

Hardware Design and Testing of the Generic Rear Transition Module (GRM) for the Global Trigger Subsystem of ATLAS Phase-II Upgrade

<u>Filiberto Bonini</u> and Shaochun Tang on behalf of the ATLAS TDAQ Collaboration

TWEPP 2022 Bergen #16 2022.09.20 16:20 ATL-COM-DAQ-2022-078 cds.cem.ch/record/2825490

Outline

- Global Trigger subsystem
- GRM Hardware Design
- GRM Hardware Testing
- Conclusions

Global Trigger subsystem

ATLAS TDAQ Phase-II Upgrade

Global Trigger subsystem

- Single-level Trigger in Run 4 (HL-LHC)
 - Installation at Large Hadron Collider Long Shutdown 3 ~ 2026-8
- New Global Trigger subsystem
 - Receive all trigger information from legacy / new systems;
 Concentrate data for a full bunch-crossing (BC) event onto a single processor ~ MUX
 - Replace and extend functionality of the first stage of the Run-3 topological trigger; Identify topological signatures, perform offline-like (i.e. close to full reconstruction) algorithms on full-granularity calorimeter data ~ GEP
 - Send processed trigger information to Central Trigger Processor
 (CTP) for final decision ~ CTP-Interface

Global Trigger hardware

- Firmware-based project
 - 3 layers (MUX, GEP, CTP-interface)
 - Several processing nodes
- Common hardware platform ~ 50x
 - Global Common Module (GCM) cf. TWEPP-2021
 - Advanced Telecommunications Computing Architecture (ATCA) board
 - Simplify system design and long-term maintenance
- Generic Rear Transition Module (GRM)
 - Mitigate the risks of the complex design and power management

GRM Hardware Design

Generic Rear Transition Module (GRM)

Generic Rear Transition Module (GRM)

• 82x 25.8 Gb/s MGT links

ookhaven

lational Laboratory

- GRM VM1802 : 2 TxRx 12-ch FireFly pairs, 24 GTY MGTs ~ Communication with FELIX subsystem
- GCM readout : 4 Tx-only 12-ch FireFly, 40 GTY MGTs
- GCM control : 2*9x TxRx GTY MGTs pairs for 2 XCVU13P processing-FPGAs on GCM front board through the Zone-3 connector
- MGT ref. clocks by 2x Skyworks SI5395 jitter-attenuator clock chips
- Emulate LAr sRTM, compatible with LASP
 - IpGBT chip enables emulation of detector front-ends (FEB2→LASP) for initial integration tests

GRM Hardware Testing

Versal bring-up CIPS, NoC, DDRMC

axi noc 0

AXI NoC

c_counter_binary_0

CLK **Binary** Counter

Q[31:0]

CH0 DDR4 0

Din[31:0] Dout[0:0]

Slice

heart beat o 0[0:0]

+ 500 AXI

S01_AXI

- 502 AXI 503_AXI

504 AXI

505 AX

aclk0

aclk1 aclk2

aclk3

aclk4

aclk5

- New ACAP 7nm het. computing (PL, PS/OS)
 - New Versal flow, IPs •
- CIPS: Control, Interfaces & Processing System
- NoC & DDRMC
 - AXI-based interfacing, saves resources & power, P&R • runtime, CDC, SLRs xing: easier switch-based routing

FPD_CCI_NOC_0 FPD_CCI_NOC_1

FPD CCI NOC 2

FPD CCL NOC 3

axi noc axi0 clk

su timer cnt[93:0]

pl0 ref clk

1080 MHz * 128b = 17.28 GB/s

versal cips 0

Control, Interfaces & Processing System

DDR4-MC 2400 MT/s: tests, margins $> \pm 120$ ps

I2C devices configuring and monitoring

• 3x TMP435

- Board and Versal die temperatures
- 11x INA226
 - Power rails
- · 2x TCA6424 GPIO expander
 - FireFly's un-reset
- 4x SI570
- 2x SI5395
 - 390.625 MHz GTY ref. clocks
- LTM4700 DC/DC regulator VCCINT
- IpGBT ASIC

- Scripts for I2C:
 - Devices configuration
 - Power consumption
 - Thermal performances
- Vitis C bare-metal ARM Cortex-A72 apps
 - UART, DDR4, GbE
- PetaLinux 2021.2 \rightarrow OS \rightarrow Python3
 - modules
 - ssh server

14-Gb/s FireFly modules

- 24 loopback optical links (12 Tx + 12 Rx)
- 12.8 Gb/s, PRBS-31, BER < 1E-9 for IBERT EyeScan
- GTY quads 103-104-105, 106-205-206
- All links up and running error-free
 - BER < 1E-13

Link	Open area
q104_ch0	8640
q105_ch0	8640
q106_ch0	6848
q205_ch0	7360
q206_ch0	8000
AVG	7900

National Laboratory

dashboard 1 x Scan Plots - ff q105 ch0 x Scan Plots - ff q104 ch0 x Scan Plots - ff q103 ch0 x ← → ⊕, ⊖, 👯 C 🕒 🚯 Contour (Filled) Unit Interval 1.0e-01 5.0e-02 1.0e-02 5.0e-03 1.0e-03 5.0e-04 1.0e-04 5.0e-05 1.0e-05 5.0e-06 .0e-07 0e-07 .0e-08 1.0e-08 Setting Metric SCAN 4 Open area: 8640 Link setting: N/A ff al04 ch0 Open UI %: 66.67 Horizontal increment 2022-02-08 11:03:40.268799 -0.500 UI to 0.500 UI Started Horizontal rang 12 2022-02-08 11:04:06.53909 Ended Vertical incremen

Vertical range:

100%

25-Gb/s FireFly modules

dashboard_1 x Scan Plots - ff_25G_q106_ch0

- Used 20-meter fiber loopback (no loopback module available)
- 25.8 Gb/s, PRBS-31, BER < 1E-9 for IBERT EyeScan
- All links up and running error-free
 - BER < 1E-13

Link	Open area
q106_ch0	4864
q205_ch0	5184
q206_ch0	6080
AVG	5380

12	Brookhaven
	National Laboratory

nary		Metrics		Settings	
ime:	SCAN_9	Open area:	4864	Link settings:	N/A
scription:	ff_25G_q106_ch0	Open UI %:	55.56	Horizontal increment:	8
arted:	2022-02-08 13:53:10.305131			Horizontal range:	-0.500 UI to 0.500 UI
ded:	2022-02-08 13:53:19.331529			Vertical increment:	8
				Vertical range:	100%

GRM IpGBT test-bench

• IpGBT

- Low-Power Giga-Bit Transceiver for Emulation of detector front-end on GRM
- Radiation-hard ASIC, protocols for front-end readout
- IpGBT configuration via I2C (VM1802 master) or IC/optics (FELIX)
- Send/Check IpGBT data on VM1802, through both uplink and downlink loopback via electrical links (eLinks) and optics on VTRx+/FireFly's
 - eLinks: IpGBT CLPS compatible with VM1802's LVDS
 - VTRx+ [Versatile Link PLUS, a radiation-hard optical transceiver]: high-speed asymmetrical (uplink Tx 10.24, downlink Rx 2.56 Gb/s) bidirectional optical links between the VTRx+ and FireFly

Testing IpGBT Uplink and Downlink

Down-link

- VM1802 PRBS data generated, encoded, scrambled
- GTY \rightarrow FireFly optical module @ 2.56 Gb/s
- VTRx+ \rightarrow IpGBT ASIC, decodes
- Distributed to output eLinks (CLPS) \rightarrow VM1802
- VM1802 data is checked (with eClk).
- Up-link
 - VM1802 raw data generated
 - Sent to input eLinks (LVDS) \rightarrow IpGBT, encodes
 - VTRx+ \rightarrow FireFly optical looped-back @ 10.24 Gb/s
 - VM1802 decodes, descrambles and checks (with adaptation <u>lpGBT-FPGA repo</u> to Versal).

Conclusions

Conclusions

- ATLAS Global Trigger is a new firmware-focused project designed to meet new trigger requirements for the High-Luminosity runs of the Large Hadron Collider
- Global Trigger common hardware: GCM + GRM. Board design, fabrication, bring-up and testing is completed successfully for all functionalities
- Demonstrated Versal-IpGBT communication; both devices will play crucial roles in ATLAS TDAQ for a long time, so experience on GRM will be also valuable to other projects (e.g. upcoming GCMv3 and FELIX FLX-18* Phase-II hardware - poster) Lessons learned in new Xilinx Versal family, several bugs reported and resolved 2022.1

0

Hardware Design and Testing of the Generic Rear Transition Module (GRM) for the Global Trigger Subsystem of ATLAS Phase-II Upgrade

<u>Filiberto Bonini</u> and Shaochun Tang on behalf of the ATLAS TDAQ Collaboration

TWEPP 2022 Bergen #16 2022.09.20 16:20 ATL-COM-DAQ-2022-078 cds.cem.ch/record/2825490

Backup

GRM bring-up completed

• Power

- LTM DC/DC regulators and power rails
- Ripple measures (Tektronix TPR4000)
- Managing and sequencing (ADM1066)
- MMC verification with ATCA IPMC (GCM via Zone3 conn.), hot-swap, [de]activation

• Versal & interfaces

- PL, CIPS, NoC, DDRMC
- PetaLinux build, OS boot
- PS, I2C devices configuring and monitoring (bare-metal ARM-A72 C apps, Python3, kernel drivers devtree)
- JTAG, UART, SD 3.0, GbE

Transceivers, FireFly's

- GTY transceivers
- FireFly's 14-Gb/s
- FireFly's 25-Gb/s (alpha)
- IBERT 12.8 Gb/s, 25.78125 Gb/s
- IpGBT
 - I2C and IC regmap configuration
 - eLinks CLPS ⇔ LVDS
 - Up-link VM1802 loopback
 - Down-link VM1802 loopback
 - Clocks and Decoders locked correctly

Versal - Bugs / Lessons learned

Vitis

- Versal example application issues (GbE Echo server C source, missing libraries lwip, DDRMC not ready, ...)
- Vivado
 - Versal design flow
 - IBERT integrated in GTY MGT wizard
 - Removed dynamic LPM/DFE switching
 - Multi-rate MGT IBERT
 - Glitches (menus, importing CIPS/NoC block design resets clocks, < 2400 MT/s Complex patterns in margin analysis absent, NoC IP instantiated as RTL component allowed, but should not - BD only)
- PetaLinux
 - PetaLinux does not mount full rootfs when boot INITRD images
 - Linux won't boot if Inter Processor Interrupts are not enabled to A72

Early Versal experience

- Versal design flow
- Versal-IpGBT interfacing

GCM ⇔ GRM

22

Versal power rails and sequencing

Power-on

Voltage/V	Current Demand/A	Power/W	Description	Source
0.8	39.8	31.8	VCCINT	LTM4700
0.8	1.5	1.2	VCC_PMC	LTM4642
0.8	0.3	0.2	VCC_RAM	LTM4642
0.8	2.7	2.2	VCC_SOC	LTM4642
1.5	1.9	2.9	VCCAUX	LTM4642
0.88	3.7	3.3	MGTYAVCC	LTM4630A
1.2	4.2	5.0	MGTYAVTT	LTM4630A
1.2	5	6.0	SYS_1V2	LTM4630A
1.8	0.6	1.1	SYS_1V8	LTM4642
2.5	0.2	0.5	SYS_2V5	LTM4642
3.3	3.6	11.9	SYS_3V3	LTM4630A
0.6	0.75	1.0	DDR4_VTT	TPS51200 from SYS_1V2
1	0.1	0.1	VDD_1V0	TPS7A8801 from SYS_2V5
1.5	0.01	0.0	MGTYVCCAUX	TPS7A8801 from SYS_2V5

MMC: Module Management Controller

https://espace.cern.ch/ph-dep-ESE-BE-uTCAEvaluationProject/MMC project/default.aspx

2x Redundant Radial Internet Protocol -Capable Transport

CERN MMC Mezzanine

Sensor management by IPMC in GCM

Hardware Setup of IBERT Test GCM-GRM [Weigang]

• 16 GTY TX links between GCM and GRM

- Source: Two big processor Ultrascale+ FPGAs on GCM (each FPGA has 8 links in bank 128 and 129).
- □ Path: Two Zone3 connectors between two boards.
- Destination: TX FireFly modules on GRM
- RX side on GCM
- Optical fibers from GRM to GCM
- Transceiver data is received by GCM FPGA via RX FireFly modules
- Links OK with 14-Gb/s modules IF custom emphasis/swing settings used
- Verify with 25-Gb/s FF modules?
- Now evaluate the performance of different electrical trace lengths at 25.8
 Gb/s => high speed for RTMs!

Bare-metal and OS

• Vitis C bare-metal ARM Cortex-A72 apps

- UART "Hello world"
- DDR4 Memory tests
- GbE Echo server
 - GRM⇔router⇔workstation

-----lwIP TCP echo server -----

TCP packets sent to port 6001 will be echoed back Start PHY autonegotiation Waiting for PHY to complete autonegotiation. autonegotiation complete link speed for phy address 1: 1000 Board IP: 192.168.1.101 Netmask : 255.255.255.0 Gateway : 192.168.1.1 <u>T</u>CP echo server started @ port 7 • Linux OS

- PetaLinux 2021.2 \rightarrow 2022.1
- Device tree (GbE PHY, INA226, SI570 kernel drivers)
- SSH server
- python3 modules (e.g. periphery)
- ntp, git, i2c-tools, ...

```
root@2021:~# cat /sys/bus/iio/devices/iio\:device0/name
xlnx,versal-sysmon
root@2021:~# cat /sys/bus/iio/devices/iio\:device0/in_temp160_temp_input
41.546875000
root@2021:~# cat /sys/bus/iio/devices/iio\:device1/name
ina226
root@2021:~# cat /sys/bus/iio/devices/iio\:device1/in_voltage*_scale
0.002500000
1.250000000
root@2021:~# cat /sys/bus/iio/devices/iio\:device1/in_shunt_resistor
0.000500000
root@2021:~#
```


DDRMC-NoC Config. 72-bit (ECC)

- Device type == UDIMM, 2-ranks 16GB
- Vivado HW Manager DDRMC
 - PASS, GOOD
- Vitis DDR Memory Test Example Application
 - Successful, LOW0,1


```
1972.808]Total PLM Boot Time
 -Starting Memory Test Application--
NOTE: This application runs with D-Cache disabled.
As a result, cacheline requests will not be generated
Testing memory region: axi noc 0 C0 DDR LOW0
   Memory Controller: axi noc 0
         Base Address: 0x0
                 Size: 0x80000000 bytes
          32-bit test: PASSED!
          16-bit test: PASSED!
          8-bit test: PASSED!
Testing memory region: axi noc 0 C0 DDR LOW1
   Memory Controller: axi noc 0
         Base Address: 0x800000000
                 Size: 0x80000000 bytes
          32-bit test: PASSED!
          16-bit test: PASSED!
          8-bit test: PASSED!
Testing memory region: axi noc 0 C3 DDR LOW1
   Memory Controller: axi noc 0
         Base Address: 0x800000000
                 Size: 0x80000000 bytes
          32-bit test: PASSED!
          16-bit test: PASSED!
          8-bit test: PASSED!
Testing memory region: versal cips 0 pspmc 0 psv pmc ram psv pmc ram
    Memory Controller: versal cips 0 pspmc 0 psv pmc ram
         Base Address: 0xF2000000
                 Size: 0x20000 bytes
          32-bit test: PASSED!
          16-bit test: PASSED!
          8-bit test: PASSED!
 Memory Test Application Complete--
Successfully ran Memory Test Application
```

Internal loopback (Near-End PMA)

- All links up and running error-free for >10'
 - `GTY q103 q104 q105`, REFCLK0
 - `GTY q106 q206 q205`, REFCLK1
 - `GTY q200 q201 q204`, REFCLK1
 - `GTY_q202_q203`, REFCLK0
 - 1.21A, 43 degC

ookhaven

Vational Laboratory

IpGBT

Low-Power Giga-Bit Transceiver for detector front-end emulation

CLPS / LVDS [Weigang]

- **CLPS's driving current and Amplitude are compatible with LVDS**
 - □ Up to 1.28Gbps, Vcm=600mV, Vcco=1.2V
 - **Driving current: 1 to 4 mA in 0.5 mA steps**
- **U** Vcm of CLPS and LVDS are not same
 - □ CLPS's TX to LVDS's RX
 - CLPS's Vcm TX 0.6V (0.43-0.77V)
 - LVDS's Vcm RX = 1.2V (DC 0.3-1.425V) from DS923
 - CLPS's TX can be connected to LVDS's RX directly
 - □ LVDS's TX to CLPS's RX
 - LVDS Vcm TX = 1.2V (1.0-1.425V) from DS923
 - CLPS's Vcm RX 0.6V (0.07-1.2V)
 - LVDS's TX should be compatible with CLPS's RX

Symbol	DC Parameter	Conditions	Min	Тур	Мах	Units
V _{cco} ¹	Supply voltage		1.710	1.800	1.890	V
V _{ODIFF} ²	Differential output voltage: $(Q - \overline{Q}), Q = High$ $(\overline{Q} - Q), \overline{Q} = High$	R_T = 100 Ω across Q and \overline{Q} signals	247	350	454	mV
V _{OCM} ²	Output common-mode voltage	$R_T = 100\Omega$ across Q and \overline{Q} signals	1.000	1.250	1.425	V
V _{IDIFF} ³	Differential input voltage: $(Q - \overline{Q}), Q = High$ $(\overline{Q} - Q), \overline{Q} = High$			350	600 ³	mV
VICM_DC ⁴	Input common-mode voltage (DC coupling)		0.300	1.200	1.425	V
VICM_AC ⁵	Input common-mode voltage (AC coupling)		0.600	-	1.100	V

eRX differential receiver

Parameter	Description	Min	Nom	Max	Units
V _{DD}	Supply voltage range	1.08	1.2	1.32	V
IDD	Average current consumption		850		μA
V _{CMRX}	Common-mode voltage range ^A	70	600	1200	mV
V _{CM}	Common-mode set voltage ^B		$V_{DD}/2$		
V _{ID}	Differential voltage ^c	140	200	450 ^E	mV
VIDTH	Differential input ^c high threshold			70	mV
VIDTL	Differential input ^c low threshold	-70			mV
V _{IH}	Single-ended input high voltage		700	V _{DD} +200	mV
VIL	Single-ended input low voltage	-40	500		mV
Z _{ID}	Differential input impedance	80	100	125	Ω
J _R	Random noise jitter			10 ^F	ps rms
J _{PW}	Pattern or pulse width dependent jitter ^D			10 ^F	ps
T _{R/F}	Output rise/fall time		30		ps
PSR	Power supply rejection			10 ^F	ps/100mV
CMR	Common mode rejection			10 ^F	ps/100mV

eTX differential driver

Parameter	Description	Min	Nom	Max	Units
V _{DD}	Supply voltage range	1.08	1.2	1.32	V
V _{CMTX}	Common-mode voltage ^{A,B}	430	600	770	mV
$ \Delta_{VCMTX(1,0)} $	VCMTX mismatch when output is Differential-			5	mV
	1 or Differential-0				
V _{OD}	Differential voltage ^{B,C}	140	200	270	mV
ΔV _{OD}	VOD mismatch when output is Differential-1			10	mV
	or Differential-0				
V _{OH}	Single-ended output high voltage ^B		700	900	mV
V _{OL}	Single-ended output low voltage ^B	300	500		mV
IMOD	Modulation output current ^D	0.7	1 to 4	5.4	mA
IPRE	Pre-emphasis output current ^D	0.7	1 to 4	5.4	mA
ZL	Load impedance		100		Ω

Configuration: Registers

Generate and export register file from pigbt.web.cern.ch

- EP-RX-160M: # EDIN [5.12 Gb/s, FEC12] = 16 (connected)/24 @ 160 Mb/s (320 Mb/s for 10.24 Gb/s)
- EP-TX-80M: # EDOUT = 13/16 @ 80 Mb/s
- ECLK: 40 MHz, 2.5 mA
- TxRx-EC on (No need IC/EC for now)
- TxSwapP/N (schematics)
- GPIO (testing)
- Elinks IN phase adj.

Test-bench: Uplink / Downlink

- eLink Data IN
- eLink Data OUT
- IpGBT-FPGA top-level

o/elink_320m_0[7:0]	ff
p/elink_320m_1[7:0]	а
p/elink_320m_2[7:0]	а
p/elink_320m_3[7:0]	ം
p/elink_320m_4[7:0]	5
p/elink_320m_5[7:0]	а
p/elink_320m_6[7:0]	5
p/elink_320m_7[7:0]	5
p/elink_320m_8[7:0]	5
p/elink_320m_9[7:0]	а
p/elink_320m_10[7:0]	а
p/elink_320m_11[7:0]	ം
o/elink_320m_12[7:0]	а
o/elink_320m_13[7:0]	0

Brookhaven

National Laboratory

Name	Value	270	280	290 300
INS_lpGBT_frontend/l_lpGBT_EDOUT[12:0]	lfff			
16 [12]	1			
16 [11]	1			
16 [10]	1			
18 [9]	1			
16 [8]	1			
16 [7]	1			
16]	1			
16 [5]	1			
₩ [4]	1			
16 [3]	1			
] ⁶ [2]	1			
16 [1]	1			
18 [O]	1			