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Abstract. Detectors with a time resolution of 20-30 ps and a reliable performance in high
particles flux environments are necessary for an accurate vertex separation in future HEP
experiments. The PICOSEC-Micromegas detector concept is a Micro-Pattern Gaseous Detector
(MPGD) based solution addressing this particular challenge. The PICOSEC-Micromegas
concept is based on a Micromegas detector coupled to a Cherenkov radiator and a photocathode.
In this detector concept, all primary electrons are initiated in the photocathode and the time
jitter fluctuations are reduced. Different resistive anode layers have been tested with the
goal of preserving a stable detector operation in a high intensity pion beam. One important
characteristic of a gaseous detector in a high flux environment is the ion backflow (IBF). That
can cause damage to more fragile photocathode materials like CsI. Various types of photocathode
materials have been tested in order to find a robust solution against IBF bombardment.
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1. Introduction
Tracking detectors with improved spatial resolution and timing performance are one solution
to mitigate the pile-up effects that will occur in the future high luminosity colliders [1]. These
future vertex detectors, located near the interaction point, have to withstand high particle
fluxes and large irradiation doses for several years, while maintaining the initial performance.
The PICOSEC-Micromegas is one possible concept to satisfy this task.

The PICOSEC-Micromegas detection concept aims at developing a Micromegas-based
detector [3] with superior timing precision and robustness under a strong flux of ionising particles.
The results obtained with the first prototype yielded a time resolution of 24 ps for Minimum
Ionization Particles (MIP) of 150 GeV muons [2].

In this work, we report a progress in the detector design with a focus on the photocathode
material. With this development we aim for a detector able to sustain high fluxes of ionising
particles (such as pions) and retain its performance, initially limited by the ion back-flow (IBF)
produced in the detector, throughout its operational lifetime. In Sec. 2, we describe the first
prototype and the different developments in Micromegas readout and photocathode composition,
followed by observations and IBF measurements in Sec. 3. The results for different alternative
photocathode materials are presented in Sec. 4.

2. Detector description
The first prototype of the PICOSEC-Micromegas detection concept (figure 1) is a 1 cm-diameter
detector composed of a 128 µm thick-gap bulk Micromegas, four 50 µm thick kapton rings
to define the drift gap, a 3 mm-thick crystal (MgF2) that works as Cherenkov radiator and
a photocathode composed of a 5.5 nm-thick Chromium layer and a 18 nm-thick CsI film.
Cherenkov photons are generated by relativistic charged particles passing through the crystal
and simultaneously converted into electrons at the photocathode. These primary electrons are
preamplified in the drift gap, partially traverse the Micromegas mesh, and are finally amplified
in an avalanche in the Micromegas amplification gap. This first prototype was tested in laser
and particle beam tests, and the main results were reported in [2]. A time resolution of 76 ps
was measured for single photoelectrons, and 24 ps for 150 GeV muons with a mean number of
10.4 photoelectrons produced per muon. These results were obtained with a CsI photocathode.

However, a resistive detector design is necessary to operate the PICOSEC-Micromegas in
a high flux environment with high electric fields. Two different resistive Micromegas designs
have been successfully tested with the PICOSEC-Micromegas detection principle. One uses a
resistive layer of different materials on top of the anode [4]. The actual resistivity is determined
by the chosen material and its thickness. The second one uses a conductive copper layer that
is coupled to ground by a resistor. This method is also known as the ”floating strip” resistive
Micromegas [5].

3. High Flux Beam Measurements
The resistive prototypes were tested using a high rate pion beam (≈ 2·106 pions

spill·cm2 ). Two different

resistive layers with a resistivity of 10.4 MΩ/mm2 and 37 kΩ/mm2, as well as a ”floating strip”
anode with a 25 MΩ coupling have been tested. All of them could operate under stable conditions
for several hours to days, while taking data. After the long-term irradiation with pions, the
detector was disassembled and the photocathode had to be replaced. The old photocathode was
removed, and its degeneration was investigated under a microscope.

With the resistive layer, the electrons are attenuated to keep the current on the anode low.
With each electron, a heavy positive ion cloud is formed in the gaseous volume. These heavy
ions are accelerated by the electric field towards the photocathode. During the pion irradiation,
a high ion flux is arriving at the photocathode. This heavy ion flux is called IBF [6]. The
IBF is causing a degeneration of the photocathode. This can be seen for a CsI photocathode
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Figure 1. Sketch of the PICOSEC-Micromegas detector configuration tested with particle
beams. The traversing of a charged particle through the Cherenkov radiator produces UV
photons, which are then absorbed at the photocathode and partially converted to photoelectrons.
Photoelectrons are subsequently preamplified and amplified in the drift and amplification gaps,
and induce a signal which is measured between the anode and the mesh. The photocathode
is composed of a metallic layer (either Chromium or Aluminium) to polarize the crystal and a
CsI layer or other photocathode materials. These two amplification stages are filled with a gas
mixture (80%Ne+10%C2H6+10%CF4) at atmospheric pressure. The Micromegas readout could
be ”bulk” or ”resistive”, with two extra resistive and insulator layers over the anode in one of
the configurations. The sketch is not drawn to scale.

in the microscope photograph in figure 2. A few specific patterns are visible in the picture. A
negative image projection of the mesh and the location of the support pillars can be seen. Most
ions are produced in avalanches inside the amplification region. Thus, the ions produced in the
amplification region can only pass through the holes of the mesh to the photocathode. Those
reaching the mesh itself are absorbed by it and are causing a current in the mesh. The ones not
absorbed by the mesh are drifting up to the cathode and create a current in it. Those ions are
irradiating the CsI and causing the pattern showing the grid of the mesh.

Another typical degeneration is the small white crack (labelled ”spark” in figure 2). These
small cracks appear when a spark is generated in the detector. A spark is produced when the
field is too strong and plenty of electrons are produced at once, thus causing a strong current
to flow between the cathode and the anode. The spark causes a discharge that is then followed
by a voltage drop between the anode and the cathode. A voltage drop implies a gain drop and
the detector is not efficient until the field has recovered from the spark. The time the detector
needs to recover depends on the RC value of the detector stage. If too many subsequent sparks
appear, the voltage supply fails due to the large current flow, and the detector cannot operate
in stable condition. If the voltage supply does not fail, those sparks may create an even worse
damage to the photocathode or to the mesh.

The microscope image of the imprint of the mesh shows that the IBF plays a serious role in
the deterioration of (resistive) PICOSEC-Micromegas detectors in a high-flux environment. To
investigate this issue, the currents at the anode and at the cathode are measured for different
field settings during the data-taking. The ratio of the anode and cathode currents determines
the IBF rate [6]. The measured values are shown in table 1 for different configurations.
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Figure 2. Photocathode degenerated by IBF after exposure to a high-intensity pion beam. A
few effects of the exposure are shown in the photocathode (see text).

Table 1. Anode and cathode voltage settings are shown together with the measurements of
the corresponding currents and the IBF in a high flux pion beam. The IBF of 63 % has been
reached in unstable conditions at high electric fields.

Uanode (V) Ucathode (V) Ianode (nA) Icathode (nA) IBF (%)

+450 -350 98.00 23.40 24
+450 -375 193.85 53.00 28
+450 -325 45.47 10.65 23
+425 -400 193.50 53.10 28
+425 -375 87.30 23.95 27
+425 -350 44.48 10.99 25
+400 -425 178.84 112.39 63
+400 -400 88.55 25.54 28
+400 -375 41.28 11.10 27
+400 -350 20.42 4.44 22

At stable conditions and various field settings, the IBF varies between 20 % and 30 %. When
the electric field is stronger, the detector is operating in unstable conditions. At these fields,
several sparks appear and the current in the voltage supply drops as it is not able to supply
enough current to operate the detector. In unstable conditions, the current flows through the
cathode and the IBF ratio is much larger (it reaches 63 % in table 1). This effect causes a
deterioration of the photocathode that was observed.

There are several options to operate PICOSEC-Micromegas detectors in stable conditions
at a higher particle flux. One is to reduce the electric field, however this results in a lower
gain and worse time resolution. Another option is to use a resistive coating, not only on the
anode but also on the mesh. These types of meshes are being developed and will be tested in
future prototypes. An important aspect of future applications in high flux environments is the
material of the photocathode. A more robust solution will be investigated in order to operate
the detectors in stable conditions.
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4. Comparison of Different Photocathodes
The results of the PICOSEC-Micromegas detector equipped with different photocathodes are
shown in table 2. Photocathodes based on CsI show a larger number of photoelectrons (Np.e.)
and a better time resolution when compared to other types. The higher number of photoelectrons
are directly contributing to a better time resolution as

σ ∝ 1√
Np.e.

where σ is the time resolution and Np.e. is the number of photoelectrons.
Different combinations of CsI thickness and metallic coatings were tested (No. 1-6, in table 1),

showing values between 8 and 10 photoelectrons. No optimal metallic coating was found but
CsI thicknesses between 10 and 20 µm (No. 1-3, in table 1) show better performances than
a photocathode with thicker layers. We attribute the different number of photoelectrons for
the same CsI thickness to the variable exposure time of each photocathode to air during its
installation in the detector, which ranged between 2 and 5 minutes. For the other photocathode
types, the 5 mm-thick MgF2 crystal with a 10 nm-thick Aluminium layer (No. 12, in table 1),
and the CsI-based photocathode with a MgF2 protection layer (No. 8) have a number of
photoelectrons of 2-3 and a time resolution around 50 ps, which makes them interesting for
long-term applications.

Table 2. The thickness of the MgF2 crystal and the type of photocathode, the mean number of
photoelectrons (Np.e.), the best time resolution achieved and the optimum operation point (anode
and drift voltages) of the PICOSEC-Micromegas detectors measured in beam tests (except for
photocathode with (*), where higher drift voltages have not been scanned). All samples have
been tested in a ”bulk” mesh Micromegas with a non resistive readout plane.

No. MgF2 Photocathode Np.e. Time Res. Anode/Drift
(mm) (ps) (V/V)

1 3 5.5 nm Cr + 18 nm CsI 10.4 ± 0.4 24.0 ± 0.3 +275/-475
2 9.0 ± 0.1 26.5 ± 0.3 +225/-525
3 9.9 ± 0.4 27.5 ± 0.3 +300/-450
4 3 5.5 nm Cr + 36 nm CsI (*) 6.43 ± 0.11 56.4 ± 0.7 +425/-350
5 3 3 nm Cr + 18 nm CsI (*) 8.41 ± 0.24 49.9 ± 0.5 +450/-350
6 3 6.5 nm Al + 18 nm CsI (*) 8.40 ± 0.24 47.7 ± 0.9 +450/-325
7 3 Cr + CsI + LiF <1.0 87.7 ± 3.7 +250/-625
8 3 Cr + CsI + MgF2 3.55 ± 0.08 45.6 ± 1.5 +250/-550
9 3 20 nm Cr (*) 0.66 ± 0.13 189.4 ± 5.3 +425/-425
10 3 6 nm Al 1.69 ± 0.02 71.4 ± 1.8 +275/-525
11 5 10 nm Cr (*) 2.15 ± 0.05 94.5 ± 0.9 +440/-360
12 5 10 nm Al 2.20 ± 0.05 57.0 ± 0.6 +325/-500

Furthermore, a scan over a wide range of operation points is shown in figure 3 for a metallic
photocathode (No. 12, in table 1). The optimal operation point is at a drift voltage of 500 V,
slightly higher than a CsI-based photocathode, because higher pre-amplification gains can be
reached.

5. Conclusions
Different resistive PICOSEC-Micromegas have been operated in a high-flux pion beam. The
electric fields have to be as high as possible to operate a PICOSEC-Micromeags with an optimal
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Figure 3. Dependence of the time resolution on the drift and anode voltages for a PICOSEC-
Micromegas detector equipped with a bulk Micromegas readout coupled to a 5 mm MgF2 crystal
and a 10 nm-thick aluminum layer (No. 12, in table 1) irradiated by 150 GeV muons. For each
curve at a given anode voltage, the maximum drift voltage corresponds to the maximum gain
at which the detector can work in stable conditions. Statistical uncertainties are shown.

timing performance. Operating the detector in a high rate environment can cause severe damage
to less robust photocathode materials like CsI. Alternative materials have been tested and further
studies are needed to achieve a timing performance comparable to that measured with CsI
samples. The most promising results were obtained using photocathodes coated with 10 nm Al
and with MgF2 protected CsI. These showed a time resolution of the order of ≈ 50 ps.
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