays into MSSM particles before the onset of the BBN. The gaugino
mass of O(1) TeV is obtained for f, > 108 GeV.

Even if the saxion decays before the BBN, as its decay products eventually decay into the LSP, the universe may be overclosed by dark
matter. We consider two solutions to the problem. We may simply assume that the saxion initial field value is fine-tuned. This may be
required by the anthropic principle; a larger dark matter density leads to earlier collapse of dark matter into halos with larger densities,
where habitable planets are more easily destroyed [75]. Another possibility is that the R parity is broken, and hence the LSP is unstable.
This may make the higgsino unstable in the collider time scale, so that the LHC can more easily search for the higgsino. For example, with
the R parity violating operator x L; Hy, the neutral higgsino decays into T + W T, and the charged higgsino decays into 7 + Z/h if « is
sufficiently large. The LHC with /s = 13 GeV and the integrated luminosity of 1ab™! can search for the higgsino as heavy as 600 GeV [76].

The saxion also decays into axions through the interaction

L= ! 83st)a&a (16)
/2 03 ’
which are observed as dark radiation of the universe. Using Egs. (3) and (4), the decay rate is given by
1 m
[(s—2a)= — —. (17)
487 M2

When the saxion dominates the energy density of the universe and decays, which is allowed if the R parity is violated, the abundance of
the axion is given by

6 2
ANt = 0.34 x (M) . (18)
mg

7 We may introduce a coupling between the down-type Higgs Hy and the SUSY breaking field A in the Kihler potential without spoiling the focus point behavior while
making tang a free parameter because of a non-zero B, term at a mediation scale. Even in this case the shift symmetry ensures that the coupling between A and Hy is
real: no new CP phase is introduced.
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In order for the abundance of the dark radiation to satisfy the experimental constraint, ANeg < 0.3 [77], the saxion mass is required to be
about six times larger than the gravitino mass. When the initial saxion abundance is fine-tuned, so that the LSP abundance is suppressed
without the R parity violation, the saxion is a subdominant component of the universe when it decays. The abundance of the axion
produced from the decay of the saxion is negligibly small.

With the decay constant of f; ~ Mpj, the axion abundance produced by the initial misalignment angle [81-83] exceeds the observed
dark matter abundance, if the initial angle is larger than O(10~%). We assume that the initial angle is fine-tuned to be small by the
anthropic principle. Note that the axion abundance much smaller than the observed one requires extra fine-tuning in the initial angle.
Thus we expect that the axion abundance is comparable to the observed dark matter abundance. Axion dark matter with a decay constant
of O(Mp) can be detected by proposed experiments [84].

A QCD axion with a decay constant around the Planck scale has a Compton length comparable to the sizes of astrophysical black holes.
Such a bosonic particle, through the black hole-superradiance effect [85], slows down the rotation of black holes. From the observations
of black holes with large spins, the existence of light bosons might be excluded [86]. The determination of the spin of black holes,
however, crucially depends on the modeling of accretion discs as well as emission of X-rays from them, which is currently subject to some
uncertainties (see e.g., [87-89]). We conservatively consider that the decay constant of the Planck scale is still a viable option. Alternatively,
we can lower f; to be ~ 107 GeV by introducing a (moderately) large number of charged particles under the shift symmetry as shown
in Appendix A. In this case, the axion mass is large enough to avoid the above constraint. However, the O (1) TeV gaugino masses require
ms32 ~ 10 TeV, and the saxion decays after the onset of the BBN. The BBN constraint requires a saxion abundance much smaller than that
required by the LSP overproduction.

We next consider the case with a cutoff scale of the SUSY breaking sector lower than the Planck scale. In this case, the saxion mass is
above the gravitino mass. As is shown in Appendix A, f; is below the Planck scale. Then O (1) TeV gaugino masses require ms,2 < 100 TeV
and the gravitino decays after the onset of the BBN. Since the gravitino is produced from the saxion decay, the saxion abundance must
be small. This can be naturally achieved by the adiabatic suppression mechanism [78-80] without the fine-tuning, owing to the small
cutoff scale. Also, R parity violation is not required since the LSP overproduction from the saxion decay is simultaneously avoided. The
saxion does not dominate the universe and hence the abundance of axions as dark radiation is negligible. Finally, because of f; < Mpj,
the superradiance constraint is avoided. The only possible problem is the axion overproduction by the initial misalignment angle, but that
may be explained by the anthropic requirement as discussed above.

5. Discussion and conclusions

In this paper we consider a simple theory where a single string axion multiplet is responsible for supersymmetry breaking, its media-
tion to the standard model sector, and a solution to the strong CP problem. The couplings of the axion multiplet to the gauge multiplets
are fixed by the anomaly indices of the shift symmetry, and hence the gaugino masses take fixed, rational ratios. Assuming that the soft
masses of scalars vanish at the mediation scale, focus point gaugino mediation is realized. The electroweak scale is obtained by a tuning
of only O (1)% between the gaugino mass and the supersymmetric mass term of the Higgs multiplet.

We also discuss the cosmology of the axion multiplet. If the cutoff scale of the supersymmetry breaking sector is around the Planck
scale, the BBN constraint is avoided for the axion decay constant and the gravitino mass around O (Mp;) and O(100) TeV, respectively.
The overproduction of the LSP dark matter from the decay of the saxion is avoided by the anthropic principle or R parity violation. For
the former case the higgsino composes (a part of) dark matter, and signals in near future direct detection experiments are expected. For
the latter case the axion produced by the decay of the saxion may be observed as an extra relativistic component of the universe. If the
cutoff scale of the supersymmetry breaking sector is below the Planck scale, the BBN and LSP-overproduction constraints on the saxion
abundance is naturally avoided by the adiabatic suppression mechanism.

With a decay constant not much below O (Mp;), the axion abundance produced by the misalignment exceeds the observed dark matter
abundance, if the misalignment angle is O (1). Assuming the suppression of it by the anthropic principle, the axion is expected to compose
0 (1) fraction of the dark matter density in the universe. The dark matter axion can be detected in proposed experiments.
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Appendix A. Gravitational SUSY breaking with a lower cut-off and axion induced gaugino masses
In this appendix, we show that the cut-off scale for the gravitational SUSY breaking, M., can be lower than Mp; as shown in Ref. [90].
We also show a concrete setup generating the gaugino masses as well as a generation of f, ~ 10'7 GeV. Let us consider the SUGRA
Lagrangian
L> /d40®T® [—3M§1e—’</<3M?»1>] +/d29d>3w +h.c., (19)

where ® = ¢ (1 + F02) is the conformal compensator and the Kihler potential, K, takes the sequestered form,

Mig(x) _ fuis
3Mz 3M3 |

K =—-3M} In [1 - (20)

Here x = Z + Z* and the Lagrangian is invariant under the shift transformation, Z — Z +i’R with R being a real constant, fyis is a
function of chiral superfields in the visible sector, and ¢ is chosen to be ¢ = elK)/6MY) 5o that the Einstein frame is realized. The scalar
potential for Z is given by

—V ) =181 [IFol2FX) + F3F2 /() + FoF5 /() + [F2I2 /(0]
+3¢3FoW + 30" FLW*, (21)

where f = —3M§le_’</(3M12>1) = —L-’;M%l + Mfg(x). Using the equations of motions, the F-terms of ® and Z are

3f *3w*
Fq> = Zf (/1)2 "’
[pI>(f"> = ff")
3f/¢*3W*
Fr=—cs s (22)
lp12(f'2 = ff")
and the scalar potential becomes
V=-3p>FoW. (23)

Therefore, the vanishing cosmological constant is obtained for Fo =0 — f”(x) = g”’(x) =0 at the minimum that satisfies V’(x) =0 and
V”(x) > 0. These minimization conditions are satisfied for g® (x) =0 and g (x) < 0. At the minimum,

M2 3msp M2 (g(x)\
F)— —p 2 sp=(1- 2 ) 24
=" g 1! ( M2 (24)

Therefore, SUSY is broken. We see that (Fz) can be quite largely enhanced by MI%I /Mﬁ in comparison with ms;. If the shift symmetry is
anomalous, Z couples to field-strength superfields as

L> /d202(1<’1W]2+k’2W22+k’3W32)+h.c. (25)

3272

These terms can arise from interactions, for instance [38],
W = M'e %Zylayle, (26)

where a represents a gauge index, I =1... Ny is the number of charged matters, and \IJ(I;’ are assumed to be fundamental representations
of the gauge groups. \IJL',” \IJ";’ transforms as \IJ,II" \IJ,II" — exp[iqaR]\IJé" \I/('l“ under the shift symmetry. In this case, kj = q4N,. The charge qq is
assumed to be quantized. The gaugino masses read®

k,ga
1672

To discuss the axion couplings, we define a canonically normalized field A,

Mg =

(Fz). (27)

(Ke)2(Z —(2) = A, (28)
where
K\ 1MEg M2 g0\ © (N M2\
=) = S ) (1 M) - (S0 9

8 Sfermion masses can be suppressed in an extra-dimensional setup [32] or by introducing copies of the gauge groups [91-93].
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Here, A/ is an O(1) constant. Note that, due to the requirement of the vanishing cosmological constant, (g”(x)) =0, the normalization

factor (Ky)!'/% ~ Mf/Mpl rather than ~ M,. This canonically normalized field, .4, has the F-term of (F4) = —«/§m3/2Mp1. The saxion
mass, mg, is

3
92V Mp \? @ (x M2g(x
ms = 2<87/Kxx>:m3/2 (—Pl) —54 g0 1- 240 . (30)

M, (g'(x))* 3M2,

Equation (25) is written by

2 M

£ 3;/;2 M\I;IIZ f d*0 AR WE +KyW5 +kW5) + hc.
*
2
a
where

MZ

fa:l?/’_lvllj]’ kl:k/]/kg’ k2= /Z/k/, k3=]. (32)
3

Note that f; ~10'7 GeV can be obtained by taking slightly smaller M, than Mp, and/or large k.
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