

Long lived particles at LHC (not HNL)

David Rousso for the LHC Collaborations

BLV2022

September 8, 2022

Outline

- Benchmark models
- Some existing results
- Context of the LHC and the detectors
- Signatures and search results
 - MS displaced leptons and HCAL displaced jets
 - ECAL displaced photons or electrons
 - Tracker displaced vertices
 - dE/dx ionisation loss
- Conclusion

SUSY

Scalar Portal

SUSY

Scalar Portal

SUSY

[Gauge-Mediated SUSY Breaking (GMSB)]

R-Parity Violating SUSY (RPV)

Scalar Portal

[Hidden Abelian Higgs Model (HAHM)]

Falkowski-Ruderman-Volanksy-Zupan (FRVZ) model

R-Parity Violating SUSY (RPV)

Scalar Portal

[Hidden Abelian Higgs Model (HAHM)]

Falkowski-Ruderman-Volanksy-Zupan (FRVZ) model

Multi-Charged Particles (MCP)

Some Existing Results [Higgs Portal]

Context on the LHC Experiments

Context on ATLAS and CMS

LLP Signatures in the MS

- LLPs decaying to muons make them displaced (i.e. don't point back to PV [pp-interaction])
- Backgrounds include:
 - Badly reconstructed prompt muons
 - Some SM decays
 - Crossings of unrelated displaced muons
 - Cosmics
 - Beam-induced background (BIB)

LLP Signatures in the HCAL

- Quarks hadronized into a collimated jet of hadrons
- LLPs decaying to quarks have both quark products in single jet with:
 - Little to no standard tracker tracks
 - Higher CalRatio= E_{HCAL}/E_{ECAL}
- Backgrounds include:
 - SM multi-jets
 - Cosmics and beam-induced background (BIB)
- Can also identify displaced jets with "tagging variables" [CMS]

CMS-EXO-21-006

 $H \rightarrow LLP^0 \rightarrow Displ. 2\mu$

[Similar CMS scouted

dimuon search]

[Similar ATLAS CalRatio jet search

 $H \rightarrow LLP^0 \rightarrow Displ. Collim. 2l or 2q$

arXiv:2206.12181

Simplest Targeted Model:

Trigger:

Signal Region:

- **Dedicated MS dimuon trigger** w/o beamspot constraint
- Separate SRs for [STA-STA, STA-LMS, LMS-LMS]
- $\frac{L_{xy}}{\sigma_{L_{xy}}} > [6,3,6]$ (is displaced)
- Dimuons not back-to-back (not cosmics)
- $m_{\mu\mu} > 10~{
 m GeV}$ (not SM decay or random crossing)
- Angle between $\vec{p}_{\mu\mu}$ and \vec{L}_{xy} is $|\Delta\Phi| < \pi/4$ (not prompt misreconstructed)

- WH: lepton trigger. ggF: 3muon, muon-scan, CalRatio triggers
- Separate SRs for $ggF[2\mu, c + \mu, 2c]$, $WH[c, c + \mu, 2c]$
- CNN to discriminate multi-jet
- $\sum p_{T,tracks\ within\ \Delta R=0.5} < 4.5$ (jets are trackless)
- Many things abstracted out in definitions of muon and calojets

CMS-EXO-21-006

 $H \rightarrow LLP^0 \rightarrow Displ. 2\mu$

Bkg Estimate:

- Cosmics:
 - # events passing all criteria except back-to-back is already negligible, so ignore
- Misreconstructed Prompt:
 - Will have symmetric |ΔΦ|
 - Predict $|\Delta \Phi| < \pi/4$ from $|\Delta \Phi| > 3\pi/4$
- SM Decays and Random Crossings:
 - Correlated with jet activity
 - Get ratio of opposite-sign to same-sign in jetembedded muon CR and extrapolate to SR

arXiv:2206.12181

 $H \rightarrow LLP^0 \rightarrow Displ. Collim. 2l or 2q$

- Cosmics estimated from cosmic dataset and subtracted for ggF, negligible for WH
- BIB negligible
- ABCD method using:
 - Azimuthal angle between object from pTmiss for WH SRs
 - Tracklessness of jets variable for ggF SRs
 - Multi-jet rejection CNN score for Calojet SRs
 - Azimuthal angle between both muon jets for that SR

CMS-EXO-21-006

 $H \rightarrow LLP^0 \rightarrow Displ. 2\mu$

Results:

Simplest

Targeted

Model:

arXiv:2206.12181

 $H \rightarrow LLP^0 \rightarrow Displ. Collim. 2l or 2q$

LLP Signatures in the ECAL

- e^{-}, γ ATLAS LAr ECAL has timing e^{+}, γ capabilities and unique pointing abilities
 - Photons or electrons from LLP decays will differ by:
 - Not pointing back to the PV
 - A timing delay
 - Backgrounds include:
 - Misidentification of other objects
 - Misreconstructed prompt photons or electrons

Searches for LLPs in the ECAL

ATL-COM-PHYS-2022-474

[Similar ATLAS displ. y search]

LLP \rightarrow Displ. H $\rightarrow \gamma \gamma / Z \rightarrow e^+ e^-$

Simplest Targeted Model:

Trigger:

2 high-pT photon triggers

Signal **Region:**

- Require time delay > 0
- Require MET > 30 GeV
- Displacement and timing are binned
- $m_{\gamma\gamma} \in [60, 135]$ GeV (i.e. from Z or H)

Bkg **Estimate:** Background fakes or misreconstructed. Non-collision negligible.

- Define CR with low MET, form fake-photon-enriched and genuine-photon enriched templates in timing and pointing bins from identification requirements
- Normalize templates in SR using overall fraction of "genuine" to "fake" in SR

No significant excess

LLP Signatures in the Tracker

- Can target:
 - LLP itself (disappearing track [ATLAS, CMS])
 - or decay products
- LLPs decaying to charged particles:
 - Don't see anything: need to run large radius tracking (LRT)!
 - **Displaced vertex** (#trks, inv. mass, location)
- Backgrounds include:
 - SM decays
 - Hadronic interaction of SM particle with material (HI)
 - Accidentally crossed tracks
 - Vertices accidentally merged together can affect analysis

Searches for LLPs in the Tracker

ATLAS-CONF-2022-054

Jets + LLP \rightarrow Displ. Vertex

Similar CMS jets with DVs search

Simplest Targeted Model:

$\begin{array}{c|c} q & q \\ q & q \\ \hline \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} & q \\ \hline \tilde{\chi}_1^0, \tilde{\chi}_1^{\pm} & q \\ q & q \end{array}$

Multi-jet trigger

Signal Region:

Trigger:

- High pT Jet and Trackless Jet SRs (if jet is trackless, can lower jet pT req.)
- Outside detector material (cut out HI)
- $m_{DV} > 10 \text{ GeV} \text{ (cut out HI)}$
- # tracks >=5 (cut out SM decays & HI)

- All backgrounds correlated with prompt jets
- Use single-photon trigger as CR with same prompt jet properties but no signal contamination
- From number of jets, estimate number of DVs

 Cross-checked by estimating each component of background individually

High pT SR: expected **0.46**, observed **1**

Trackless SR: expected **0.83**, observed **0**

18

The Ionization Loss LLP Signature (dE/dx)

- Normally, average charge released at each hit is ~20000e.
- Usually don't care, set threshold at ~3500e for hit.
- Time over threshold (ToT) is recorded, approx. propr. to ionization charge, so can calculate dE/dx
- Heavy (slow) charged LLPs or MCPs themselves have higher dE/dx
- If very stable, might even also see track in the MS
- Backgrounds include:
 - Random SM tracks
 - Multiple particles hitting same area
 - Radiation background and noise

Searches for LLPs with dE/dx

ATLAS-CONF-2022-034

LL - MCP

Simplest Targeted Model:

Trigger:

Signal Region:

- Single muon trigger, CAL MET trigger, "late-muon" trigger (muon in bunch-crossing after jet)
- z=2 and z>2 SRs
- Track must have segments in tracker AND MS
- Significance of dE/dx in (pixel, TRT, MDT) $[S\left(\frac{dE}{dx}\right) = \left(\frac{dE}{dx} \left\langle\frac{dE}{dx}\right\rangle_{\mu}\right) / \sigma\left(\frac{dE}{dx}\right)_{\mu}] \text{ must be above threshold}$
- Fraction of TRT hits above high threshold for z>2

arXiv:2205.06013

Pixel dE/dx

- Calorimeter missing transverse energy (CAL MET) trigger
- Low and high dE/dx SRs as well as another region to deal with edge case of dynamic range.
- SRs divided into [only tracker, tracker + MS]
- Require MET>170 GeV
- dE/dx measured in pixel only

Searches for LLPs with dE/dx

ATLAS-CONF-2022-034

LL - MCP

Bkg Estimate:

- Background is detector occupancy and noise
- ABCD Method:
 - z=2: S(TRT dE/dx)>2 and S(MDT dE/dx)>4
 - z>2: fraction of high threshold TRT hits > 0.7 and S(MDT dE/dx)>7

arXiv:2205.06013

Pixel dE/dx

- Background is **SM processes in pixel** (dominates low dE/dx and low MET)
- We want #events binned in m (need pT and dE/dx)
- For narrow |η| bin, expect:
 pT uncorrelated with dE/dx and dE/dx uncorrelated with MET
- Get $|\eta|$ vs pT distribution from low dE/dx region Get $|\eta|$ vs dE/dx distribution from low MET region
- Sample $|\eta|$, sample pT and dE/dx -> calculate m

Searches for LLPs with dE/dx

ATLAS-CONF-2022-034

LL - MCP

Results:

arXiv:2205.06013

Pixel dE/dx

Notes about the excess in the pixel dE/dx analysis

- 7 events observed in [1100,2800] GeV bin where 0.7±0.4 were expected [local 3.6σ, global 3.3σ]
- 4/5 matched with muon in MS, with consistent momentum information from tracker and MS.
- MCP analysis sees 2 of these events as having good enough dE/dx in pixel, but does not see
 excess since not sufficient dE/dx in TRT or MDT
- No obvious pathologies found with these events
- $\frac{dE}{dx} \in [2.42, 3.72] \text{MeV g}^{-1} \text{cm}^2 \rightarrow \beta \in [0.62 0.52]$, so particles have longer time-of-flight than SM
- However directly measuring β from calorimeter and MS consistent with 1, so low particle speed is not consistent.
- Local 2.4σ excess at 600 GeV observed in 36 fb⁻¹ version of this analysis is not confirmed.

Conclusions

- Long-lived particles are an important direction for BSM searches with many possible signatures to exploit
- We are able to set new limits on Scalar Portal, SUSY, and MCP models
- Many more results on the way for both Run 2 and early Run 3 datasets
- Links to updated recent public results:
 - ATLAS SUSY
 - ATLAS Exotics
 - CMS Exotica

Why long-lived particles?

- There are likely undiscovered particles beyond the standard model (BSM)
 - Hierarchy problem
 - Dark matter
- No particular reason for BSM particles to be restricted to lifetimes $\tau < \sim 10^{-14}~\rm s$ ["decaying promptly"]
 - Assumption built into most regular collider searches (usually reconstruction or cleanings)
 - Many SM particles don't satisfy this
- → We should check the possibility that BSM particles we are looking for could be "long-lived"

https://doi.org/10.1016/j.ppnp.2019.02.006

What could cause a BSM particle to be long-lived?

- 1) Fewer possible decay modes
- 2) Less phase space (small mass-splitting)
- 3) Small coupling between particles

$$\tau = \frac{1}{\sum_{\text{decay modes}} \Gamma_{\text{decay mode}}}$$

$$\Gamma_{\text{decay mode}} \propto \frac{|\vec{p}^*|}{m_X} |M|^2$$

$$\propto \frac{\sqrt{(m_X^2 - m_a^2)^2 + (m_X^2 - m_b^2)^2 - m_x^4 - 2m_a^2 m_b^2}}{m_X^2} |M|^2$$

$$M \propto g$$

What could cause a BSM particle to be long-lived?

- 1) Fewer possible decay modes
- 2) Less phase space (small mass-splitting)
- 3) Small coupling between particles
- 4) Very off-shell intermediary

$$\tau = \frac{1}{\sum_{\text{decay modes}} \Gamma_{\text{decay mode}}}$$

$$\Gamma_{\rm decay\ mode} \propto |M|^2$$

Benchmark Models: SUSY vs. Scalar Portal

29

Benchmark Models: SUSY vs. Scalar Portal

Some Existing Results [Higgs Portal]

Some Existing Results [Higgs Portal]

LLP Signatures in the MS

- LLPs decaying to muons make them displaced (i.e. don't point back to PV [pp-interaction])
- Info to reconstruct displaced muon can come:
 - From both MS and tracker (TMS)
 - Solely from MS (STA)
- Backgrounds include:
 - Badly reconstructed prompt muons
 - Some SM decays
 - Crossings of unrelated displaced muons
 - Cosmics
 - Beam-induced background (BIB)

CMS-EXO-21-006

 $H \rightarrow LLP^0 \rightarrow Displ. 2\mu$

Trigger:

Simplest

Targeted

Model:

Signal Region:

- Dedicated MS dimuon trigger w/o beamspot constraint
- Separate SRs for [STA-STA, STA-LMS, LMS-LMS]
- $\frac{L_{xy}}{\sigma_{L_{xy}}} > [6,3,6]$ (is displaced)
- Dimuons not back-to-back (not cosmic)
- $m_{\mu\mu} > 10 \text{ GeV (not SM decay or random crossing)}$
- Angle between $\vec{p}_{\mu\mu}$ and \vec{L}_{xy} is $|\Delta\Phi| < \pi/4$ (not prompt misreconstructed)

arXiv:2206.12181

 $H \rightarrow LLP^0 \rightarrow Displ. Collim. 2l or 2q$

- WH: lepton trigger. ggF: 3muon, muon-scan, CalRatio triggers
- Separate SRs for $ggF[2\mu, c + \mu, 2c]$, $WH[c, c + \mu, 2c]$
- CNN to discriminate multi-jet
- $\sum p_{T,tracks\ within\ \Delta R=0.5} < 4.5$ (jets are trackless)
- Many things are abstracted out in the definitions of the muon and calojets

JHEP 06 (2022) 005

 $\Phi \rightarrow LLP^0 \rightarrow Displ. CalRatio Jets$

- Low and high E_T CalRatio triggers
- Separate SRs for $[m_{\Phi} \leq 200 \text{ GeV}, > 200 \text{ GeV}]$ [Low and high E_T]
- Require 2 clean displaced jets in event with $p_T > 80 \text{ GeV}^*$
- NN separates signal, multi-jet and BIB/cosmics by jet, BDT takes NN score per jet in event and other info
- BDT score > [0.27, 0.36] (is signal)
- $\sum \Delta R_{min}(jet, tracks) \ge [1.0, 1.5]$ (jets are trackless)

CMS-EXO-21-006

 $H \rightarrow LLP^0 \rightarrow Displ. 2\mu$

Bkg Estimate:

- Cosmics:
 - # events passing all criteria except back-to-back is already negligible, so ignore
- Misreconstructed Prompt:
 - Will have symmetric |ΔΦ|
 - Predict $|\Delta\Phi| < \pi/4$ from $|\Delta\Phi| > 3\pi/4$
- SM Decays and Random Crossings:
 - Correlated with jet activity
 - Get ratio of opposite-sign to same-sign in jet-embedded muon CR and extrapolate to SR

arXiv:2206.12181

 $H \rightarrow LLP^0 \rightarrow Displ. Collim. 21 or 2q$

- •Cosmics estimated from cosmic dataset and subtracted for ggF, negligible for WH
- •BIB is negligible
- •ABCD method using:
 - Azimuthal angle between object from pTmiss for WH SRs
 - Tracklessness of jets variable for ggF SRs
 - Multi-jet rejection CNN score for Calojet SRs
 - Azimuthal angle between both muon jets for that SR

JHEP 06 (2022) 005

 $\Phi \rightarrow LLP^0 \rightarrow Displ. CalRatio Jets$

- Per-Event BDT score mainly rejects BIB
- $\sum \Delta R_{min}(jet, tracks)$ trackless requirement mainly rejects prompt multi-jets:
- ABCD method:

CMS-EXO-21-006

 $H \rightarrow LLP^0 \rightarrow Displ. 2\mu$

Results:

Simplest

Targeted

Model:

arXiv:2206.12181

 $H \rightarrow LLP^0 \rightarrow Displ. Collim. 2l or 2q$

JHEP 06 (2022) 005

 $\Phi \to LLP^0 \to Displ. CalRatio Jets$

Searches for LLPs in the ECAL

ATL-COM-PHYS-2022-076

 $H \rightarrow LLP^0 \rightarrow Displ. \gamma$

Simplest Targeted Model:

Trigger:

 Single lepton trigger from Higgs production process (WH, ZH, ttbar)

Signal Region:

- Separate **SRs** for **[low,high]** $\Delta m_{NLSP,LSP}$ (as well as for $(1\gamma,2\gamma)$)
- Require time delay > 0
- Require MET > [50, 80] GeV
- Displacement and timing are binned

ATL-COM-PHYS-2022-474

LLP \rightarrow Displ. H $\rightarrow \gamma \gamma / Z \rightarrow e^+ e^-$

2 high-pT photon triggers

- Require time delay > 0
- Require MET > 30 GeV
- Displacement and timing are binned
- $m_{\gamma\gamma} \in [60, 135]$ GeV (i.e. from Z or H)

Searches for LLPs in the ECAL

ATL-COM-PHYS-2022-076

ATL-COM-PHYS-2022-474

$$H \rightarrow LLP^0 \rightarrow Displ. \gamma$$

LLP \rightarrow Displ. H $\rightarrow \gamma \gamma / Z \rightarrow e^+ e^-$

Bkg Estimate:

- Background is fakes or misreconstructed. Non-collision negligible.
- Define CR with low MET, form fake-photon-enriched and genuine-photon enriched templates in timing and pointing bins from identification requirements
- Fit relative fractions of templates to data and extrapolate to SR
 - · Genuine-photon template multiplied by fraction of SR events where both photons are deemed "genuine"
 - Fake-photon template multiplied by 1 minus that fraction

Searches for LLPs in the ECAL

ATL-COM-PHYS-2022-076

 $H \rightarrow LLP^0 \rightarrow Displ. \gamma$

Results:

Simplest

Targeted

Model:

No significant excess

ATL-COM-PHYS-2022-474

LLP \rightarrow Displ. H $\rightarrow \gamma \gamma / Z \rightarrow e^+ e^-$

No significant excess

CMS1 LLP->2 mu

EXO-21-006

- HAHM or heavy scalar model. H->2ZD (dark photons)->2mu 2f and Phi->2X->2mu
 2f
- 3 SRs: both muons recon'd using both ID and MS, both only recon'd by MS, one only in MS, other is both tracker and MS
- Dedicated triggers for dimuons inside and outside trackers. Therefore require 2
 muons reconstructed in MS alone without info from tracker
- No excess

(EXOT1) LLNP→Collimated 2l or 2(Light Hadrons)

EXOT-2019-05

Summary

- Look for ggF/WH Higgs->dark photons -> 2 collimated muons or light quarks
- Triggers:
 - ggF: 1+/3 dedicated triggers targeting displaced objects
 - Tri-muon MS-only: Require 3+ muons with pT>=6 GeV in MS
 - Muon narrow-scan MS-only: Require pT>=20 GeV muon candidate from L1, confirmed by HLT which then scans $\Delta R = 0.5$ around looking for second muon. Both muons must not match to ID tracks.
 - CalRatio L1Calo: Select narrow jets in HCAL
 - WH: single-electron or single-muon triggers
- Signal Regions:
 - ggF: 2mu, 2c, c+mu [use max(sum pT) [low] vs prod QCD tagger (delta phi DBJ for 2mu) [high] as ABCD]??
 - WH: c, 2c, c+mu [use min(delta phi) and min(QCD tagger) as ABCD]??
- Backgrounds:
 - ggF:
 - ggF2mu:punch-through jets from rare multi-jet events
 - ggF2c, ggFcmu: multijet production
 - Second leading for all ggF is cosmic muons
 - WH:

Results

Targeted Models

- Investigate case where SM and DS couple via Higgs portal for BSM production, vector portal for decay to SM
- Assume γ_D mixes kinetically via parameter ϵ with SM photon and decay into leptons or light quarks
- Focus on $m_{\gamma_D} \sim O(\text{MeV} \text{GeV})$ and $\epsilon < 10^{-5}$ (so long-lived)
- Due to small mass, expect large Lorentz boosts → collimated fermions [dark-photon jets (DPJs)]
- Target ggF and WH production of the Higgs, then Falkowski-Ruderman-Volansky-Zupan (FRVZ) and Hidden Abelian Higgs Model (HAHM) for dark photon production

Data and MC Information

- Full Run 2 data
- MC signal done with both a 125 GeV Higgs and a 800 GeV Higgs-like scalar
- Branching fractions of γ_D depends on its mass [for example $m_{\gamma_D}=0.4$ GeV gives 45% e^+e^- , 45% $\mu^+\mu^-$, 10% q^+q^-]
- Sensitive part of ATLAS for this context is up to 7 m in radius and 13 m along beampipe.
- For FRVZ, mass of f_d chosen to be small wrt Higgs mass and far from kinematic threshold of $m_{HLSP}+m_{\gamma_d}=m_{f_d}$
- SM background estimate is data-driven, but uses MC multi-jet; W+jets, Z+jets, WW, WZ, ZZ; ttbar and single-top-quark for validation, uncertainties, and training classifiers
- $J/\psi \rightarrow \mu\mu$ MC for muon trigger uncertainties and reconstruction efficiency

Event Reconstruction 1

- Candidate events must have a reconstructed vertex (PV) with 2+ assc. tracks with $p_T > 500~{\rm MeV}$ consistent with coming from collision
- PV is vertex with highest sum of squared p_T of assc. tracks
- Electron candidates from isolated ECAL deposits matched with ID tracks.
 - Require: $|\eta| < 2.47$, $p_T > 20$ GeV, "TightLHElectron" (cleaning based on shower shapes and track properties)
 - Veto candidates in transition region between barrel and endcap ECAL $1.37 < |\eta| < 1.52$
- Muon candidates from MS tracks matching ID tracks
 - Require: $|\eta| < 2.5$, $p_T > 20$ GeV, "medium" (cleaning based on # hits, q/p measured in ID and MS divided by uncertainties)
- [Electrons, muons] need $\frac{|d_0|}{\sigma(d_0)} <$ [5, 3] and $|z_0 \sin \theta| < 0.5$ mm to count as displaced
- Isolation criteria: [why is this needed?]
 - Scalar sum of p_T of tracks within cone of $\Delta R = \min(10 \text{ GeV}/p_T, [0.2,0.3])$ of lepton must be less than 15% of lepton p_T (excluding lepton track).
 - Sum of transverse energy of calo cell clusters in $\Delta R = 0.2$ must be less than [20%, 30%] lepton p_T (excluding lepton itself)

Event Reconstruction 2

- Jets from 3D energy clusters in calo using anti-kt algo with R=0.4
 - Require: $|\eta| < 4.9, p_T > 20 \text{ GeV}$
 - To remove jets from pileup, jets with $|\eta| < 2.5$, $p_T < 120$ GeV require significant fraction of tracks coming from PV (using JVT)
 - B-tagged jets (usi

Triggers

EXOT-2019-05 – LLNP->collim. 2l or 2(light hadrons)

- · Targets LLP dark photon from H via ggH or WH
 - · Which models? Higgs Portal
 - SM and DS through Higgs Portal for BSM prod, and vector portal for decay.
 - · gammaD assumed to mix kinetically (epsilon) with gamma->leptons & light quarks.
 - Focus on m=0(MeV-GeV) and eps<1e-5 (small) [justified since need this for m>10 MeV for some reason] so gamma decays are long-lived
 - Models: FRVZ (H->2DF->2/4DP->4/8f) and HAHM (H->2DF->4f)
- Displaced collimated SM fermions in Calo or MS, 139 fb-1
 - Small mass compared to large pp hard scatter energy: Large Lorentz boost. So collimated.
 - Collimated groups of fermions in jet-like structure: dark photon jets
 - · ggF and WH mutually exclusive
 - Candidate events must have reconstructed vertex**(PV?) with 2+ ass. Tracks with pT>500MeV, consistent with coming from collision.
 - Electron candidates recon from isolated ecal deposits matched to ID tracks
 - Muons from MS tracks matching ID tracks
- SM and instrumental backgrounds estimated from data
 - · Which backgrounds?
- Observed consistent with background
- Limits on prod xs x BF vs tau, or vs m and kinetic mixing param.
- Higgs BR >1% excluded for H->2gammaD 10mm-250mm, 0.4-2 GeV

(EXOT3) LLNP-> displaced CalRatio Jets

EXOT-2019-23

Summary

- Scalar portal models
- Ff->single trackless narrow jet with abnormally high proportion of energy in HCAL
- Require 2 jets
- Two SRs, specialized for models with mPortal<>200 GeV (low/high ET models)
- (Why would jets be narrow If scalar is heavy?)
- Dominant background is SM multijet. Others are noncollision background like cosmics and BIB (LHC beam-gas and beam-halo interactions with upstream collimators-> muons parallel to beam pipe)

ATLAS EXOT-2019-23 LLP $^0 \rightarrow$ Displ. CalRatio Jets

(SUSY2) — LLNP to Displaced photons

SUSY-2019-14

- In gauge-mediated SUSY breaking (GMSB) models, gravitino is LSP usually, and weak coupling of NLSP to LSP could make NSLP LLP, while LSP leaves detector undetected
- Neutral NLSP would avoid detection, and decay into photon plus LSP (delay, nonpointing to PV)
- Use Lar ECAL to make precise pointing measurements and time of arrival to search. Size
 of ATLAS restricts sensitivity to O(ns)
- Specifically ZH, WH, ttH Higgs->2NSLP->2gamma+2LSP
- Trigger on single leptons, require 1+ photon candidate
- Exploits expectation of MET due to LSP and neutrinos from leptons
- No excess

(SUSY3)displaced H/Z->2gamma/e

SUSY-2020-28

- Also GMSB. LSP is gravitino. NLSP is usually N1. N1 is mixture of higgino so most likely decay is N1->H/Z+G. The
- Lar ECAL to target H->2gamma and Z->2e. Signature is two ECAL objects
 originating from a displaced diphoton vertex. No attempt is made to distinguish
 between them in the ECAL, and only use ECAL info. Sensitivity limited to O(ns) by
 ATLAS. Some delay wrt prompt.
- SR is 2+ photons, high MET (due to LSP)
- Use 2 high pT photon triggers
- No excess

(DVJETS) LLP→DV [triggered by Jets]

SUSY-2018-13

- Look for any LLP that goes to charged fermions, in the presence of jets
- High mass, high number of tracks
- Use jet correlations to predict background, as well as a combined background estimate

Outline

- Summary of Major Updates
- Analysis Overview
 - Strategy
 - Event selection
 - Background estimation + uncertainty
 - Signal MC uncertainties
 - Unblinded results
- Discussion and Future Steps

Analysis Overview

- Search for LLPs decaying inside the ID creating displaced vertices (DVs) with high mass and large track multiplicity
- Search conducted in multijet final state, using multi-jet triggers
- Full Run-2 dataset: 139 /fb
- Benchmark models:

Also considering for interpretation:

- R-hadrons
- Higgs to long-lived scalars
- Emerging jets

Special Reconstruction for DVs

We use 2 special reconstruction algorithms

- 1) Large radius tracking (LRT) [ATL-PHYS-PUB-2017-014]
 - Similar to standard tracking, but loosen requirements on impact parameters
 - Computationally expensive, run in reco step (DRAW)
- 2) Secondary vertexing [ATL-PHYS-PUB-2019-013]
 - Run in derivation step (SUSY15)
 - Input: standard AND LRT tracks
 - Algorithm:
 - 1) Form 2-trk seed vertices with high-quality tracks
 - 2) Merge to form N-trk vertices
 - 3) Lower-quality tracks attached to vertices

SRs and Event Selections

Two cut-and-count signal regions:

- High pT SR: Events must
 - Pass High-pT baseline jet selection
 - Contain ≥1 DV passing the DV selection
- Trackless SR: Events must
 - Pass Trackless baseline jet selection
 - Fail the High-pT baseline jet selection
 - Contain ≥1 DV passing the DV selection

Apply jet selections to offline-calibrated jets that are ~98% efficient wrt. Trigger and DRAW filters

DV and Track Selections

No SM process produces a high-mass DV

Final DV selection: $m_{DV} > 10$ GeV, $N_{trk} \ge 5$, $N_{trk}^{sel} \ge 2$ # all tracks #non-attached tracks

Baseline DV selections:

- $\chi^2/N_{dof} < 5$
- R_{DV} < 300 mm and $|z_{DV}|$ < 300 mm \rightarrow (fiducial volume)
- > 4 mm from any PV in the event ——— (displaced)
- Pass strict material veto

(good quality)

(not in detector material [removes 48% of fiducial volume])

DV-trks must pass a track cleaning to be counted at all:

Depends on r_{DV} and whether or not track is attached

- $p_T > 2-4 \text{ GeV}$
- d_0 -significance > 10-15
- Angular requirements
- Hit pattern requirements

Chosen to reduce background to ~1 event in each SR

Summary of Regions

MC No Event Selection

Data High pT

Data Trackless

(Inside/outside refers to inside/outside detector material according to a material map veto) (VR shown is only the blinded VR. Various other regions used as unblinded VRs)

Backgrounds

naturally in flight

get reconstructed as a

higher N, higher m DV

DV makes it appear

higher N and higher m

with detector material