
CERN-TH-2022-149

High Quality Axion in Supersymmetric Models

Gongjun Choi(a)∗ and Tsutomu T. Yanagida(b,c)†

(a)Theoretical Physics Department, CERN,

1211 Geneva 23, Switzerland

(b)Tsung-Dao Lee Institute (TDLI),

& School of Physics and Astronomy, Shanghai Jiao Tong University,

Shengrong Road 520, 201210 Shanghai, P. R. China

(c)Kavli IPMU (WPI), The University of Tokyo,

Kashiwa, Chiba 277-8583, Japan

Abstract

In this work, we discuss how the use of the symmetries well motivated in physics
beyond the Standard model (BSM) can guarantee the high quality axions. We avoid to
introduce symmetries only useful for addressing the axion quality problem. Rather, we
rely on symmetries well motivated by other issues in BSM: supersymmetry, U(1)B−L

and the discrete R-symmetry ZNR. We show that the interplay among these guarantees
the high quality of the axion even for the gravitino mass and axion decay constant as
large as m3/2 = O(10)TeV and Fa = O(1015)GeV respectively. The key point of this
work relies on the observation that the MSSM contribution to the mixed anomalies
ZNR − [SU(2)L]2 and ZNR − [SU(3)c]

2 is not enough for gauging ZNR for N 6= 6,
which necessitates the introduction of new matter fields. We make the introduction to
achieve zero mixed anomalies, which logically supports a desired large enough N for
ZNR. This mechanism effectively makes ZNR equal to U(1)R and thus offers a logically
complete solution to the axion quality problem.
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1 Introduction

QCD axion is one of the most well-motivated hypothetical particles in physics beyond the

Standard model (BSM) as it dynamically resolves the long standing strong CP problem [1–4].

It is a pseudo Nambu-Goldstone boson (pNGB) arising from the spontaneous breaking of

the global U(1)PQ symmetry which has the mixed anomaly with SU(3)c. As such, it couples

to the QCD anomaly term via the operator

L ⊃ a

Fa

g2
s

32π2
Gb
µνG̃

bµν , (1.1)

where Fa is an axion decay constant, gs is the gauge coupling for SU(3)c, G
a
µν is the SU(3)c

gauge field strength (b is the group generator index), and G̃aµν is the dual to Ga
µν . Intro-

duction of the coupling in Eq. (1.1) renders the θ-parameter for QCD vacua a dynamical

variable and the potential for θ̄ ≡ θ+(a/Fa) generated by the non-perturbative effects of the

QCD vacuum has the minimum at θ̄ = 0 [5]. Therefore, we can understand the experimental

constraint on θ̄ . 10−10 [6] from the measurement of the neutron electric dipole moment

with the aid of the dynamical relaxation of the axion field toward 〈a/Fa〉+ θ = 0.

This elegant Peccei-Quinn mechanism to solve the strong CP problem, however, becomes

challenged by potential modifications ∆V (θ + δ) to V (θ) with δ a phase shift. This change

in general causes the shift in the global minimum of the axion potential ∆θ̄min, which spoils

the Peccei-Quinn mechanism.

One of the potential sources for ∆V (θ + δ) 6= 0 is a U(1)PQ violating higher dimensional

operator like c
(n)
Φ (Φn + Φ†n)/Mn−4

P (n ≥ 5) where Φ = (φ/
√

2)eia/Fa is the PQ scalar, c
(n)
Φ

a complex dimensionless coupling constant and MP ' 2.4× 1018GeV is the reduced Planck

mass [7–10]. Given ∆θ̄min ' ∆V (θ + δ)/(m2
aF

2
a ) with maFa ' Λ2

QCD ' (0.2GeV)2, it is

realized that axion can still be a good solution to the strong CP problem only if ∆V (θ + δ)

can be sufficiently suppressed to give ∆θ̄min < 10−10. This problem of suppressing ∆V (θ+δ)

is referred to as axion quality problem.

Unless the dangerous higher dimensional operators are suppressed with extremely small

coefficients c
(n)
Φ << 1, the aforesaid operator contributes to ∆θ̄min by

∆θ̄min ' 10−10 × 1086 ×
(
Fa
MP

)n
, (n ≥ 5) . (1.2)

Now that there is no any definite theoretical prediction for Fa, in principle any Fa value

greater than 109GeV coming from the stellar cooling process [11] is allowed. And thus
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Eq. (1.2) tells us that a larger Fa causes a much larger ∆θ̄min when there is no further

suppression in coefficients of operators.1

Often there arise axions with Fa = O(1016)GeV from string theories as the Kaluza-Klein

(KK) zero mode of higher form gauge fields [17–20]. If there exists a mechanism to avoid to

have higher dimensional operators in the theory, it seems that we can keep the theoretically

well-motivated QCD string axions as the solution to the strong CP problem. Then, how

could we guarantee the absence of dangerous higher dimensional operators? Going a step

further, would it be possible to achieve it with symmetries well-motivated by problems in

BSM physics other than the strong CP problem?2

In this work, motivated by these questions, we give our special attention to the supersym-

metric extension of the Standard model (SSM) armed with the gauged U(1)B−L symmetry

and gauged discrete R-symmetry ZNR. The anomaly free U(1)B−L gauge symmetry is very

well motivated in the context of the seesaw mechanism for explaining the tiny active neutrino

masses [21–24] and the leptogenesis [25]. In addition, any model embedded in supergravity

(SUGRA) enjoys the fundamental gauged R-symmetry.3 In this set-up, U(1)PQ is under-

stood to be the accidental remnant of U(1)B−L gauge symmetry and most of the higher

dimensional operators are suppressed simply because of gauge invariance of U(1)B−L. There

remain only few dangerous Od≥5

��PQ ’s which can be further suppressed due to the discrete ZNR

symmetry.4

The outline of the paper is what follows. In Sec. 2, taking a conservative attitude, we

discuss how the two gauge symmetries motivated by other problems in BSM than the strong

CP problem can help us achieve a high quality of axion. Sec. 3 is dedicated to the presentation

of an exemplary model and the model’s prediction for the axion quality. We also show that

the model does not suffer from the small size instanton-induced modification to the axion

potential. In Sec. 4, we discuss the upper bound of Fa for which our solution to the axion

1As a matter of fact, some of higher dimensional operators are generated via non-pertuabative gravita-
tional effects and in that case, the coefficients are given by O(e−Sgrav) where Sgrav ∼ MP /Fa is a gravita-
tional instanton action [12–15] (for the recent review on this, see [16]). Even in this case, a larger Fa gives
a larger coefficient and thus generally the larger Fa makes the axion quality worse. For Fa ≥ 2× 1016GeV,
∆θ̄min >> 10−10 becomes the case.

2Of course, one can impose an additional discrete ZN gauge symmetry with a very large N ≥ O(10)
under which the PQ scalar is charged. However, as ZN should be gauged, one needs to care about the mixed
anomaly free conditions for ZN , which makes introducing the gauged ZN non-trivial as we will see.

3Recently the use of discrete R-symmetry for addressing the axion quality problem was discussed in
[26,27].

4A gauge symmetry-assisted high quality axion was also discussed in [27–47]. Other solutions include,
for example, composite axion scenarios [48–57] and heavy axion scenarios [58–65].
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quality problem is valid in light of the measurement for the abundance of primordial light

elements.

From here on, the same notation for a chiral superfield and its scalar component will be

used. We will denote the R-charge of an operator O by R[O], and the charges of U(1)B−L

and U(1)PQ by QB−L[O] and QPQ[O] respectively.

2 Useful Symmetries

In this section, we discuss additional symmetries we assume on top of the SM gauge group

and supersymmetry, and how the assumption helps us achieve the high quality QCD axion.

As we emphasized in the introduction, the aim of this work is to investigate if the symmetries

suggested in BSM physics to address well-known problems other than the strong CP problem

can be useful in addressing the axion quality problem.

With such a purpose, we attend to three symmetries in this work: local supersymme-

try, U(1)B−L gauge symmetry and R-symmetry. Above all, the first one is one of the most

attractive resolutions to the hierarchy problem as it allows for cancellation among radia-

tive corrections to the Higgs mass. In addition to this, there are a number of advantages

that supersymmetric theories enjoy including the radiatively-induced electroweak symmetry

breaking, the possibility of the grand unification of the SM gauge couplings and so on.

In the following subsections, we study the rest of two additional symmetries in relation to

the axion quality problem. The introduction of the matter contents and charge assignments

based on the anomaly free conditions for the two gauge symmetries will offer us the logical

reasoning for suppressing unwanted higher dimensional operators.

2.1 U(1)B−L Gauge Symmetry

Extending the particle contents of MSSM by the three right-handed (RH) neutrinos carrying

the opposite lepton number to that of the active neutrinos can provide us with the explana-

tion for the tiny masses of the active neutrinos via the seesaw mechanism [21–24] and the

baryon asymmetry of the universe via sphaleron-assisted conversion of the lepton asymmetry

seeded by the out-of-equilibrium decay of the heavy right-handed neutrinos [25]. Non-trivial

fact resulting from the introduction of the three RH neutrinos is that the mixed anomaly

of [U(1)B−L]3 vanishes, which opens up the possibility that U(1)B−L is a gauge symmetry of

the theory.
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Motivated by these, we take U(1)B−L as one of gauge symmetries of the theory from here

on with the three heavy RH neutrinos. Then, what aspect of U(1)B−L gauge theory can be

invoked to improve the quality of axion?

As for the extension of the MSSM by U(1)B−L gauge symmetry and U(1)PQ global sym-

metry anomalous with respect to SU(3)c, one may wonder if it is necessary to have the two

sectors, i.e. matters carrying U(1)B−L charges and U(1)PQ charges, completely separated.

Namely, we can ask if matters can carry both of charges simultaneously, still maintaining the

original properties of each symmetry to resolve the original motivations including neutrino

mass, leptogenesis and the strong CP problem.

The axion quality problem can be the reason of the curiosity for the possibility of having

matter fields bi-charged under U(1)B−L and U(1)PQ. Carrying non-zero lepton numbers,

three RH neutrinos are chiral in that they have the Majorana mass terms in the Lagrangian.

Therefore, U(1)B−L gauge invariance demands that the Majorana masses MR be understood

as the spurion of U(1)B−L. In other words, MR arises from a vacuum expectation value

(VEV) of a scalar Φ which causes the spontaneous breaking of U(1)B−L.

Now let us denote for the moment the scalar inducing the spontaneous breaking of U(1)PQ

by Φ′. Provided that both Φ and Φ′ are bi-charged under U(1)B−L and U(1)PQ, this can

be of great help for alleviating the axion quality problem.5 U(1)B−L gauge invariance does

not allow for all the non-hermitian higher dimensional operators consisting of both Φ and

Φ′ except for those respecting U(1)B−L gauge symmetry. Thereby the number of unwanted

U(1)PQ-violating higher dimensional operators drastically decreases and the problem reduces

to suppression of only few remaining U(1)B−L-invariant higher dimensional operators.

Let us illustrate the point with a concrete example of the charge assignment. For simplicity,

let us assume QB−L[Φ] = p and QB−L[Φ′] = −q, (p, q > 0), and p and q do not have any

common divisor. Then, irrespective of U(1)PQ charge assignment for the two scalars, only

operators of the following type respect U(1)B−L and thus can appear in the superpotential6

W ⊃
∑
n=1

M3
P

(
ΦqΦ′p

Mp+q
P

)n
≡
∑
n=1

O(n)

��PQ
, (2.1)

where the sum is over positive integers. This means, in the context of the axion quality

5When the bi-charged scalars are considered, some of fermions coupled to them should be also properly
bi-charged for the invariance of U(1)B−L and U(1)PQ at least at the renormalizable level.

6Of course only those operators in Eq. (2.1) respecting R-symmetry can appear in the superpotential.
But for illustration, let us only focus on the holomorphicity of operators as a condition to appear in the
superpotential.
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problem, one only needs to make it sure that ∆V (θ + δ) contributed by these operators are

small enough to guarantee ∆θmin < 10−10 for a given set of VEVs (〈Φ〉, 〈Φ′〉) [33, 34,38].

Now if we want to take advantage of the strategy presented above, then the U(1)B−L

gauge symmetry should be understood as the consequence of a linear combination of two

U(1) symmetries. And the other linear combination of the two U(1)s is identified with

U(1)PQ. Suppose one is given two U(1)s, say U(1)1 and U(1)2, anomalous with respect

to SU(3)c with different anomaly coefficients Q1 and Q2, and Noether currents jµ1 and jµ2

respectively, i.e.

∂µj
µ
1 = Q1

g2
c

32π2
Ga
µνG̃

aµν , ∂µj
µ
2 = Q2

g2
c

32π2
Ga
µνG̃

aµν . (2.2)

At this moment, Φ (Φ′) is assumed to be charged only under U(1)1 (U(1)2).

It is always possible to find a linear combination jµAF of jµ1 and jµ2 satisfying ∂µj
µ
AF = 0

while an independent linear combination jµA remains anomalous. As the continuous symmetry

completely anomaly free at the quantum level, the U(1)AF symmetry generated by jµAF can

be taken as the gauge symmetry. In contrast, the other U(1)A generated by jµA can be used

to address the strong CP problem as NGB arising from the breaking of U(1)A can serve as

the QCD axion. After reorganization for transition from the basis (jµ1 , j
µ
2 ) to (jµAF , j

µ
A), both

Φ and Φ′ become bi-charged under U(1)AF and U(1)A.

In this work, we interpret U(1)B−L gauge symmetry and U(1)PQ as originated from the

mechanism explained above. We identify U(1)B−L gauge symmetry and U(1)PQ global sym-

metry with U(1)AF and U(1)A. This implies that matter fields of the two sectors may

be bi-charged under U(1)B−L gauge symmetry and U(1)PQ. For a given model, starting

from renormalizable Lagrangian respecting U(1)B−L, we can infer U(1)PQ-charge assign-

ment. From this, we can get information for what p, q are and the most dangerous n’s. We

will go through this procedure in Sec. 3.1.

After the spontaneous breaking of U(1)B−L and U(1)PQ, by comparison of (1) the kinetic

terms of Φ = (f/
√

2)ei(A/f) and Φ′ = (f ′/
√

2)ei(A
′/f ′) with 〈Φ〉 = f/

√
2 and 〈Φ′〉 = f ′/

√
2

and (2) that of the axion field a and U(1)AF gauge boson’s mass term, one can obtain the

expression for the axion a as a linear combination of A and A′, and that for the axion decay

constant Fa [33][
a

b

]
=

1√
p2f 2 + q2f ′2

[
−qf ′ −pf
pf −qf ′

][
A

A′

]
, Fa =

ff ′√
p2f 2 + q2f ′2

(2.3)
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where b is the NGB eaten by U(1)AF gauge boson.7

2.2 Gauged R-symmetry

In Sec. 2.1, we discussed how the global U(1)PQ symmetry can be protected from U(1)PQ-

violating nonrenormalizable operators with the aid of the gauged U(1)B−L symmetry, ex-

cepting those in Eq. (2.1). With the hope to make the mechanism complete on its own, one

may try to choose a set of (p,−q) such that p + q is large enough to make ∆V (θ + δ) con-

tributed by the operator ∼ ΦpΦ′q in Eq. (2.1) with n = 1 produce ∆θ̄min < 10−10 for a given

(〈Φ〉, 〈Φ′〉) [33,34]. Such a selection of p and q, however, is completely lack of any underlying

physics and rule, and thus we see that it is not logical enough to serve as a solution to the

axion quality problem.

Instead, in this section, we discuss the use of a gauged R-symmetry to suppress the

operators in Eq. (2.1). Insofar as a theory is embedded in a SUGRA framework, there always

exists a R-symmetry and thus every operator appearing in the superpotential is required to

respect R-symmetry. This requirement can provide us with a powerful way of handling the

unwanted operators in Eq. (2.1) provided there is a logical and systematic way of assigning

R-charges to Φ and Φ′ in a model. In this section, we focus on the role of R-symmetry

to suppress remaining unwanted operators in Eq. (2.1) and ∆V (θ + δ) in SUGRA. Then

in Sec. 3.1, we discuss in detail how the model of our interest can lead to a small enough

∆θ̄min < 10−10 in accordance with a systematic R-charge assignment.

2.2.1 R-symmetry-assisted suppression of ∆V (θ + δ)

As a matter of fact, even if operators in Eq. (2.1) respect U(1)B−L, they need to be modified

depending on R[Φ] and R[Φ′], and a type of R-symmetry in order to appear in the super-

potential. Envisioning a model in N = 1 SUGRA, when U(1)R is assumed, only operators

with R-charge 2 can appear in the superpotential. Instead if a discrete R-symmetry ZNR

(N ∈ N & N > 2) is assumed, operators themselves or those multiplied by some powers of

m3/2 must carry R-charges 2 modulo N in order to appear in the superpotential.8

7From the expression of the axion in Eq. (2.3), one can obtain a/Fa = −q(A/f) − p(A′/f ′) which
must be invariant under the gauge transformation of U(1)B−L, i.e. A/f → A/f + pαB−L and A′/f ′ →
A′/f ′ − qαB−L with αB−L the unit of the phase rotation under U(1)B−L transformation. Identification of
a/Fa = −q(A/f)− p(A′/f ′) with Eq. (2.3) gives us the expression of Fa in terms of f and f ′.

8Here m3/2 ≡ |FZ |/(
√

3MP ) is a gravitino mass with FZ the auxiliary field component of a SUSY-
breaking field Z. With SUSY-breaking, the vanishingly small cosmological constant requires a constant
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Now the interesting case is when |R[O(n=1)

��PQ
]| > 2 holds for O(n=1)

��PQ
in Eq. (2.1). In this

case, under U(1)R, all the operators in Eq. (2.1) are not allowed since their R-charges can

never be 2. Therefore, if this ideal situation can be consistently realized in a model, it will

provide the complete solution to the axion quality problem.

On the other hand, under a ZNR, operators must either be multiplied by some powers of

m3/2/MP to have R-charge 2 modulo N and to appear in W or disappear from W . Given

that the scalar potential V in SUGRA is given by

V = eK/M
2
P

[∑
a,b

(
∂2K

∂Θa∂Θ∗b

)−1

DΘaWDΘ∗b
W ∗ − 3eK/M

2
P
|W |2

M2
P

]
, (2.4)

where DΘaW = (∂W/∂Θa) + (W/M2
P )(∂K/∂Θa) and Θa is a chiral superfield, in the end

operators are to be multiplied by a single m†3/2 further to appear in V . In this case, if m3/2 is

sufficiently small as compared to MP , a large suppression of ∆V (θ + δ) and thus ∆θ̄min can

be induced. In [38], by using m3/2 = O(1)eV, this strategy was taken to have the operator

with n = 1 in Eq. (2.1) sufficiently suppressed.

2.2.2 U(1)R or ZNR?

As was pointed out in the previous section, depending on if a discrete R-symmetry in low

energy is a remnant of the spontaneous breaking of a gauged U(1)R or not, understanding

for the contribution to ∆V (θ + δ) from operators in Eq. (2.1) can be varied.

If a gauged ZNR is to be understood as the remnant of a broken gauged U(1)R, the

mixed anomaly free conditions for U(1)R and other gauge groups must be satisfied. This

can be achieved by either an appropriate R-charge assignment of particle contents of the

theory or the help of the Green-Schwarz (GS) mechanism [66]. The former case was actually

investigated in [67] and for a generation-independent R-charge assignment, it was shown

that U(1)R extension of MSSM remains anomalous unless an extra SU(3)c color octet is

introduced. Another investigation was made in [68] with the additional chiral superfields

including color-triplet Higges SUSY-breaking fields to the MSSM and no rational R-charge

assignment was found for R-anomaly cancellation.

Alternatively one can rely on theR-anomaly cancellation with the aid of the GS mechanism

provided
A1

k1

=
A2

k2

=
A3

k3

=
AB−L
kB−L

(2.5)

term in the superpotential satisfying W0 = m3/2M
2
P . Because of this, we have R[m3/2] = 2

8



where k1, k2, k3 and kB−L are Kač-Moody levels of U(1)Y , SU(2)L, SU(3)c and U(1)B−L,

and A′is are the mixed anomalies of U(1)R − [G]2 with G each of four gauge groups. The

problem is that the normalization for charges under U(1) symmetries, and k1 and kB−L are

uncertain so that one cannot be sure of equalities in Eq. (2.5) unless the whole theory is

known.9

Given the practical difficulties encountered in satisfying R-anomaly free conditions, in this

work we restrict ourselves to the case where ZNR is the R-symmetry that the operators in

Eq. (2.1) should respect. In this case, along with the interactions we have in the superpoten-

tial, very useful constraint on R-charge assignment of massless fermions is provided by the

anomaly free conditions of mixed anomalies ZNR − [SU(2)L]2 and ZNR − [SU(3)c]
2. Note

that given a discrete symmetry ZN , the contribution to the mixed anomaly ZN − [SU(N)]2

from the massless and massive fermions acquiring mass from the breaking U(1) → ZN is

separately cancelled and thus the anomaly free condition for ZN − [SU(N)]2 is insensitive

to heavy particle spectrum [69,70].10

The anomaly free condition for the mixed anomaly ZNR − [SU(M)]2 reads

ANRM ≡ 2T (Adj) +
∑
i

2T (Ri)× (R[Φi]− 1) = 0 mod M , (2.6)

where T (R) is the Dynkin index for the representation R of SU(M) and the sum runs over

different matter fields. Given Eq. (2.6), now we realize that there can be two options: either

ANRM = Mk 6= 0 with k (or − k) ∈ N or ANRM = 0.

We recall that for the purpose of addressing the axion quality problem, of course a larger

N for ZNR is better. For the first option, we may have difficulty in taking a large enough N

for ZNR unless we either assign intentionally large R-charges to fields contributing to ANRM
or introducing many fields carrying R-charge that contribute to ANRM 6= 0. In contrast,

intriguingly the second option gives us the logically supported full freedom for the choice of

any N for ZNR without the weird set-up in the hidden sector.

9Even if we envision the gauge coupling unification among the SM gauge group, still kB−L still remains
uncertain. Another challenge is to make it sure that other anomalies including U(1)2R − U(1)Y , U(1)2R −
U(1)B−L, U(1)3R and U(1)R − [gravity]2 vanish as well.

10Differing from ZN − [SU(N)]2, the mixed cubic anomaly Z3
N or the gravitational anomaly do not

give a useful constraint on the massless fermions. This is because the required anomaly free conditions for
these mixed anomalies heavily depend on whether the heavy particles obtaining masses from the breaking
U(1) → ZN are Dirac or Majorana fermions [69, 70]. The mixed cubic anomaly Z3

N is affected by both
Dirac and Majorana massive fermions and their charge assignment while ZN -gravitational anomaly may
be contributed by massive Majorana fermions for cancellation. Essentially for these mixed anomalies, the
contribution to the anomaly from the massless and massive fermions are not decoupled.
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Therefore, in the coming model building part in Sec. 3, we consider the case of ANRM = 0.

Although we assume ZNR in the theory, because of the freedom in choosing ZNR, the theory

can benefit from the power to control operators in Eq. (2.1) as strong as U(1)R. In Sec. 3.1,

ANRM = 0 will become the guiding principle to specify R[Φ] and R[Φ′]. And this will be

directly related to the prediction of the theory for the axion quality.

We conclude this section by emphasizing the big difference between a gauged discrete

symmetry ZN and the gauged discrete R-symmetry ZNR. Naively one may guess that when

PQ scalar carries the charge of ZN , imposing a gauged discrete ZN with a large N can resolve

the axion quality problem very easily because its presence is expected to suppress most of

the higher dimensional operators consisting of the PQ scalar.

However, we need to remember that the gauged ZN should be subject to the mixed

anomaly free conditions with GSM. Already within the MSSM, it is readily possible to have

the mixed anomalies of ZN with non-Abelian gauge groups in MSSM equal to 0 mod N (see

Appendix A). Thus it is not necessary to extend the MSSM matter sector for gauging ZN .

On the other hand, apparently colored fermions coupled to the PQ scalar should carry a

charge of ZN and therefore we are aware of at least these fermions’ non-zero contribution to

the mixed anomaly ZN − [SU(3)]2. Since the MSSM itself contributes to the mixed anomaly

by 0 mod N , new colored fermion’s contribution itself must be an integer multiple of N . This

means that there should be at least N different species of colored fermions as the Yukawa

couplings of the PQ scalar to these colored fermions carry ZN -charge N .11 Therefore, using

the gauged ZN with a large N for axion quality problem seems to be in need of corresponding

a large number of new colored fermions as the price to pay.

On the contrary, the discreteR-symmetry is intrinsically different: new colored fermion can

contribute ANRM 6= 0 mod N to the mixed anomalies, providing the logical reason to avoid

to introduce many new fermions. Recall that already there is a unavoidable non-vanishing

contribution to ANR2 6= 0 mod N and ANR3 6= 0 mod N from the MSSM particle contents

(see Appendix B).12 This means that newly added, but few colored fermions coupled to the

PQ scalar can cancel this existing MSSM contribution to make ANR2 = 0 and ANR3 = 0.

Hence however a large N one may imagine for ZNR, it never requires the corresponding a huge

11The introduction of N species of colored fermions can be avoided if one considers the possibility of the
mixed anomaly cancellation via Green-Schwarz mechanism [30]. However, given the uncertainty of k1 and
kB−L, it is not guaranteed whether a model can really satisfy Eq. (2.5).

12For the high quality axion, we have to consider N > 8, which will be explained in Sec. 3.2. So
ANR2 = 0 mod N and ANR3 = 0 mod N cannot be the case, which is possible for N = 6.
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number of new colored fermions charged under ZNR because the new fermion’s contribution

itself needs not be 0 mod N . This crucial difference between ZN and ZNR determines

whether an arbitrary choice of a large enough N for addressing the axion quality problem

can be logically justified or not.

3 High Quality Axion

In this section, based on the two symmetries that we introduced in Sec. 2, we establish a

concrete model with additional fields on top of MSSM particle contents with the purpose of

addressing the axion quality problem. As will be shown, U(1)PQ global symmetry emerges as

an accidental symmetry of the hidden sector which is bi-charged under U(1)B−L and U(1)PQ.

The Planck-suppressed U(1)PQ-violating operators will be shown to be naturally suppressed

thanks to the gauged U(1)B−L and ZNR. With the additional fields, renormalization group

evolution (RGE) of SU(3)c gauge coupling is modified in the energy regime above U(1)B−L

and U(1)PQ breaking scale. We shall discuss if this causes another dangerous ∆V (θ+ δ) and

show that the corresponding ∆θ̄min does not exceed 10−10 as long as a SUSY-breaking scale

is below ∼ 1014GeV.

3.1 Model

As the symmetry group of the model, we consider

Gsym = GSM ⊗ U(1)B−L ⊗ ZNR︸ ︷︷ ︸
gauge

⊗U(1)PQ︸ ︷︷ ︸
global

, (3.1)

where GSM = SU(3)c ⊗ SU(2)L ⊗ U(1)Y is the MSSM gauge group and N in the discrete

R-symmetry is unspecified at the moment. As discussed in Sec. 2.1, we assume the presence

of two U(1)s anomalous with respect to SU(3)c and we interpret the usual U(1)B−L gauge

theory with the three RH neutrinos extending the SM as the anomaly free linear combination

of two U(1)s anomalous with respect to SU(3)c. The other independent anomalous linear

combination is identified as the global U(1)PQ.

We first discuss the anomaly free conditions of U(1)B−L and additional matter contents.

As the gauged symmetry, one needs to make it sure that the mixed anomalies U(1)B−L −
G2

SM, U(1)3
B−L and U(1)B−L − [Gravity]2 vanish. It is well known that the first one readily

vanishes within the MSSM, and the second and third one can also vanish if those are further

11



5∗i 10i Ni Hu Hd

U(1)B−L -3 1 5 -2 2
ZNR 0 0 0 2 2

Table 1: Charge assignment of MSSM particle contents.

contributed by the three RH neutrinos Ni (i = 1, 2, 3). In Table. 1, we show the charge

assignment of MSSM fields under U(1)B−L and ZNR which respects the following Yukawa

couplings in the MSSM and the Higgsino mass term13

W ⊃ yu,ij10i10jHu + yd,ij10i5
∗
jHd + yν,ijNi5

∗
jHu +MR,iNiNi + µHuHd . (3.2)

One can indeed see that the three anomaly free conditions for U(1)B−L are satisfied. Note

that the RH neutrino mass MR,i serves as the spurion field with R[MR,i] = 2 which is

originated from condensation of Φ̄ in Table. 2.

As for the R-charge assignment, we notice that there are five conditions to impose for

determining charges of five matter fields in Table. 1: Four Yukawa couplings in Eq. (3.2)

give four conditions and the other last condition comes from the mixed anomaly condition

of R-symmetry within MSSM. Here, the Majorana mass term is understood to arise from a

Yukawa interaction. As was discussed in Sec. 2.2.2, the mixed anomalies ANR2 and ANR3 are

subject to the anomaly free condition within the MSSM since these must be insensitive to

a heavy fermion contribution. Therefore, the following solid argument for ANR2 and ANR3

can be made (see Appendix. B)

ANR2 −ANR3 = 0 mod N . (3.3)

In computing ANR2 and ANR3 based on Eq. (2.6), we encounter the condition [32]

R[Hu] +R[Hd] = 4 mod N . (3.4)

Thus, along with the last condition in Eq. (3.3), the four Yukawa determines R-charges of

matter fields in Table. 1 completely. Later we will set R[MR] = 2, which determines R[N]

and the rest of R-charges of MSSM matter sector as shown in Table. 1.

13Our model differes from the usual SU(5) GUT model in that the particle contents do not contain the
colored Higgs triplet. Later we will show that the condition ANR3 = ANR2 = 0 achieved in the model is
crucial in justifying the choice of an arbitrarily large N in ZNR. For this purpose, we do not introduce
the colored Higgs triplet, which will spoil ANR3 = ANR2 = −6 within MSSM. When ANR3 6= ANR2 is the
case before introducing extra matter fields, it becomes difficult to make the part of the mixed anomalies of
U(1)B−L, i.e. [U(1)B−L]3 and [U(1)B−L]− [gravity]2 vanish.

12



For U(1)PQ to be anomalous with respect to SU(3)c, the model needs at least one colored

matter field charged under U(1)PQ. As Φ and Φ′ are bi-charged, the matter fields should

be bi-charged as well for forming the Yukawa couplings with Φ and Φ′. Such an addition

will make a new contribution to all the mixed anomalies U(1)B−L − G2
SM, U(1)3

B−L and

U(1)B−L − [Gravity]2 and thus the added new fields should make the net zero contribution

to these anomalies.

On the other hand, if there are no additional fields carrying isospin that accompany

the introduction of the additional colored fields, the mixed anomalies ZNR − [SU(3)]2 and

ZNR − [SU(2)]2 can deviate from each other. This is because the contribution to the mixed

anomalies ZNR−[SU(3)]2 and ZNR−[SU(2)]2 within MSSM is identically −6. The deviation

is problematic for having the discrete gauged ZNR symmetry. So whatever new additional

field charged under GSM is introduced, as the minimum requirement for having ZNR gauged

anomaly free symmetry, there should be identical changes in ANR3 and ANR2 (see Eq. (2.6)

for computation of these coefficients). Also we keep in mind that as explained in Sec. 2.2.2,

for better addressing the axion quality problem, we want to have the corresponding anomaly

coefficients fulfill the condition ANR3 = ANR2 = 0.

With that being said, we introduce the set (5,5∗) bi-charged under U(1)B−L and U(1)PQ

for inducing the coupling given in Eq. (1.1) and also for an identical change in the mixed

anomalies ZNR− [SU(3)]2 and ZNR− [SU(2)]2 per a new bi-charged matter field. Note that

we introduce the set to have the gauge invariance of operators containing the new fields .14

Then, how many sets of (5,5∗) should we introduce to keep U(1)B−L anomaly free?

Note that 5∗ is just the counterpart of 5 for forming a gauge invariant Yukawa coupling

with Φ and Φ′. And it cannot be the case that QB−L[5∗] = −QB−L[5] since there cannot be

Yukawa coupling to Φ or Φ′ with such charges. This implies that we need at least more than

one set of (5,5∗). Thus this question is equivalent to asking the minimum number of new 5’s

which carry distinct QB−L and render the mixed anomalies U(1)3
B−L and U(1)B−L−[Gravity]2

vanish.

The minimum number of the necessary sets of (5,5∗) turns out to be five [71–73].15 We

show the charge assignment of the five sets of (5,5∗) and chiral superfields for breaking two

14We avoid the coupling of the new fields to the MSSM matter fields as that restricts charges of U(1)s
carried by the new fields.

15Two and four sets of (5,5∗) can easily lead to the gauge invariant 55∗s forming Dirac mass terms
without coupling to Φ and Φ′. So it is out of interest. Three sets of (5,5∗) cannot solve the anomaly
free conditions for U(1)3B−L and U(1)B−L − [Gravity]2. For application to the other phenomenologies, see
also [74–77].
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U(1)s in Table. 2.16 As one can check, the quantum numbers in Table. 2 accomplish (1)

ANR3 = ANR2 = 0 (2) zero contribution to the mixed anomalies U(1)3
B−L and U(1)B−L −

[Gravity]2 and (3) the anomalous U(1)PQ. As for QPQ-assignment, one can impose nonzero

QPQ to (Φ,Φ) and ΨQB−L
s with QB−L = −1,−5,−9 properly. Here we don’t do that just

for keeping the minimality of the model. Also the normalization of QPQ and QB−L can be

varied, which does not spoil the anomaly free conditions.

Φ Φ Φ′ Φ
′

X Y
U(1)B−L 10 -10 -15 15 0 0
U(1)PQ 0 0 1 -1 0 0
ZNR -2 2 0 0 2 2

Ψ−1 Ψ−5 Ψ−9 Ψ7 Ψ8 Ψ−1 Ψ−5 Ψ−9 Ψ7 Ψ8

U(1)B−L -1 -5 -9 7 8 -1 -5 -9 7 8
U(1)PQ 0 0 0 0 0 0 0 0 -1 -1
ZNR 2 2 2 1 1 2 2 2 1 1
SU(5) 5 5 5 5 5 5∗ 5∗ 5∗ 5∗ 5∗

Table 2: Charge assignment of the newly introduced hidden sector.

Based on the quantum numbers, now we can have the superpotential of the hidden sector

Whidden ⊃ W
��U(1) +WYuk , (3.5)

where W
��U(1) and WYuk are given by

W
��U(1) = X(2ΦΦ− v2) + Y (2Φ′Φ

′ − v′2) , (3.6)

and17

WYuk ⊃ Φ(Ψ−1Ψ−9 + Ψ−9Ψ−1) + ΦΨ−5Ψ−5 + Φ′(Ψ7Ψ8 + Ψ8Ψ7) . (3.7)

16One may wonder how the cosmology is affected by the presence of Ψ’s and Ψ̄’s. There can be two cases
depending on how the reheating temperature TRH is compared to v. If TRH > v holds, we checked that Ψ’s
and Ψ̄’s are thermalized by the MSSM thermal bath at the reheating era via the MSSM particle scattering
mediated by B−L gauge boson. And once Ψ’s and Ψ̄’s become non-relativistic, they are simply Boltzmann
suppressed and integrated-out. In contrast, if TRH < v holds, Ψ’s and Ψ̄’s do not have any chance to be
produced in the MSSM thermal bath as their production is kinematically suppressed. Note that the inflaton
is assumed to be neutral to U(1)B−L for the successful slow roll inflation. So Ψ’s and Ψ̄’s production via the
inflaton decay is prohibited as well. Thus the presence of Ψ’s and Ψ̄’s do not cause any danger in cosmology.

17As both Φ̄ and Φ̄′ do not couple to the matter fields and are singlet under SU(2) and SU(3) of MSSM,

they can enjoy a separate discrete gauge symmetry. This can prevent the operators like µ2Φ̄3Φ̄
′ 2 from

contributing to the QCD axion potential.
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In Eqs. (3.6) and (3.7), we omit the dimensionless coupling constants for simplicity. In this

work we consider the case of v ' v′ as hierarchy among v and v′ is irrelevant as far as the

axion quality problem is concerned.

After the spontaneous breaking of two U(1)s, we have Φ = (v/
√

2)eA/v, Φ = (v/
√

2)e−A/v,

Φ′ = (v′/
√

2)eA
′/v′ and Φ

′
= (v′/

√
2)e−A

′/v′ with A and A′ the chiral superfields serving as

Goldstone multiplets. From Eq. (2.3), we can obtain the form of axion a and the NGB of

the broken U(1)B−L. In terms of A and A′, the axion superfield A can be written as

A
fa

= (−3)
Im(A)

v
− (2)

Im(A′)

v′
, fa =

vv′√
(2)2v2 + (−3)2v′2

. (3.8)

One can observe the invariance of the axion superfield under U(1)B−L transformation, i.e.

A → A+ i(10αB−L) and A′ → A′ − i(15αB−L). We identify the axion a with a =
√

2Im[A]

and the effective axion decay constant Fa with Fa =
√

2fa.

We conclude this section by commenting on the gauge coupling unification of the model.

As the newly introduced matter fields in Table. 2 transform as fundamental and anti-

fundamental representation of SU(5), the gauge coupling unification that the MSSM features

remains unaffected. We checked that the unification takes place at ΛGUT ' 1.8 × 1016GeV

with αGUT ' 0.06.

3.2 Axion Quality

For the model established in Sec. 3.1, now we are in a position to discuss the axion quality.

Above all, the greatest worrisome for an axion quality is the operator with n = 1 in Eq. (2.1).

Given QB−L in Table. 2, we can specify (p, q) = (3, 2). The operator of the greatest concern

reads

O(n=1)

��PQ
= c1M

3
P

Φ3Φ′2

M5
P

, (3.9)

where c1 is a dimensionless coefficient of the operator. Unless largely suppressed, this op-

erator will cause a ridiculously large ∆θ̄min. Then how does the model logically suppress

it?

Notice that from the superpotential in Eq. (3.7) preserving the U(1)B−L gauge invariance,

we obtain the following conditions for R-charge assignments of the hidden sector

R[Φ] =
1

3
(6−R[Ψ−1Ψ̄−9]+R[Ψ−9Ψ̄−1]+R[Ψ−5Ψ̄−5]) , R[Φ′] =

1

2
(4−R[Ψ7Ψ̄8]+R[Ψ8Ψ̄7]) .

(3.10)
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On the other hand, for having ANR3 = ANR2 = 0 in Eq. (2.6) when these are contributed

by all the fields charged under SU(3)c and SU(2)L, we need18

R[Ψ−1Ψ̄−9] +R[Ψ−9Ψ̄−1] +R[Ψ−5Ψ̄−5] +R[Ψ7Ψ̄8] +R[Ψ8Ψ̄7]− 10 = +6 . (3.11)

Therefore, from Eqs. (3.10) and (3.11), one obtains

3R[Φ] + 2R[Φ′] = −6 , (3.12)

which is nothing but R[O(n=1)

��PQ
].

This logic above tells us that the R-charge assignment inferred from the gauge-invariant

WYuk for the hidden sector and the mixed anomaly free conditions automatically deter-

mine the R-charge of the operator in Eq. (3.9), irrespective of the detailed R-charge assign-

ment in the hidden sector. With R[O(n=1)

��PQ
] = −6 as the model’s prediction, there can be

two contributions to the total V in Eq. (2.4) to check for ∆θ̄min. These are contributions

coming from (∂W/∂Θa)× (W †/M2
P )(∂K/∂Θ†a) (contribution 1) and (W/M2

P )(∂K/∂Θa)×
(W †/M2

P )(∂K/∂Θ†a) (contribution 2) where Θa = Φ, Φ̄,Φ′, Φ̄′. Let us begin with the first

case.

Contribution 1: If N > 8 is chosen for ZNR, O(n=1)

��PQ
should be unavoidably multiplied

by (m3/2/MP )4 to appear in the superpotential. Finally O(n=1)

��PQ
’s contribution to the scalar

potential of the model in SUGRA reads

V (Φ,Φ′) ⊃ c1m
†
3/2M

3
P

(
m3/2

MP

)4
Φ3Φ′2

M5
P

+ h.c. . (3.13)

This additional contribution to the axion potential causes the shift in the global minimum

of the axion potential by

∆θ̄min = 3× 10−18 × c1 ×
( m3/2

106GeV

)5

×
( v

1012GeV

)5

. (3.14)

Hence, as long as we impose ZNR with N > 8, O(n=1)

��PQ
never spoils the Peccei-Quinn mecha-

nism to solve the strong CP problem.

We regard Eq. (3.14) as a remarkable consequence of the model as TeV scale m3/2 can

be consistent with θ̄min < 10−10, which was not the case in [38]. If one assumes a charge

assignment resulting in q + p & 12 [34], of course TeV scale m3/2 can be allowed for v =

18Recall that the MSSM fields’ contribution to ANR3 and ANR2 is given by ANR3 = ANR2 = −6.
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O(1012)GeV. But such a large charge separation among Φ and Φ′ is a bit artificial, lacking

any field theoretic logical justification.

Then, does every ZNR with N > 8 fully eliminate all the potential source of ∆θ̄min in the

model? In answering this question, care must be taken not to miss19

• operators (m3/2/MP )∆O(n>1) with ∆ ∈ N

• the case where one of operators in Eq. (2.1) with n > 1 appears in the superpotential

without any suppression by powers of (m3/2/MP ) by respecting ZNR on its own (type

A1)

• the most dangerous operator multiplied by a powers of (µ/MP ), e.g., (µ/MP )αO(n=1)

��PQ

with α ∈ N, which satisfies R[(µ/MP )αO(n=1)

��PQ
] = 2 mod N (type A2)

For the first one, we find that (∆, n) = (5, 2), (4, 3), (3, 4), (2, 5), (1, 6) are safe enough

combinations. This means that for each n, ∆’s greater than the indicated ones are good

enough for axion quality. Given this, we see that the choice satisfying N ≥ 36 makes us free

of any dangerous ∆θ̄min from the operators (m3/2/MP )∆O(n>1) with ∆ ∈ N.

Concerning the second case, for instance, if Z14R is imposed, the operator in Eq. (2.1)

with n = 2 can contribute to the scalar potential as follows

V (Φ,Φ′) ⊃ c2m
†
3/2M

3
P

(
Φ3Φ′2

M5
P

)2

+ h.c. . (3.15)

And this leads to

∆θ̄min = 1.4× c2 ×
( m3/2

106GeV

)
×
( v

1012GeV

)10

, (3.16)

which shows m3/2 . 10keV is required for v = 1012GeV. We notice that the gravitino cos-

mology can drastically change depending on m3/2 and the choice of m3/2 should be consistent

with the null discovery of sparticles in the collider searches. Thus taking an arbitrary small

enough m3/2 is not allowed and rendering ∆θ̄min caused by the next leading contribution like

Eq. (3.15) small enough is non-trivial.

We find that the unsuppressed O(n=7)

��PQ
itself leads to ∆θ̄min = 4 × 10−20 whereas O(n<7)

��PQ

does ∆θ̄min > 10−10 for m3/2 ≤ 106GeV and v ≤ 1016GeV. Thus type A1 operators are not

problematic for ZNR with N ≥ 39.

19Considering the suppression due to (m3/2µ/M
2
P ) is redundant because of R[m3/2µ] = 0.
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Lastly, apart from m3/2, one should not forget the presence of the other spurion of R-

symmetry in the model, i.e. the higgsino mass parameter µ with R[µ] = −2 mod N (see

Appendix. B). For a N > 8 for ZNR, even if O(n=1)

��PQ
does not appear in the superpotential,

(µ/MP )O(n=1)

��PQ
can do if N = 10. This operator contributes to the scalar potential as follows

V (Φ,Φ′) ⊃ cµm
†
3/2µM

2
P

(
Φ3Φ′2

M5
P

)
+ h.c. . (3.17)

And this leads to

∆θ̄min = 4× 1016 × cµ ×
( m3/2

106GeV

)
×
( µ

103GeV

)
×
( v

1012GeV

)5

. (3.18)

We find that (µ/MP )2O(n=1)

��PQ
is also dangerous because, if allowed in the superpotential, it

contributes to the scalar potential by

V (Φ,Φ′) ⊃ cµ,2m
†
3/2µ

2MP

(
Φ3Φ′2

M5
P

)
+ h.c. . (3.19)

And it causes

∆θ̄min = 18× cµ,2 ×
( m3/2

106GeV

)
×
( µ

103GeV

)2

×
( v

1012GeV

)5

, (3.20)

Thus Z10 and Z12 must be also avoided for the choice of ZNR. We find that (µ/MP )O(n=5)

��PQ

results in ∆θ̄min = 10−11 whereas (µ/MP )O(n<5)

��PQ
does ∆θ̄min > 10−10 for µ ≤ 103GeV,

m3/2 ≤ 106GeV and v ≤ 1016GeV. This means that we need not worry about type A2

operators for ZNR with N ≥ 34.

Contribution 2: For a given ZNR with N > 8, the most dangerous contributions from

(W/M2
P )(∂K/∂Θa)× (W †/M2

P )(∂K/∂Θ†a) include

V ⊃



m†3/2m3/2

(
m3/2

MP

)β O(n≥1)

��PQ

MP

,

m†3/2m3/2

O(n>1)

��PQ

MP

, with R[O(n>1)

��PQ
] = 0 mod N (type B1) ,

m†3/2m3/2

(
µ

MP

)γ O(n>1)

��PQ

MP

, with R[µpO(n>1)

��PQ
] = 0 mod N (type B2) ,

(3.21)

where β, γ ∈ N.
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For the first case in Eq. (3.21), we should be aware that (m3/2/MP )βO(n≥1)

��PQ
/MP (β ∈ N)

can appear in the Kahler potential together with its hermitian conjugate if R[mβ
3/2O

(n≥1)

��PQ
] =

0 mod N . For example, applying to the most dangerous one O(n=1)

��PQ
, we can have

K ⊃ cK1

M6
P

(m3
3/2Φ3Φ′2 + h.c.) +

c̄K1

M6
P

(m3
3/2Φ3Φ̄′† 2 + h.c.) , (3.22)

where cK1 and c̄K1 are dimensionless coefficients. Taking into account the canonically nor-

malized kinetic terms in K, we expect Eq. (3.22) results in ∆θ̄min equivalent to Eq. (3.14) up

to the dimensionless coefficients. Thus as far as there is sufficient suppression of Eq. (3.13),

Eq. (3.22) does not spoil the Peccei-Quinn mechanism.

Next, paired with the hermitian conjugate, in Kahler potential there can be the operator

O(n>1)

��PQ
whose R-charge is 0 mod N on its own (type B1 in Eq. (3.21)) or R[µβO(n>1)

��PQ
] =

0 mod N (type B2 in Eq. (3.21)). Note that type B1 (B2) is analogous to type A1 (A2).

For operators belonging to type B1 (B2) to appear in the Kahler potential, Z(N−2)R is

required when ZNR is needed for operators of type A1 (A2) to appear in the superpotential.20

Therefore, insofar as we choose ZNR that ensures sufficient suppression for operators of type

A1 (A2), we need not worry about operators of the type B1 (B2) because of N − 2 < N .

In sum, it suffices to consider a choice of ZNR that makes contribution 1 suppressed

enough. With that being said, a choice with N ≥ 39 would provide us with good enough

axion quality as operators belonging to both type A1 and A2 (and thus type B1 and B2) get

sufficiently suppressed. One may ask if some odd Ns residing in 8 < N ≤ 39 can be working

examples. N = 21 can be an example. Now that we are armed with logically-supported

freedom to choose whatever a large N for ZNR we desire, we do not perform a further analysis

to answer this question.

Though requiring N to be greater than a certain threshold seems a bit strong condition,

this is logically well-justified in our framework since different choice of N for ZNR does not

change any thing in the model (charge assignment and superpotential), never affects if the

mixed anomaly free conditions for gauge symmetries are fulfilled, and does not require a

large number of new colored fermions nor an exotic large R-charge. All these merits of our

solution are attributable to the zero mixed anomaly condition

ANR2 = ANR3 = 0 . (3.23)

20Put in another way, for example, if Z14R, Z16R, Z18R are required for appearance of O(n=2)

��PQ ,

(µ/MP )O(n=2)

��PQ and (µ/MP )2O(n=2)

��PQ in W , then Z12R, Z14R, Z16R are required for the same operators to
appear in K.
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If one accepts a non-zero integer multiple of N as a value of ANR2 = ANR3, practically

searching for viable scenarios featured by distinct R-charge assignments and new extra mul-

tiplets becomes very complicated [32]. We are taking exactly the opposite point of view.

This is the key point of this work. Thereby, our framework offers the high quality axion log-

ically, fully guaranteeing consistency with any SUSY-breaking scale and the related SUSY

phenomenologies.21

We conclude this section by commenting on a way to have stronger suppression than

Eq. (3.14). Recall that the power of gravitino mass in Eq. (3.13) is determined by Eq. (3.12).

This means that one can have higher powers of m3/2 than in Eq. (3.14) if ANR2 = ANR3 < −6

can be realized. Perhaps in the models of quintessence axion [78–80] or fuzzy dark matter [81],

one needs higher suppression by powers of (m3/2/MP ) than Eq. (3.13). In that case, for

instance, one may add k-pairs of 5+5∗ with R[55∗] = 0 resulting inANR2 = ANR3 = −6−2k.

3.3 Large Axion Potential from Small Size Instanton?

In Sec. 3.3, we introduced five sets of (5,5∗) as the minimum number of necessary fields for

the vanishing mixed anomalies of U(1)B−L. One may wonder if this price we had to pay

for U(1)B−L gauge symmetry-assisted high quality of axion introduces another axion quality

problem by triggering a significant small size instanton-induced contribution to the normal

QCD axion potential.

Before integrating out the five sets of (5,5∗), i.e. before U(1)B−L and U(1)PQ breaking,

the first beta function coefficient of SU(3)c becomes modified as

b3,new = b3,MSSM +
2

3
T ( )(N5 +N5∗) +

1

3
T ( )(N5 +N5∗) , (3.24)

where N5 (N5∗) is the number of new fields in the (anti) fundamental representation of

SU(5). The first and second new contributions in Eq. (3.24) are attributed to the new

fermions and sfermions respectively. Now that we have (N5, N5∗) = (5, 5) and b3,MSSM = −3,

the modified one-loop beta function coefficient of QCD becomes b3,new = b3,MSSM + 5 = +2.

Therefore for the energy regime above a mass scale M5 of N5 and N5∗ , the supersymmetric

QCD in our framework becomes a non-asymptotic free theory while it remains asymptotic

free below M5. The smaller M5 is expected to give rise to a large gs at MP , and thus will

make the axion potential induced by the instanton of the size ρ ∼ M−1
P larger. Does this

21It turns out that still this solution does not address the axion quality problem fully for Fa & O(1016)GeV.
We will get back to this issue in Sec. 4.
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variation of the axion potential due to the change of high energy behavior of QCD cause a

dangerous ∆θ̄min? The validity of our mechanism for addressing the axion quality problem

will depend on an answer to this question. So, this section is dedicated to making the answer

and proving the validity of the mechanism.

Envisioning the high scale SUSY-breaking, we consider the gravity-mediated SUSY break-

ing scenarios.22 In supersymmetric theories, the leading contribution to the axion potential

arises from the Kahler potential, which contains at least two powers of suppression factor

ρmsoft [82]. Here ρ is an instanton size of interest and msoft is a soft SUSY-breaking mass.

For our case, ρ is given by the inverse of the reduced Planck scale M−1
P .

The crude, but the most aggressive estimate of the magnitude of the axion potential

induced by the instanton of the size ρ ∼M−1
P is given by

∆V (θ + δ) ' e
− 2π
αs(MP )

−iθ̄−iδ ×m2
3/2M

2
P ×

(
Fa
MP

)T ( )(N5+N5∗ )

+ h.c. , (3.25)

where g2
s ≡ 4παs and msoft = O(m3/2) were used, and Fa characterizes the mass scale for

the newly added multiplets 5 and 5∗. Note that there exist 2T (R) fermion zero modes in

the representation R of SU(3)c, which requires T (R) mass insertions for closing the fermion

zero modes. This explains the last factor in Eq. (3.25) which reflects closing the fermion

zero modes of new multiplets.

We assume the phase shift by δ = O(1) that might arise from a CP-violating source in

a UV physics. For example, a complex coefficient of the dimension six four fermion gauge

invariant operators can be a source of δ 6= 0 [83]. There can be several concrete UV physics

constructions where CP is not conserved at high energy [84]. Thus, it seems more reasonable

to assume δ 6= 0.23

We present the estimate in Eq. (3.25) as the largest possible magnitude of ∆V (θ+ δ), and

∆V (θ + δ) in Eq. (3.25) may not be invariant under ZNR. For the proper ZNR invariance,

∆V (θ+ δ) should be multiplied by powers of (mR/MP ) with mR collectively denoting VEVs

of fields carrying a non-zero R-charge. Furthermore, dimensionless coupling constants used

22Obviously the SUSY-breaking effect will appear in the visible sector after integrating out the SUSY-
breaking mediation messengers. For other SUSY-breaking mediations like gauge meditation, usually the
messenger mass scale satisfies Mmess << MP . As the instantons with the size ρ < M−1mess do not contribute to
the axion potential, for a given non-asymptotic SU(3)c gauge theory, ∆θ̄min caused by small size instantons
is less dangerous in SUSY-breaking mediation scenarios other than the gravity mediation.

23Already within the SM, the non-vanishing shift ∆θ̄min = O(10−19) is caused via the CP-violation in
the electroweak sector [85].
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for closing fermion zero modes may also appear in ∆V (θ + δ), giving a further suppression.

Then the actual ZNR invariant ∆V (θ + δ) is expected to be smaller than Eq. (3.25) in

magnitude. Thus if we can show that ∆θ̄min due to Eq. (3.25) is sufficiently suppressed

to satisfy ∆θ̄min < 10−10, our framework for addressing the axion quality problem remains

intact.

Now we are in position to show that Eq. (3.25) is not at all dangerous to cause a significant

∆θ̄min as large as 10−10. To this end, we rewrite gauge coupling appearing in the exponent

of the instanton amplitude as

2π

αs(MP )
=

2π

αs(Fa)
− b3,new log

(
MP

Fa

)
2π

αs,MSSM(Fa)
=

2π

αs,MSSM(MZ)
− b3,MSSM log

(
Fa
MZ

)
, (3.26)

where 4παs ≡ g2
s with gs SU(3)c gauge coupling with the new field contents in Table. 2,

4παs,MSSM ≡ g2
s,MSSM with gs,MSSM SU(3)c gauge coupling within the MSSM and MZ '

91.2GeV is the Z-boson mass. Note that αs(Fa) = αs,MSSM(Fa) holds true as the boundary

condition. Substituting the second equation into the first equation in Eq. (3.26), we obtain

2π

αs(MP )
=

2π

αs,MSSM(MZ)
− b3,MSSM log

(
MP

MZ

)
− T ( )(N5 +N5∗) log

(
MP

Fa

)
. (3.27)

Putting Eq. (3.27) in Eq. (3.25) gives us

∆V (θ) ' e
− 2π
αs,MSSM(MP )

−iθ̄−iδ ×m2
3/2M

2
P + h.c. . (3.28)

Remarkably, this result tells us that the axion potential contribution from the small size

instanton of the modified QCD is equivalent to that induced by the same size instanton

of the QCD in the MSSM at the one-loop level. Put in another way, the axion potential

induced by the small size instanton is insensitive to UV modification to RGE of QCD gauge

coupling we have in the model.24 Therefore, Eq. (3.28) removes the concern about too a

large ∆θ̄min due to the modified QCD gauge coupling RGE.

By solving RGE for αs,MSSM, we can obtain its value evaluated at MP . Evaluation of

∆θ̄min due to Eq. (3.28) is estimated to be

∆θ̄min ' 2× 10−12 ×
( m3/2

1010GeV

)2

. (3.29)

24The insensitivity of the axion potential to the modification of the RGE of a non-Abelian gauge theory
was observed in [86] and used in [87–89] in the context of electroweak (EW) quintessence axion.
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Therefore, from Eq. (3.29), we conclude that the modification to QCD with the new

colored fields in Table. 2 never causes a dangerous ∆θ̄min as long as m3/2 . 1010GeV.

4 Tension with QCD String Axion

In Sec. 3, we showed how the gauged U(1)B−L and the discrete R-symmetry ZNR can protect

the Peccei-Quinn mechanism from being spoiled by contributions to ∆θ̄min >> 1 from higher

dimensional operators. As the main result of the framework, remarkable is that Eq. (3.14)

shows that essentially the gravitino mass as large as m3/2 = O(104)GeV can be consistent

with ∆θ̄min ≤ 10−10 for Fa = O(1015)GeV.

This result is very appealing, given the null observation of any sparticles in the LHC.

Moreover, if the high quality axion requires a somewhat lower regime of m3/2 than TeV

scale, there can be a cosmological danger to spoil the Big Bang Nucleosythesis (BBN) due

to the presence of particles with mass O(m3/2). Particularly those particles which have GeV

scale or lower mass, but very weakly interact with other particle contents in the model can

be potentially dangerous by undergoing the decay into radiation after BBN era. This will

destroy the existing primordial light elements, causing inconsistency with the experimentally

measured primordial light element abundance.

This concern actually applies to the unavoidable particle contents of the model, saxion

(S) [90]. Saxion is the real part of the scalar component of axion supermultiplet in supersym-

metric theory and it obtains the mass of O(m3/2) in SUGRA. The strength of its interaction

with other particles are characterized by F−1
a just like axion. Because the high axion quality

does not allow for simultaneous largeness for m3/2 and Fa as can seen in Eq. (3.14), a prob-

lematic low m3/2 for Fa as large as O(1016)GeV may be required for the high quality axion

in the model. If the required m3/2 is too low for S to decay prior to BBN, then the model

cannot fully resolve the axion quality for Fa & O(1016)GeV. This section is dedicated to

explore the range of Fa wherein our resolution to the axion quality problem can be consistent

with BBN.

Given the axion supermultiplet coupled to the gluon supermultiplet, the saxion decay to a

pair of gluons becomes the main decay channel for the saxion. The decay rate of the process

reads

Γσ→gg =
α2
s

64π3

m3
S

F 2
a

. (4.1)

We can infer the temperature of the thermal bath when the decay happens by comparing
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Figure 1: Plot showing the collection of the point (Fa,m3/2) (1) satisfying ∆θ̄min = 10−10

(red solid) based on Eq. (3.14) and (2) producing TSdec = 5MeV (blue dashed) and 1MeV
(yellow dashed) based on Eq. (4.2). For both cases, the parameter space below the lines
makes ∆θ̄min and TSdec smaller than the indicated values.

Γσ→gg to the Hubble expansion rate during the radiation dominated era. In doing so, we

obtain

TSdec ' 26MeV ×
(
g∗ρ(aSdec)

10.75

)−1/4 ( mS

100TeV

)3/2
(

Fa
1016GeV

)−1

, (4.2)

where mS is the saxion mass and g∗ρ(aSdec) is the number of relativistic degrees of freedom

at the time of S-decay.25

In Fig. 1, we present the plot showing the collection of the points (Fa,m3/2) satisfying

∆θ̄min = 10−10 (red solid), and TSdec = 5MeV (blue dashed) and 1MeV (yellow dashed). For

the parameter space below each line, ∆θ̄min and TSdec are smaller than the indicated values.

As a lower bound of the safe TSdec, we take O(1) MeV.

Indeed, reflecting our concern, for Fa = O(1016)GeV, if mS ' m3/2, we see that m3/2

required for the high quality axion renders the saxion too light to complete the decay before

BBN era. This means essentially our proposal for solving the axion quality problem cannot

apply to Fa regimes where the red line is below the dashed lines. There, the cosmological

consistency requires m3/2 above the dashed lines for a fixed Fa and thus another way of

25Saxion can couple to quarks via, for example, K ⊃ (A+A†)Q†Q/Fa. But the decay of saxion to a pair
of quarks is subdominant in comparison to Eq. (4.1) as the corresponding decay rate is ∝ mS(mQ/Fa)2.
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solving axion quality problem is required.26

Nevertheless, we emphasize that our model still makes Fa as large as O(1015)GeV con-

sistent with the measurement of the primordial element abundance. In trials to address

the axion quality problem in SUGRA, it is still non-trivial to achieve the cosmological con-

sistency by allowing for TeV scale m3/2 (for instance, see [34, 38] where a problematic low

enough m3/2 is needed for Fa beyond the QCD axion window).

5 Conclusion and Outlook

In this paper, we suggested a complete solution to the axion quality problem based on

symmetries which have good motivations in BSM physics for other purposes than the strong

CP problem. The symmetries we invoked are supersymmetry, the gauged U(1)B−L and a

gauged discrete ZNR symmetry with a sufficiently large N .

With U(1)PQ symmetry for the axion solution to the strong CP problem interpreted as

an accidental symmetry protected by the gauged U(1)B−L to some extent, the axion quality

problem reduces to sufficient suppression of the operators given in Eq. (2.1). This is the

point where R-symmetry is involved in our solution.

Ideally, as we discussed in Sec. 2.2.2, a gauged U(1)R is the best option for addressing

the axion quality problem. But as it is practically very difficult to have a gauged U(1)R,

we asked if an alternative gauged ZNR can effectively serve as U(1)R in the axion quality

problem. This requires a large N ≥ O(10) choice.

Provided the mixed anomalies of a discrete symmetry with the MSSM gauge groups

SU(2)L and SU(3)c are 0 mod N within the MSSM, we must introduce either of addi-

tional colored fermions as many as N carrying U(1)PQ or few fermions carrying abnormal

large R-charges. As a matter of fact, this is the case for a usual discrete symmetry ZN .

But for a discrete R-symmetry ZNR, the mixed anomalies ANR2 and ANR3 are not 0 mod

N within the MSSM. This fact can make ZNR distinguished clearly from a discrete non R-

symmetry ZN ’s. As ANR2 = ANR3 6= 0 mod N , one can introduce few fermions contributing

to ANR2 and ANR3 carrying reasonable R-charges to achieve ANR2 = ANR3 = 0. Then

whatever N is considered, there is no need to introduce many new fields and large R-charges

(see Sec. 2.2.2).

26In the case where mS & 10m3/2 holds true, our solution to the axion quality problem can still apply to

the QCD string axion with Fa ' 1016GeV, still being consistent with BBN constraint.
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In accordance with this mechanism, we considered the situation where ANR2 = ANR3 = 0

is realized in the full theory. We emphasize that this is the most important aspect of this

work. Thanks to this, our model could enjoy the logically well-justified a large N choice

for ZNR and become fully free of any source of ∆θ̄min. Consequently, differing from other

solutions to axion quality problem in supersymmetric models, Peccei-Quinn mechanism can

successfully operate even without needing small enough m3/2 and Fa. In our framework,

there is always a unavoidable ∆θ̄min from Eq. (3.14) and thus non-vanishing neutron electric

dipole moment is expected. The constraint on (m3/2, Fa) from ∆θ̄min is shown in Fig. 1.

We believe that our mechanism for having a logically well-justified ZNR with N ≥ O(10)

can be further applied to other problems in particle physics model building. Whenever there

is a need to suppress high dimensional operators, one can impose the zero mixed anomaly

conditions of ZNR. This will help the model remain minimal, suppressing all the unwanted

non-renormalizable operators.
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A Mixed Anomaly for ZN within MSSM

Let us denote a ZN charge of a field X by QN [X]. Suppose the Higgsino mass parameter

satisfies QN [µ] = 0. If QN [Hu] = x, then QN [Hd] = Nm1 − x should hold for an integer

m1 ∈ Z. On the other hand, the first two Yukawa couplings in Eq. (3.2) give the conditions

QN [1010Hu] = Nm2 and QN [105∗Hd] = Nm3 with m2,m3 ∈ Z.

Combining these conditions, one finds

QN [10] =
N

2
m2 −

x

2
, QN [5∗] =

N

2
(2m3 −m2 − 2m1) + 3

x

2
. (A.3)
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Given QN [10], QN [5∗], QN [Hu], and QN [Hd], we find the mixed anomalies of ZN −
[SU(3)c]

2

3︸︷︷︸
3 generation

×(3QN [10] +QN [5]∗) = 3× N

2
(2m3 + 2m2 − 2m1) = 0 mod N , (A.4)

and of ZN − [SU(2)L]2

3︸︷︷︸
3 generation

×( 3︸︷︷︸
color

QN [10]+QN [5]∗)+Nm1 = 3×N
2

(2m3+2m2)−2Nm1 = 0 mod N . (A.5)

Thus both mixed anomalies are 0 mod N .

B Mixed Anomaly for ZNR within MSSM

If R[Hu] = x, then R[Hd] = N`1−x+2−R[µ] should hold for an integer `1 ∈ Z. On the other

hand, the first two Yukawa couplings in Eq. (3.2) give the conditions R[1010Hu] = N`2 + 2

and R[105∗Hd] = N`3 + 2 with `2, `3 ∈ Z.

Combining these conditions, one finds

R[10] =
N

2
`2 −

x

2
+ 1 , R[5∗] =

N

2
(2`3 − `2 − 2`1) + 3

x

2
− 1 +R[µ] . (B.6)

Given R[10], R[5∗], R[Hu], and R[Hd], Eq. (2.6) yields the mixed anomalies of ZN −
[SU(3)c]

2

ANR3 = 6 + 3︸︷︷︸
3 generation

×(3R[10] +R[5]∗ − 4) = 3N(`3 + `2 − `1) + 3R[µ] , (B.7)

and of ZN − [SU(2)L]2

ANR2 = 4 + 3︸︷︷︸
3 generation

×( 3︸︷︷︸
color

R[10] +R[5]∗ − 4) +R[HuHd]− 2

= −2 +N(3`3 + 3`2 − 2`1) + 2R[µ] . (B.8)

The difference between these two mixed anomalies reads

ANR3 −ANR2 = 2 +R[µ]−N`1 = 4−R[HuHd] . (B.9)
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From Eqs. (B.7), (B.8) and (B.9), requiring ZNR to be free of the mixed anomalies tells

us that R[HuHd] = 4 mod N . In other words, R[µ] = N`4 − 2 with `4 ∈ Z, which in turn

results in

ANR3 = 3N(`3 + `2 − `1 + `4)− 6 , ANR2 = N(3`3 + 3`2 − 2`1 + 2`4)− 6 . (B.10)

In the case of `1 = `4, ANR2 = ANR3 holds true and both are -6 mod N . In the other case

of `1 6= `4, both are still -6 mod N , but ANR2 6= ANR3.
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