002825286 001__ 2825286
002825286 003__ SzGeCERN
002825286 005__ 20230810123339.0
002825286 0247_ $$2DOI$$a10.1016/j.physletb.2022.137309
002825286 0248_ $$aoai:cds.cern.ch:2825286$$pcerncds:FULLTEXT$$pcerncds:CERN:FULLTEXT$$pcerncds:CERN
002825286 035__ $$9HAL$$ahal-03752374
002825286 035__ $$9https://inspirehep.net/api/oai2d$$aoai:inspirehep.net:2132188$$d2022-08-24T14:09:19Z$$h2022-08-25T06:25:53Z$$mmarcxml
002825286 035__ $$9Inspire$$a2132188
002825286 041__ $$aeng
002825286 100__ $$aGiraud, S$$uGANIL$$uMichigan State U., NSCL
002825286 245__ $$9submitter$$aMass measurements towards doubly magic $^{78}$Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae
002825286 260__ $$c2022
002825286 300__ $$a6 p
002825286 520__ $$aWe report the first high-precision mass measurements of the neutron-rich nuclei $^{74,75}$Ni and the clearly identified ground state of $^{76}$Cu, along with a more precise mass-excess value of $^{78}$Cu, performed with the double Penning trap JYFLTRAP at the Ion Guide Isotope Separator On-Line (IGISOL) facility. These new results lead to a quantitative estimation of the quenching for the $N=50$ neutron shell gap. The impact of this shell quenching on core-collapse supernova dynamics is specifically tested using a dedicated statistical equilibrium approach that allows a variation of the mass model independent of the other microphysical inputs. We conclude that the impact of nuclear masses is strong when implemented using a fixed trajectory as in the previous studies, but the effect is substantially reduced when implemented self-consistently in the simulation.
002825286 540__ $$3publication$$aCC-BY-4.0$$fSCOAP3$$uhttp://creativecommons.org/licenses/by/4.0/
002825286 542__ $$3publication$$dThe Authors$$g2022
002825286 65017 $$2SzGeCERN$$aNuclear Physics - Experiment
002825286 690C_ $$aARTICLE
002825286 690C_ $$aCERN
002825286 700__ $$aCanete, L$$uJyvaskyla U.$$uSurrey U.
002825286 700__ $$aBastin, B$$uGANIL
002825286 700__ $$aKankainen, A$$uJyvaskyla U.
002825286 700__ $$aFantina, A F$$uGANIL
002825286 700__ $$aGulminelli, F$$uLPC, Caen
002825286 700__ $$aAscher, P$$uCENBG, Gradignan
002825286 700__ $$aEronen, T$$uJyvaskyla U.
002825286 700__ $$aGirard-Alcindor, V$$uGANIL$$uIJCLab, Orsay$$uDarmstadt, Tech. U.
002825286 700__ $$aJokinen, A$$uJyvaskyla U.
002825286 700__ $$aKhanam, A$$uJyvaskyla U.$$uHelsinki U.$$uAalto U.
002825286 700__ $$aMoore, I D$$uJyvaskyla U.
002825286 700__ $$aNesterenko, D A$$uJyvaskyla U.
002825286 700__ $$ade Oliveira Santos, F$$uGANIL
002825286 700__ $$aPenttilä, H$$uJyvaskyla U.
002825286 700__ $$aPetrone, C$$uBucharest, IFIN-HH
002825286 700__ $$aPohjalainen, I$$uJyvaskyla U.
002825286 700__ $$aDe Roubin, A$$uJyvaskyla U.
002825286 700__ $$aRubchenya, V A$$uJyvaskyla U.
002825286 700__ $$aVilen, M$$uJyvaskyla U.$$uCERN
002825286 700__ $$aÄystö, J$$uJyvaskyla U.
002825286 773__ $$c137309$$pPhys. Lett. B$$v833$$y2022
002825286 8564_ $$82385620$$s875933$$uhttp://cds.cern.ch/record/2825286/files/1-s2.0-S0370269322004439-main.pdf
002825286 960__ $$a13
002825286 980__ $$aARTICLE