

1

REAL-TIME DICTIONARY TABLES

Authors : J Cupérus Database Art. 4.2
Written : 6 SEP 1988 Section RT-DB
Revised : 1 JUN 1988 Pages 10

1. Introduction

The central source of our data is the ORARLE database, at present on an IBM
mainframe. In principle, real-time programs could access the central database
directly but, for the moment at least, it is not possible for us to make
remote procedure calls to ORACLE. Even if this were possible, there is a
timing problem: a relational database is quite efficient for responding to
complicated queries for data sets but needs a minimum of time even for returning a single record and a typical display may need a large number of
them, which can result in too long delays, especially in a multi-user database
system where everybody has the same priority. The central system may also be
down for maintenance at times unrelated to the operational needs of our
control system. For these reasons, several of the ORACLE tables and views are downloaded as dictionary files on the TREES computer where they can be queried
by simple remote procedure calls (RPCsJ to routines which return a complete
record when the user produces the key.

To make this service efficient, the records are ordered physically according
to the key and the (short) index to the disk pages is permanently in memory.
This has the advantage that any record can be can be retrieved with, at most,
one disk access and none if the disk page is already in memory, which often
happens when closely related records are successively requested.

The application program calls the appropriate procedure header with the
correct record structure. In the server, a few lines of code relay the call
from the table-specific header to a general access routine XFIND. This routine
and associated data structures can give access to up to 8 dictionary tables.
This limit is a consequence of the small size of the ND computer segments (24
kWords in this case). At the moment, two copies of the routines are
implemented on different segments, giving access to up to 16 dictionary
tables. Each table is implemented on a separate, permanently open, SINTRANIII
file.

The acces routine has 8 slots. An initialisation routine DINIT allows to
connect each slot to a specific dictionary table and to read its index into
memory.

The RT database will be ported, as soon as possible on a ULTRIX server where
it will exist in parallel with the ND version for a certain time. This is
discussed at the end of the note.

2

2. Structure of the Dictionary Tables

The dictionary table starts with one or more index pages (of 1024 words),
followed by data pages with records of information. If a record does not fit
completely at the end of the page, the space is left blank and the record
begins on the next page.

A record is composed of key fields in proper order (with the most significant
key first), followed by data fields. The records are ordered according to the
key fields, as if the key was composed of (16 bit) integers. This is done
for efficiency and it means that the ordering is correct only for integer and
string keys, but these are the only keys that matter in practice (a record is
not normally identified with a real). Characters are packed, two per word. A string is always composed of an even number of characters and padded with
blanks at the end.

The first positions of the first index page contain:

Pos. 0 : number of records in table
Pos. 1 : number of 16-bit words per record
Pos. 2 : number of records per page
Pos. 3 : offset of last records on page (in words, from start of page)
Pos. 4 : last page in file (from 0)
Pos. 5 : length of key in words
Pos. 6 : number of index pages
Pos. 7 : offset of last key on index (in words from start of file)
Pos. 6,9: spare positions

Starting at Pos. 10 follows a contiguous list of the keys of the last record
of each page.

3. The RPC Headers

The RPC headers are defined in file <PRDEV>(DATA-BASEJNPL-DB-1ACCESS:SYMB for
the first 8 tables and in file <PRDEV>[DATA-BASE JNPL-DB-2ACCESS:SYMB for the
next 8 tables. These ICCI headers are the link between the outside world and
the interface routine XFIND (see below). They specify the name of the routines
and the number and kind of parameters. They check the array dimensions and
other limits and adapt the outside request to the dictionary table structures.
Several headers may refer to the same dictionary table and one header may
combine calls to several dictionary routines. In general, however, the outside
call mirrors directly all or part of the fields of a dictionary table.
Appendix 1 gives an idea of the present headers. To have the latest version,
refer to the original definitions on file
<PRDEV>(DATA-BASE)DEF-DATABASE-FUN:SYMB. The definition file is written for
PPLUS but, at present, most of the calls are from NODAL.

4. The DINIT and XFIND Routines

The source code for the initialisation routine DINIT and the access routine
XFIND is on <PRDEV>(INFO)NPL-DB-DICSEARCH;SYMB.

Each of 6 buffers can be connected to a particular dictionary table. The
binding to permanently open dictionary files is done with routine DINIT which
has following integer parameters:

RO FCOUNT : number of file buffers used
RO FILEN0[8] : array with file numbers of permanently open files

0
1
2
3
4
5
6

rd

5

RO RECLEN(B) : array with length of corresponding table records
WO XBUFNO : last processed file (XBUFN0=FC0UNT and XC0CO=0 if all OK]
WO XCOCO : complement code (see below)

DINIT is called, at initialisation, from the header routine DBIN1 for the
first segment and DBIN2 for the second segment. These header routines specify
the file numbers. The RECLEN array is redundant and serves to check whether
the tables have the expected structure. The DBIN routines are called from
SYS-GO when the TREES computer is initialised.

The other header routines communicate with the access routine XFIND. Here,
communication is through DISP parameters :

RO XBUFNO : file buffer number 1..FC0UNT
RO XMODE : XM0DE=0: get record with sequence number XRECNO

XMODE=1: search for exact match with key
XM0DE=2: abbreviations are detected (for packed strings]

RO XRECNO : sequence number (from 1) of requested record (on input) or
of returned record (on output)

RW XRECBUF : array for receiving the record; if XMODE is 1 or 2, then
the key must be filled in before calling (padded with
blanks if abbreviation); the complete record, as found in
the table, is returned

WO XCOCO : complement code (see below);

5. Error Codes

The routines DINIT or XFIND may return the following complement codes. These
codes may be transformed, in some cases, by the header routines:

XCOCO=O
= 1
=2=3= 4
= 10
=11. .17
=11,12,13
=14,15
= 16
= 17
=SF+&12000

requested record found or exact match found
unambiguous abbreviation match found
ambiguous abbreviation match found
not found and record with next higher key returned
not found and last record in the dictionary returned
file buffers not initialised
buffer initialisation errors (bad data file ?J
bad file heading ?
index too large ?
bad order in file ?
page keycheck failure
SF is SINTRAN III file error

6. Generation of Dictionary Tables

A dictionary file is generated by FORTRAN program RTDUMP. The program asks a
number of questions which are reproduced below, followed by appropriate user
input:

Give ORACLE username. tablename : PSC.ALMES

Key field list (1 or more lines) terminated by END: CATNUM/12,MESNUM/12, END

Field list (1 or more lines) terminated by END: MESSAGE/I2,END

ALMES is the name of the ORACLE table or view of which you want a dictionary
version.

4

The lists are composed of entries, separated by commas and terminated by end.
The list can be continued on several lines, provided each line exept the last
ends with a comma.

Each entry is of format AAAA/Xn where AAAA is the ORACLE column name, X the
column type (H=hex, I=integer, O=octal, B=binary, R=real, S=string) and n the
length of the field (in bytes) in the dictionary table.

The dictionary is written to file: tablename.DUMP. This file is in ND format
for integers, reals and characters.When several dictionary tables must be generated, the program is called once
for each one. These calls are done from file <IBM>{PSCOJRTDBGEN.EXEC (see
article 4.1).

7. RT Database on the ULTRIX Computers

On the VAX computers, under ULTRIX, many of the space limitations of the ND
version will not exist.

The file structure will be the same as on the ND version. The readout routines
will be written in C. The parameters for the DINIT and XFIND routines will be
the same but all the parameters will now be passed in the subroutine calls:

RTDBINITÍ FCOUNT,FILENO_ARRAY,RECLEN_ARRAY,COCO_ARRAY)

RECFIND(BUFNO,MODE.RECNO,RECEDF,COCO)

All indexes are now grouped in the same buffer which can countain as many file
references as necessary.

INVITATION

REAL TIME DATABASE

Aux : voir ci-dessus

De : Ch. Serre

MERCREDI 7 JUIN 1989

PETITE SALLE DE CONFERENCE F
(6-2-0021

Á 14HOO

Ch. Serre

S

