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Abstract. Machine learning has been used in high energy physics for a long time,

primarily at the analysis level with supervised classification. Quantum computing

was postulated in the early 1980s as way to perform computations that would not

be tractable with a classical computer. With the advent of noisy intermediate-scale

quantum computing devices, more quantum algorithms are being developed with the

aim at exploiting the capacity of the hardware for machine learning applications. An

interesting question is whether there are ways to apply quantum machine learning to

High Energy Physics. This paper reviews the first generation of ideas that use quantum

machine learning on problems in high energy physics and provide an outlook on future

applications.

1. Introduction

Particle physics is a branch of science aiming to understand the fundamental laws of

nature by studying the most elementary components of matter and forces. This can be

done in controlled environments with particle accelerators such as the Large Hadron

Collider (LHC), or in uncontrolled environments such as cataclysmic events in the

cosmos. The Standard Model of particle physics is the accomplishment of decades

of theoretical work and experimentation. While it is an extremely successful effective

theory, it does not allow the integration of gravity, and is known to have limitations.

Experimentation in particle physics requires large and complex datasets, which poses

specific challenges in data processing and analysis.

Recently, machine learning has been played a significant role in the physical sciences.

In particular, we are observing an increasing number of applications of deep learning

to various problems in particle physics and astrophysics. Beyond typical classical
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approaches [1] (boosted decision tree, support vector machine, etc.), state-of-the-art

deep learning techniques (convolutional neural networks, recurrent models, geometric

deep learning, etc.) are being successfully deployed in a variety of tasks [2, 3].

The ambitious high luminosity LHC (HL-LHC) program in the next two decades

and beyond will require enormous computing resources. It is interesting to ask whether

new technologies such as quantum machine learning could possibly help overcome this

computational challenge. The recent development of quantum computing platforms

and simulators available for public experimentation has lead to a general acceleration of

research on quantum algorithms and applications. In particular, quantum algorithms

have recently been proposed to tackle the computational challenges faced in particle

physics data processing and analysis. Beyond explicitly writing quantum algorithms for

specific tasks [4–8], quantum machine learning is a way to learn quantum algorithms to

achieve a specific task, similarly to classical machine learning.

This review paper of how quantum machine learning is used in high energy physics

(HEP) is organized as follows. An overview of the fields of quantum computing and

quantum machine learning are first provided in Sections 2 and 3. We review the

applications of quantum machine learning algorithms for particle physics using quantum

annealing in Sections 4 and quantum circuits in Section 5. We provide a field-wide view

of unpublished work and upcoming results in Section 6. We conclude with discussions

on the future of quantum machine learning applications in HEP in Section 7.

2. Quantum Computing

More than three decades after Richard Feynman’s proposal of performing simulations

using quantum phenomena [9], the first practical quantum computers are finally

being built. The scope of calculations has significantly expanded, with a range of

promising applications emerging, including optimization [10–12], chemistry [13, 14],

machine learning [15–17], particle physics [4–8], nuclear physics [18–20] and quantum

field theory [21–24].

2.1. Quantum circuit model

Quantum computers were formally defined for the first time by David Deutsch in his

1985 seminal paper [25], where he introduced the notion of a quantum Turing machine,

a universal quantum computer based on qubits and quantum circuits. In this paradigm,

a typical algorithm consists of applying a finite number of quantum gates (unitary

operations) to an initial quantum state, and measuring the expectation value of the

final state in a given basis at the end. Deutsch found a simple task that would require

a quantum computer less steps to solve than all classical algorithms, thereby showing

that quantum Turing machines are fundamentally different and can be more powerful

than classical Turing machines. Since then, many quantum algorithms with a lower

computational complexity than all known classical algorithms have been discovered, the
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most well-known example being Shor’s algorithm to factor integers exponentially faster

than our best classical algorithm [26]. Other important algorithms include Grover’s

algorithm invented in 1996 to search an element in an unstructured database with a

quadratic speed-up [27], and the Harrow-Hassidim-Lloyd (HHL) algorithm, invented in

2008 to solve linear systems of equations [28].

However, all those algorithms require large-scale fault-tolerant quantum computers

to be useful, while current and near-term quantum devices will be characterized by at

least three major drawbacks:

(i) Noise: the coherence time (lifetime) of a qubit and the fidelity of each gate (accuracy

of the computation) have increased significantly during the past years, but are

still too low to use the devices for applications beyond small proof-of-principle

experiments involving only a few qubits – even if tricks like error-mitigation are

used (see for example [29]).

(ii) Small number of qubits: current near-term quantum computers consist of between

5 and 100 qubits, which is not enough for traditional algorithms such as Shor’s or

Grover’s to achieve a quantum advantage over classical algorithms. While steady

improvements are made, increasing the number of qubits is not just a matter of

scaling current solutions: Problems of connectivity, cross-talk, and the consistent

quality of qubits require new engineering approaches for larger systems.

(iii) Low connectivity: most current quantum devices have their qubits organized in a

certain lattice, where only nearest-neighbors can interact. While it is theoretically

possible to run any algorithm on a device with limited connectivity—by ”swapping”

quantum states from qubit to qubit—the quantum advantage of some algorithms

can be lost during the process [30].

Therefore, a new class of algorithms, the so-called Near-term Intermediate-Scale

Quantum (NISQ) algorithms [31], have started to emerge, with the goal of achieving a

quantum advantage with those small noisy devices. One of the main classes of NISQ

algorithms is based on the concept of variational circuits : fixed-size circuits with variable

parameters that can be optimized to solve a given task. They have shown promising

results in quantum chemistry [13] and machine learning [32] and will be discussed in

more detail in Section 3.1.

2.2. Quantum annealing

Another paradigm of quantum computing, called adiabatic quantum computing (or

quantum annealing, QA) was introduced several years after the gate model described

above [33, 34] and has been implemented by the company D-Wave. In theory, this

paradigm is computationally equivalent to the circuit model and Grover’s algorithm

can for instance be ported to quantum annealing [35]. It is based on the continuous

evolution of quantum states to approximate the solution of Quadratic Unconstrained

Binary Optimization (QUBO) problems, of the form:
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min
x
E(x) =

n∑
i,j=1

Jijxixj +
n∑
i=1

hixi (1)

where xi ∈ {0, 1} and Jij and hi are real numbers defining the problem.

This general problem belongs to the complexity class NP-Hard, meaning that it

can probably not be solved exactly in polynomial time even by a quantum computer‡.
Quantum annealing is a heuristic proposed to approximate the solution of a QUBO

problem, or even solve it exactly when the input parameters Jij and hi have some

particular structures [35].

More precisely, solving a QUBO instance is equivalent to finding the ground-state

of the problem Hamiltonian

HP =
n∑

i,j=1

Jijσ
z
i σ

z
j +

n∑
i=1

hiσ
z
i (2)

where σzi is the Z-Pauli matrix applied to the ith qubit. Quantum annealing consists of

initializing the system in the ground-state of a simpler Hamiltonian, such as

HI =
n∑
i=1

σxi (3)

and slowly evolving the system from HI to HP during a total time T , for instance by

changing the Hamiltonian along the trajectory:

H(t) =

(
1− t

T

)
HI +

t

T
HP (4)

The quantum adiabatic theorem tells us that if the transition between the two

Hamiltonians is ”slow enough”, the system will stay in the ground-state during the

whole trajectory, including at the end for our problem Hamiltonian. Measuring the

final state will therefore give us the solution to our QUBO problem. The main caveat

of this approach is that the maximum allowed speed of the evolution can fall rapidly

with the system size (sometimes exponentially low), removing any potential advantage

compared to classical algorithms. Knowing if a given problem (or class of problems)

can take advantage of quantum annealing is an open research question, which is why

research on quantum annealing applications has been driven largely by empirical studies.

Many optimization problems, including in machine learning, can be mapped to

a QUBO instance, making quantum annealing an attractive platform for quantum

machine learning, as developed in Section 3.2.

‡ While a proof is still to be found, complexity theorists believe that quantum computers will not lead

to exponential speed-ups for NP-Complete or NP-Hard problems
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3. Quantum Machine Learning

Quantum machine learning has evolved in recent years as a subdiscipline of quantum

computing that investigates how quantum computers can be used for machine learning

tasks – in other words, how quantum computers can learn from data [17, 36]. One can

approach this question in three different ways, which reflect similar angles established

in quantum computing:

• the foundational approach that reformulates learning theory in a quantum setting

[37,38],

• efforts to find quantum algorithms that speed up machine learning with regards to

computational complexity measures [39–42],

• a near-term perspective that develops new machine learning applications tailor-

made for NISQ devices [43]

Currently, classical machine learning is a distinctively empirical discipline,

pioneered by research conducted in industry. It is therefore not surprising that quantum

machine learning research is also dominated by the near-term perspective, a fact reflected

in the selection of papers discussed in this review.

The near-term perspective of quantum machine learning starts from the quantum

devices available today and asks how they can be used to solve a machine learning

problem. Circuit-based quantum computers have been predominantly used to compute

the prediction of a quantum machine learning model that can be trained classically

[32, 44], while quantum annealers have been proposed to optimize classical models

[45, 46].

3.1. Quantum circuits as trainable models

A machine learning model can often be written as a function f(x, θ) that depends on an

input data point x – for example describing the pixels of an image or a vectorized text

document – as well as trainable parameters θ. The result of the model, f , is interpreted

as a prediction, e.g. revealing the label of x in a classification task. For simplicity, we

will here assume a scalar output.

We know from the basics of quantum mechanics that the result of a quantum

circuit is a measurement with a probabilistic outcome – for example, a qubit measured

in state |0〉 or |1〉. However, the expectation value of a quantum observable – a central

concept in quantum theory – is a deterministic value. In simple terms, the expectation

value is the weighted average of a measurement result. For example, after taking 1000

measurements (“shots”) of a qubit, of which 900 resulted in the outcome |1〉 an estimate

of the expectation of the qubit state would be 0.9. We can interpret this expectation

as a prediction, and the quantum circuit is thereby serving as a quantum classifier or

quantum machine learning model.

But how do we make the output of the quantum model depend on inputs x and

trainable parameters θ? The central idea is to associate physical control parameters
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with the input features and individual parameters. For instance, in most circuit-based

quantum computers we have control over the rotation angle of qubits. Assuming for

now that x is a single scalar, we can therefore rotate one qubit by an angle of exactly

x to encode the input§. Using the same strategy for a parameter θ, considered to be

a scalar as well for now, we can rotate another (or the same) qubit by an angle θ.

Physically, there is no difference in how the inputs and free parameters are treated, but

there are profound conceptual differences; see for example [47]. These rotations can be

performed as part of a larger quantum algorithm that consists of other gates, and which

is described by an overall unitary U(x, θ) that depends on the input and parameter (see

Figure 1). The crux is that now the expectation value of the circuit with respect to an

observable M is formally given by

fq(x, θ) =
〈
0
∣∣U(x, θ)†MU(x, θ)

∣∣ 0〉 ,
and can be interpreted as the prediction of x. In short, the quantum circuit is used as

a machine learning model.

Figure 1. Simplified example of a variational quantum circuit used for classification.

A feature x from the input data is loaded into the circuit by associating it with the

angle of a rotation gate. The angle θ of another rotation gate is used as a variable

parameter that can be trained to adjust the circuit. The three qubits are represented in

the standard circuit notation as wires, and gates are represented by symbols acting on

the wires. The unitaries V1 and V2 summarise arbitrary quantum operations applied

to the qubits. The first qubit is measured in the end, and an expectation value is

computed by averaging over measurement results. This expectation is interpreted as

the prediction of a quantum model.

Of course, the heart of machine learning is to adapt a model to data. The

circuit can be trained by adjusting the parameters θ by a classical optimization routine

that minimizes a standard cost function comparing predictions with the correct target

outputs, such as the mean square loss. Trainable circuits are also known as variational

or parametrized circuits (or sometimes, a bit misleadingly, as quantum neural networks),

and were initially proposed in the context of quantum chemistry [48]. The optimization

can be performed by using the quantum computer to evaluate fq(x, θ) at different values

for θ, and using a classical co-processor to find better candidates for the parameter

§ Note that x has to be rescaled to lie in the interval [0, 2π] for the encoding to be unique.
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with respect to the cost function, using either gradient-free or finite-difference based

optimization methods.

Inspired from quantum control, quantum machine learning has recently developed

an elaborate framework of gradient-based optimization [49, 50] that has already been

implemented in powerful software frameworks [51, 52], which may prove superior to

gradient-free methods when quantum computers get bigger [53]. An essential result

was to notice that in many cases used in practice, one can compute the analytic or

exact gradient from fq(x, θ + s) and fq(x, θ − s), where s is a constant which depends

on the way that θ enters the quantum circuit – in other words, which gate is used

to encode the parameter. While this is reminiscent of a finite-difference rule, the

important fact is that s is a macroscopic variable such as π/2, which makes estimating

the two values by repeated measurements on a noisy device possible. Furthermore, the

resulting gradient is not an approximation, but the true analytic gradient. The ability

to compute gradients of variational circuits has potential consequences that reach far

beyond quantum machine learning, since it makes quantum computing amenable for

the paradigm of differentiable programming.

Finally, it should be mentioned that there are many other ways that variational

circuits are employed in quantum machine learning. For example, the genuinely

probabilistic nature of quantum measurements suggests that variational circuits can be

used as an ansatz for generative models. In the generative mode, the result of a quantum

measurement is interpreted as a sample of a probabilistic machine learning model that

defines a probability distribution over the data that may depend on parameters [54,55].

This has amongst other proposals led to quantum generative adversarial networks

[56, 57].

3.2. Quantum Annealers as Optimizers

Quantum annealers represent a different approach to quantum machine learning. As

natural optimizers, they outsource the training part of machine learning to quantum

computers, rather than the prediction part. Since quantum annealers solve very specific

optimization problems, more precisely QUBO problems (see Eq. 1), the central challenge

is to rephrase the loss function of a (quantum) machine learning problem in this format.

For example, an interesting and very early proposal [46] recognized that the mean

square loss of an ensemble of perceptrons – the simple building blocks of neural nets – can

be written as a QUBO problem. A prerequisite is that the weights of the model have to

be binary values - a condition that may even offer advantages for machine learning. The

approach has been termed QBoost and tested in one of the first commercial quantum

annealers, the D-Wave machine, as early as in 2009 [58]. Other proposals to use the

QUBO structure of quantum annealers for machine learning have been proposed for

anomaly detection, in particular software verification and validation [59].

Another, slightly different idea uses quantum annealers as samplers to support

classical training of classical models [45]. In the training of so-called Restricted
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Boltzmann Machines (RBMs), samples from a Gibbs distribution are required to find

better candidates for the parameters in every step. The intimate connections between

RBMs and Ising-type models in many-body physics (see also [60] which reveals this

connection through the language of tensor networks) suggest that quantum annealers,

which are based on interacting spins, can produce samples from such Gibbs distribution.

The details, especially when it comes to real hardware, are non-trivial, but successful

quantum-assisted training has been demonstrated for small applications [45]. An

important question raised as a result of this strategy was how samples from true quantum

distributions, such as the Ising model with a transverse field, can be used to train

quantum RBMs [61].

4. Quantum Annealing Applications

For quantum annealers, the two most common approaches to machine learning involve

mapping the problem into an optimization problem over the full dataset, and using the

quantum device as a sampling engine to solve a difficult gradient calculation problem.

In this section, we review papers that provide examples of these paradigms, we refer the

reader to [62–64] for more in depth reading.

4.1. Di-photon Event Classification

The classification of collision events into signal or background categories is one of the

main tasks in particle physics, and a frequent application for machine learning. The

Higgs boson, until its discovery in 2012 [65, 66], was the missing piece of the standard

model. The authors of [62] propose the use of quantum annealing to classify events

between a Higgs decaying to a pair of photons and irreducible background events where

two uncorrelated photons are produced. To this end, eight high level features are

measured from the di-photon system. With a view to using the method proposed in [59]

— so called quantum adiabatic machine learning (QAML) — a list of weak classifiers

is computed from those eight features. Using the eight features and their products

as input, n = 36 weak classifiers (ci(xτ )) are computed. The weak classifiers assume

values in the range [−1, 1] — the signal being represented by positive values. A strong

classifier is then constructed from a binary linear combination of the weak classifiers

(with parameter wi ∈ {0, 1} for each weak classifier index i).

The parameters wi are then determined by the optimization of a carefully crafted

QUBO

E(w) =
n=36∑
i,j=1

Cijwiwj +
n=36∑
i=1

2(λ− Ci)wi (5)

where Cij =
∑

τ ci(xτ )cj(xτ ) and Ci =
∑

τ ci(xτ )yτ are computed from the values of

the weak classifiers in the training set and their category (ci(xτ ) and yτ respectively).

λ is a parameter penalizing solutions for too many weak classifiers participating. As
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described in Section 2.2, the QUBO is transformed in a problem Hamiltonian HP (see

Eq. 2.2) with the change of variable σzi ← 2wi − 1, and further embedded in a machine

Hamiltonian to be solved on the device. The set of parameters w∗i obtained through

this optimization defines an optimal strong classifier as constructed above.

The final performance of the strong classifier is compared with two classical machine

learning methods: boosted decision tree (BDT) and deep neural network (DNN). The

authors note that importance ranking can be obtained among the weak classifiers, by

varying the parameter λ. The optimization is both run on the D-Wave 2X quantum

annealer system and performed with simulated annealing [67, 68] (SA) using variable

fractions of the training dataset. While SA is accurately finding the same ground

truth found by QA, it is unable to reproduce the excited states measured with QA.

Therefore the inclusion of the excited states in the construction of the strong classifier

with QA brings a slight, although not conclusive, difference in performance compared

to the one derived with SA. SA and QA are typically on par, and not providing obvious

classification advantage over BDT and DNN (see Figure 2), although a slight advantage

with a small training dataset is noted.

Figure 2. Area under the ROC

curve (AUROC) of the strong

classifier optimized on quantum

annealer (QA) and simulated an-

nealing (SA), together with the

performance of boosted decision

tree (BDT) and deep neural net-

work (DNN) classifiers trained

on the input features [62].

Figure 3. Area under the

ROC curve (AUROC) of origi-

nal QAML method, the contin-

uous strong classifier optimized

on quantum annealer (QAML-Z)

and simulated annealing (SA-Z),

together with the performance

of a linear regression (LR) and

deep neural network (DNN) clas-

sifiers [63].

In [63], the binary linear combination (wi ∈ {0, 1}) is extended to a continuous

linear combination (denoted µi ∈ [0, 1] to avoid confusion) by running the optimization

in an iterative manner. In order to take advantage of the continuous weights, additional

weak classifiers, up to Nw in total, are derived from the existing ones. A new classifier

is obtained from an existing one by shifting its value by a multiple of a given predefined
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shift, keeping the distribution clipped to the [−1, 1] interval.

The real parameters µi are obtained using the iterative rule

µi(0) = 0 ; µi(t+ 1) = µi(t) + σzi (t)2
−(t+1) (6)

where σzi (t) is the result of the optimization of the same Hamiltonian as in the binary

case, evaluated under the change of variable

σzi ← µi(t) + σzi (t)2
−t (7)

We refer the reader to [63] for more details. A bit flip heuristic is introduced between

each iteration, with decreasing probability, as a regularization measure. The authors

note that there might be other such heuristic that could provide a better final accuracy.

The size of the problem Hamiltonian compared to the connectivity of the hardware is

such that the authors prune cross-terms with low values and use a procedure provided

by D-Wave to partially solve the optimization. The proposed hybrid algorithm (so

called QAML-Z) outperforms QAML while remaining without an accuracy advantage

over classical approaches (see Figure 3). Here again results obtained using simulated

annealing and quantum annealing are on par. The scheme under which a discrete

optimization is used iteratively as an approximation of continuous optimization using

quantum annealers opens new directions for future algorithms.

4.2. Classification in Cosmology with Quantum Restricted Boltzmann Machine

Quantum annealers do not provide identical answers every time they go through an

annealing cycle. For some applications it would be ideal if, for example, they always

returned the lowest energy configuration, but instead they produce a distribution

of states. In principle, these states are Boltzmann-distributed with a characteristic

temperature related to the physical device temperature. In practice, the actual

distribution of states deviates from a Boltzmann distribution (on the D-Wave 2000Q,

for example, it is “colder” and tends to skew towards lower than expected energies).

However, with some post-processing the sample distribution may be converted into a

Boltzmann distribution. It may be also anecdotally observed that while the sampled

distribution is not Boltzmann-distributed, simply applying the parameter update

equations derived under the assumption of sampling from a Boltzmann distribution

(see below, Equations 9 through 11) will generally allow the model to converge anyway

[69,70].

Taken together, these observations mean that quantum annealers may also be used

as sampling engines to fuel certain classes of machine learning algorithms. Restricted

Boltzmann Machines (RBMs) map well to modern quantum annealers for this purpose.

They feature a bipartite connectivity graph that scales well in embedding algorithms as

compared to a fully connected graph. The tunable couplings between qubits function as

graph connection weights and the annealing process naturally samples from the graph
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configurations with clamped or unclamped values for the visible nodes in the graph as

needed by the application.

RBMs are fundamentally generative models that approximate a target distribution

over an array of visible binary variables (~v) as the marginal distribution of a bipartite

graph that connects to a different set of hidden binary variables (~h). The distribution

is described by

p(~v,~h) ∝ exp(−vTWh+ bTv + cTh) (8)

for some parameter (bias) vectors ~b, ~c, and a connections weight matrix W .

RBMs are trained by maximizing the log-likelihood of a data distribution by

updating the bias and weights parameters. With the loss (L) defined as the negative

log-likelihood , the derivatives for the model parameters are

∂L

∂bi
= 〈vi〉data − 〈vi〉model (9)

∂L

∂ci
= 〈hi〉data − 〈hi〉model (10)

∂L

∂W j
i

= 〈vihj〉data − 〈vihj〉model (11)

These derivatives form a gradient for use in gradient descent for adjustments to ~b, ~c,

and W . The expectations are computed over the data (the training set) with clamped

values and over the model with unclamped values. These steps are also referred to as

the positive and negative phases. See [71] for a particularly clear explanation.

While computing the expectations over the data is easy, computing the expectations

over the model is costly, as that scales like 2min (nv ,nh), with nv and nh equal to the number

of visible and hidden units, respectively. There are a number of mitigation strategies

to avoid this difficult computation, all discussed in [64]. Of particular relevance here,

the expectations for a given set of model parameters using unclamped variables on

a D-Wave can be computed, where each computed configuration is sample from the

machine’s output distribution. For small graphs this approach is impractical but it may

eventually offer some computational advantage for very large graphs.

In practice, the distribution of states returned by the D-Wave 2000Q is not

Boltzmann distributed, and significant post-processing is required to achieve a

Boltzmann distribution. As observed in [64], the D-Wave offers essentially no sampling

advantage over random string initial states if using only Boltzmann distributions for

the optimization. However, it has been observed that RBMs may be optimized with

imperfect gradients [69]. Therefore, it is possible to greatly reduce the amount of

required post-processing and still train effective models.

For the task of galaxy morphology classification, in [64] it was observed that

RBMs, regardless of the training methods, were less effective than gradient boosted

trees (likely the best classical algorithm for structured data like the dimensionality

reduced galaxy images). Additionally, the best classical methods for discriminative
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training outperformed the quantum, generative training. However, regardless of training

strategy, RBMs offered a performance advantage for very small datasets that gradient

boosted trees and logistic regression tended to badly overfit. Furthermore, early in the

small dataset training runs, the quantum generative training outperformed the classical

discriminative training.

5. Quantum Circuit Applications

As introduced in Section 3.1, circuits with varying parameters can be optimized to

perform a specific task, e.g. classification. The parameters of these circuits can

be determined with gradient-based optimization method. The following papers are

following this approach for HEP specific classification tasks. We refer the reader

to [72–74] for more in-depth reading.

5.1. Quantum Graph Neural Networks for particle track reconstruction

Quantum computers promise to greatly speed-up search in large parameter spaces.

Charge particle tracking — tracking in short — is the task of associating sparse detector

measurements (a.k.a ”hits”) to the particle trajectory they belong to. Tracking is

the cornerstone of event reconstruction in particle physics. Because of their ability

to evaluate a very large number of states simultaneously, they may play an important

role in the future of track reconstruction in particle physics experiments. Reconstructing

particle trajectories with high accuracy will be one of the major challenges in the HL-

LHC experiments [75].

Increase in the expected number of simultaneous collisions and the high detector

occupancy will make tracking extremely demanding in terms of computing resources.

State-of-the-art algorithms rely, today, on a Kalman filter-based approach: they are

Figure 4. The Quantum Edge Network implemented as a Tree Tensor Network, a

hierarchical quantum classifier [76]. The architecture uses Ry rotation gates and CNOT

gates. A single output qubit is measured. [72]
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Figure 5. QGNN performance. The validation loss (on the left) decreases smoothly.

Consistently, the validation accuracy (on the right) increases with the number of

iterations. Results are shown for two epochs corresponding to 2900 steps (1 epoch

= 1450 updates) [72]

robust and provide good physics performance, however they are expected to scale worse

than quadratically with the increasing number of simultaneous collisions [75]. The

high energy physics community is investigating several possibilities to speed up this

process [77–79] including deep learning-based techniques. For instance, introducing

an image-based interpretation of the detector data and using convolutional neural

networks can lead to high-accuracy results [80]. At the same time, a representation

based on space-points arranged in connected graphs could have an advantage given high

dimensionality and sparsity of the tracking data. The HEPtrkX project [80] followed

this approach and successfully developed a set of Graph Neural Networks (GNNs) to

perform hits and segments classification. In this approach, graphs of connected hits

are built, features of the graph nodes and edges are computed and, finally, relevant

hit connections are predicted. The dataset, designed for the TrackML challenge [81]

contains precise locations of hits, and the corresponding particles. The classical GNN

architecture consists of three networks organised in cascade: an input network encodes

the hits information as node features, an edge network outputs edge features, using the

start and end nodes, and a node network, that calculate hidden nodes features taking

into account all connected nodes on the previous and next layers. The edge and node

networks are applied iteratively after the input network (see [82] for more details). The

work in [72] represents an exploratory look at this GNN architecture from a quantum

computing perspective: it re-implements the input, edge and node networks as quantum

circuits.

In particular, the edge and node networks are implemented as tree tensor networks

(TTN) — hierarchical quantum classifiers originally designed to represent quantum

many body states described as high-order tensors [76]. The data points are encoded

(see Figure 4) as parameters of Ry rotation gates

Ry(θ) |0〉 = cos(θ/2) |0〉+ sin(θ/2) |1〉 (12)
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The TTN network consists of Ry rotations and CNOT gates (see Figure 4) and its

output is the measurement from a single qubit. The TTN has 11 parameters which

are the angles of rotations in Y direction on the Bloch sphere. These parameters are

optimized using the ADAM optimiser and a binary cross entropy loss function using

Pennylane [51] and Tensorflow [83]. The model is trained on 1450 subgraphs extracted

from the TrackML dataset.

Although preliminary, the obtained performance (see Figure 5) is promising: the

validation losses decrease smoothly and the accuracy increases with the number of

iterations. At convergence, the accuracy value is still lower than for the classical case.

This is, however, expected as the number of hidden features, and iteration are reduced

compared to the GNN, because of computation issues.

5.2. Classification Using Variational Quantum Circuits

The method used in [73] and [74] is based on variational quantum algorithms for

machine learning (VQML). The VQML approach exploits the mapping of input data to

an exponentially large quantum state space to enhance the ability to find an optimal

solution. The data encoding circuit UΦ(~x) maps the data ~x ∈ Ω to the quantum state

|Φ(~x)〉 = UΦ(~x) |0〉. The quantum state with encoded input data is processed by applying

quantum gates to create an ansatz state, which is then measured to produce the output.

The variational quantum circuit W (~θ) parameterized by ~θ is applied [84]

W (~θ) = U
(l)
loc(θl) Uent . . . U

(2)
loc (θ2) Uent U

(1)
loc (θ1) (13)

Figure 6. ROC curve of VQML

and BDT methods. With 800

events and 5 qubits, the VQML

have obtained very close perfor-

mance tothe one obtained us-

ing the classical machine learning

method BDT [73].

Figure 7. AUC with number

of iterations. Within the lim-

ited testing iterations,the perfor-

mance of the IBM Q quantum

computer is compatible with the

one from the quantum simula-

tor [73].
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The probability of outcome y is obtained through

py(~x)← 〈Φ(~x)|W †(~θ)MyW (~θ)|Φ(~x)〉 (14)

whereas {My} is the binary measurement. The optimization process consists in learning
~θ to minimize the loss quantified as a difference between the predicted py(~x) and

the known classification label y. Different optimizers, such as COBYLA [85] and

SPSA [86,87], can be applied.

In [73], the authors made some promising progress by obtaining preliminary results

in the application of IBM quantum simulators and IBM Q quantum computer to ttH

(Higgs coupling to top quark pairs) data analysis. The authors have measured the AUC

(area under the ROC curve) with different numbers of events in the training dataset.

With 5 qubits and 800 events, the VQML have obtained very close performance to

the one obtained using the classical machine learning method BDT (see Figure 6).

A preliminary test was to perform VQML on the IBM Q quantum computer with 5

qubits, 100 training events and 100 test events. Within the limited testing iterations,

the performance of the IBM Q quantum computer is compatible with the one from

the quantum simulator, which reaches a performance similar to the BDT method with

enough iterations (see Figure 7).

In [74], the authors have attempted to use the VQML algorithm for the classification

of a new physics signal predicted in a theory of Supersymmetry. Two implementations

of the VQML algorithm are tested, the first one called Quantum Circuit Learning

(QCL) [88], which is used with the Qulacs simulator [89], and the second called

Variational Quantum Classification (VQC) [84], which is used with the QASM simulator

and real quantum computing devices. The QCL (VQC) uses the combination of RY
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and RZ (Hadamard and RZ) gates for encoding the input data. For the creation of an

ansatz state, the combination of an entangling gate and single-qubit rotation gates are

used for both implementations. The QCL uses the time-evolution gate e−iHt with the

Hamiltonian H of an Ising model with random coefficients as an entangling gate while

the VQC uses the Hadamard and CNOT gates for that. The rotation angles used to

create the ansatz are parameters to be tuned, and the number of parameters is chosen to

be 27, 45 and 63 for the QCL and 12, 20 and 28 for the VQC using 3, 5 and 7 variables,

respectively.

Table 1. AUC values in a training phase for the VQC algorithm running on quantum

computers and QASM simulator. The training condition is fixed to 3 variables, 40

training events and the number of iterations of 100 [74].

Device/Condition AUC

Quantum Computer (Johannesburg) 0.799± 0.020

Quantum Computer (Boeblingen) 0.807± 0.010

QASM simulator 0.815± 0.015

The experimental test of the quantum algorithm is performed in [74] with the SUSY

data set in the UC Irvine Machine Learning Repositiory [90] using cloud Linux servers

for the QCL and a local machine and the IBM Q quantum computer for the VQC. The

performance of the quantum algorithm is compared with BDT and DNN optimized to

avoid over-training at each training set. The QCL performance is relatively flat in the

training size (see Figure 8)while the performance of the BDT and DNN improves with

the size. The computational resource needed to simulate QCL with 10,000 events or

more is beyond the capacity used in [74]. According to these simulation studies, the

three algorithms appear to have a comparable discriminating power when restricting

the training set to be less than ∼ 10, 000 events, with an indication that the quantum

algorithm might have an advantage with a small sample ofO(100) events. Figure 8 shows

ROC curves obtained using the 3-variable VQC algorithm on the QASM simulator with

different numbers of events in the training set. The over-training is clearly visible if

the training set contains only 40 events while it is largely gone when the training set

is increased to 1,000. The small sample of 40 events is used to train the VQC model

with IBM Q quantum computers as well. The AUC values from the QASM simulator

and quantum computers are given in table 1. The results from the quantum computers

appear to be slightly worse than those from the simulator, though they are consistent

within the uncertainties (defined as the standard deviations of five measurements). The

authors of [74] conclude that the variational quantum circuit can learn the properties

of the input data with real quantum device, acquiring classification power for physics

events of interest.



Quantum Machine Learning in High Energy Physics 17

6. Applications Coming Soon

An interesting line of research concerns generative models, such as Boltzmann Machines,

Variational Auto-Encoders and Generative Adversarial Networks, and their quantum

counterparts. Classical generative models are being investigated by the HEP community

as solutions to speed up Monte-Carlo simulation, because of their ability to model

complex probability distributions, and the relative lower computation cost during the

prediction phase. Training those models is, however, a difficult task, and computing

intensive. Coverage is one of the major issues when training or validating generative

models performance and it is related to their representational power and how it maps

to the original probability distribution. From this point of view quantum generative

models might show an advantage, while relieving the computational cost [91].

Quantum SVMs (Support Vector Machines) offer an attractive approach not fully

exploited in HEP. An SVM [92] is a supervised machine learning method which

outputs an optimal hyperplane to categorize samples between two classes to classify

data points. A quantum-enhanced kernel for SVM [84] can map the input vectors to an

exponential Hilbert space, which could make it easier to construct an optimal hyperplane

and increase the classification performance. Additionally, to calculate the quantum-

enhanced kernel, the number of circuits is a function of the square of the number

of input vectors, which may not be a good selection for classifying huge number of

events. Multiple groups are actively exploring quantum kernel methods with gate-based

quantum computers for event classification. Currently, these methods are limited by

the dimensionality reduction required to make data compatible with modern hardware.

Studying these algorithms provides new and different insights into the performance

of modern computing platforms though. For example, they compute data element

overlaps in Hilbert space, and the outcome state distributions are sensitive to device

noise in different ways than variational algorithms like VQE or QAOA. New schemes

for approaching quantum feature map in particular [47] are interesting directions.

7. Discussion and Outlook

When considering applications of quantum machine learning for a field such as high

energy physics (HEP), the immediate question is whether we have reason to believe

that quantum machine learning – for near-term or universal quantum computers – is

particularly suited to this type of application. The truth is that it is simply too early

to tell, and only further investigation of the methods will provide the answers.

One feature of HEP data sets is that they are notoriously large. In principle, this

makes quantum speed-ups attractive, as they could be crucial to analyse big amounts

of data. But significant (that is, exponential) speed-ups in quantum machine learning

are still controversial as to their scope [93] and in some cases, their true quantum

nature [94]. They often rely on special properties of the data such as sparsity [95], or a

special oracle or device that can load the data in superposition [41]. The appeal of near-
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term approaches to quantum machine learning is without doubt that ideas can be easily

tested on a small scale, using the rich landscape of quantum programming languages,

cloud-based quantum computers, and quantum machine learning software packages.

Even so, to encode large data sets into a quantum system to sufficient precision and

to measure the outputs for every events in the dataset is a physical challenge that is

significantly out of the scope of near-term quantum computing. Of course, in the age

of Big Data, the large size of the data sets are not unique to HEP, and it needs to be

further established whether the intersection discussed in this review poses any particular

challenge to machine learning which would motivate the use of quantum computers.

7.1. Experimenting with Quantum Annealers

Despite continuous improvement of quantum annealers they remain noisy, with limited

number of qubits, and limited connectivity.

Solver Heuristics. A huge challenge is to map the reformulated problem to an actual

device with a limited connectivity [96], and it is often necessary to include connectivity

constraints already into the loss itself. One alternative available in the D-Wave software

stack is qbsolve [97], a heuristic that allows to split large problems in several smaller ones

that in turn can be solve on the available hardware. This allows one to experiment with

much larger QUBO than the one directly solvable with existing hardware, but in return

requires additional computing resources. It also prevents us from directly probing the

stand-alone capabilities of the device.

Digital Devices. Digital annealers [98] offer the potential to prototype algorithms with

large numbers of digital qubits. Using custom ASICs, digital annealers are capable of

simulating fully-connected quantum annealers with 4,096 qubits (with 64 bit precision)

or as many as 8,192 qubits (with 16 bit precision). In principle, a digital annealer

cluster could offer up to 1,000,000 qubits using multi-chip support. While in the very

long-run fully quantum annealers should be able to overtake digital simulators, in the

near-term, these machines are exciting application test-beds and may even be able to

deliver competitive results.

7.2. Experimenting with Quantum Circuits

Applying quantum algorithms on quantum hardware is the core aim at any research

on quantum computing. But the scale of even state-of-the-art studies quickly reveals

the limitations of current-day hardware. Typical implementations use only a few qubits

and datasets of four features (for example, [55,99,100]). The limited number of qubits,

connectivity and short decoherence time of the current quantum hardware make it

difficult to experiment with large and long variational circuits.
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Circuit Architecture. In the papers reviewed above, the quantum circuit architecture

(the types and numbers of gates) is fixed and only the parameters of the gates are

optimized. In combination of this approach, search for optimal gate assembly is also

possible. In [101], reinforcement learning is used to derive circuits to solve combinatorial

problems. This technique might provide further handle at developing well performing

quantum machine learning models.

Error Mitigation. Practically, circuit-based qubit devices allow only a few gates to be

performed before a signal is drowned in noise. The fidelity of measurements on quantum

device can be improved via error mitigation strategies [102]. Various techniques allow

experiments with an increased number of gates or better qubit connectivity. In addition

to techniques making explicit assumption on the form and origin of the noise, machine

learning approaches can be used to learn directly from the device-dependent noise. The

integration of such noise-modelling-cancelling technique of circuit compiler would help

with experimenting on quantum device, at the cost of increased resources.

Circuit Simulation. Prototyping quantum algorithms with a classical simulator is an

important step in the development and testing of new algorithms. The classical

simulator used for the VQML study in [74] has enabled the authors to test the QCL

algorithm with up to seven variables or ∼ 10, 000 events for the training set size. The

simulation time and memory usage increases exponentially with the number of input

variables in the creation of variational quantum states with W (~θ). Despite continuous

improvement in the simulator [89], the experimentation with circuits with large number

of qubits is still hampered by this computation requirement. Of course, it is expected

that the simulation of a quantum device will be classically hard. Because of this, it may

be better when possible to experiment on smaller numbers of qubits —where circuits

can be run— and study the time to solution or complexity, as a function of the number

of qubits.

Optimization in Quantum Machine Learning. There are two types of optimizer:

gradient-based and derivative-free. For some derivative-free optimizers, it may require

many iterations to achieve good training performance as the number of variational

parameters increases. For the gradient-based optimizer, fewer iterations may be

required. However, to calculate the gradient is also difficult [103] and numerical

differentiation requires the circuit to be run additional times as the number of variational

parameters increases. Changing a single circuit parameter for the evaluation of gradients

through a cloud-based service can take of the order of many seconds, which quickly

makes optimization of even a small system a matter of hours and days.
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7.3. Quantum data

All the algorithms described in this review so far made use of a classical machine

learning dataset, embedded into a quantum device. However, quantum machine learning

algorithms have the unique property to be usable with a dataset made of quantum

states, or quantum data [104, 105]. Those input quantum states are usually the output

of some quantum circuits (e.g. circuits that extract the ground state of different

Hamiltonians [106]) and are then processed by a variational circuit that has learned

a desired quantum function (e.g. a property of this ground-state). However, one could

also imagine directly feeding the quantum objects resulting from a HEP, dark matter, or

gravitational wave detection experiment into the QML algorithm. Several application of

machine learning on quantum data have been developed, including clustering of quantum

states [104], detecting anomalies on a quantum device [107], learning algorithms to

estimate the fidelity or the purity of a state [108, 109], learning phases of matter [106]

and classifying quantum states [110, 111].

The question of how to exploit the quantum nature of the systems generating HEP

data has not been prominent in the literature, but there are two interesting outlooks.

The first is to do quantum machine learning directly on the quantum objects

measured in HEP. As an example, instead of processing the classical signal formed

in photonic sensors, one could direct the photons into a photonic quantum computer

and apply a variational circuit before conducting the final measurement. The circuit

could be trained to extract important information from the quantum state, or to classify

the state. Applying this process to axion dark matter experiments [112] or to neutrino

detectors [18] could be promising research directions.

The second path follows the idea of quantum simulations [113, 114], an important

use of quantum computers in simulating complex quantum systems to determine their

properties. If a HEP experiment could be simulated on a quantum computer [18,19,21],

the simulation could be followed by a quantum machine learning routine executed on

the very same device, and analysing the quantum states produced by the simulation.

Instead of costly state tomography to characterise the results, the wave function is

directly accessed and important information extracted.

In both cases, an important insight from quantum machine learning — possibly

the one with the highest future impact on other quantum disciplines — is the ability

to differentiate through quantum computations. This includes a wealth of knowledge

and practical methods to get partial derivatives of a measurement result with respect to

(classical) physical parameters of the experiment, such as a magnetic field strength or

pulse length. Quantum differentiation opens a door to design experiments by adaptively

optimizing some cost functions, which is crucial for quantum data analysis.

7.4. Concluding Remarks

Overall, we are just at the beginning of exploring the intersection between quantum

machine learning and high energy physics. The papers presented in this review therefore
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have to be understood as exploratory studies that propose angles to approach the

problem of how to use quantum machine learning algorithms to understand fundamental

particles.

We presented papers on performing classification using quantum machine learning

with quantum annealing, restrictive Boltzmann machines, quantum graph networks

and variational quantum circuits. The capacity of quantum annealers to perform

classification is limited due to the restrictive formulation of the problem. Quantum-

circuit-based machine learning is yet of limited performance due to the necessary down-

scaling of the problems, so as to fit on the quantum device, or to be amenable in

simulation.

In the outlook we discussed practical considerations of experimenting with quantum

machine learning and the prospect of analysing quantum data. These challenges put

quantum machine learning into a particularly difficult spot. The quality of a machine

learning algorithm is usually estimated through empirical benchmarks on pseudo-

realistic datasets. Evidence from deep learning suggests that machine learning on large

datasets behaves very differently from the small-data regime. And while consistently

improving, the theory of machine learning is currently unable to explain the performance

of algorithms such as neural networks. The challenges for practical experiments as

well as fundamental limits of classical simulations restrict quantum machine learning

benchmarks to small proof-of-principle investigations that may only say very little about

their performance in realistic settings.

As the technology develops, more theory work is needed to understand the

power of near-term quantum machine learning. While the current performance of

quantum machine learning on high energy physics data is limited, there is hope that

future advances on both quantum devices and quantum algorithms will help with the

computation challenges of particle physics.
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[45] Marcello Benedetti, John Realpe-Gómez, Rupak Biswas, and Alejandro Perdomo-Ortiz.

Quantum-assisted learning of hardware-embedded probabilistic graphical models. Physical

Review X, 7:041052, 2017.

[46] Hartmut Neven, Vasil S Denchev, Geordie Rose, and William G Macready. Training a binary

classifier with the quantum adiabatic algorithm. arXiv preprint arXiv:0811.0416, 2008.

[47] Seth Lloyd, Maria Schuld, Aroosa Ijaz, Josh Izaac, and Nathan Killoran. Quantum embeddings

for machine learning. arXiv preprint arXiv:2001.03622, 2020.

[48] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of

variational hybrid quantum-classical algorithms. New Journal of Physics, 18(2):023023, 2016.

[49] Kosuke Mitarai, Makoto Negoro, Masahiro Kitagawa, and Keisuke Fujii. Quantum circuit

learning. Physical Review A, 98(3):032309, 2018.

[50] Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. Evaluating

analytic gradients on quantum hardware. Physical Review A, 99(3):032331, 2019.

[51] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, and Nathan Killoran.

Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv

preprint arXiv:1811.04968, 2018.

[52] Michael Broughton, Guillaume Verdon, Trevor McCourt, Antonio J Martinez, Jae Hyeon Yoo,

Sergei V Isakov, Philip Massey, Murphy Yuezhen Niu, Ramin Halavati, Evan Peters, et al.

Tensorflow quantum: A software framework for quantum machine learning. arXiv preprint

arXiv:2003.02989, 2020.

[53] Aram Harrow and John Napp. Low-depth gradient measurements can improve convergence in

variational hybrid quantum-classical algorithms. arXiv preprint arXiv:1901.05374, 2019.

[54] Jin-Guo Liu and Lei Wang. Differentiable learning of quantum circuit born machines. Physical

Review A, 98(6):062324, 2018.

[55] Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong

Nam, and Alejandro Perdomo-Ortiz. A generative modeling approach for benchmarking and

training shallow quantum circuits. npj Quantum Information, 5(1):1–9, 2019.

[56] Seth Lloyd and Christian Weedbrook. Quantum generative adversarial learning. Physical review

letters, 121(4):040502, 2018.

[57] Pierre-Luc Dallaire-Demers and Nathan Killoran. Quantum generative adversarial networks.

Physical Review A, 98(1):012324, 2018.

[58] Harmut Neven, Vasil S Denchev, Marshall Drew-Brook, Jiayong Zhang, William G Macready, and

Geordie Rose. Nips 2009 demonstration: Binary classification using hardware implementation

of quantum annealing. Quantum, pages 1–17, 2009.

[59] Kristen L. Pudenz and Daniel A. Lidar. Quantum adiabatic machine learning. Quant. Inf. Proc.,

12(5):2027–2070, 2013.

[60] Ivan Glasser, Nicola Pancotti, Moritz August, Ivan D Rodriguez, and J Ignacio Cirac. Neural-

network quantum states, string-bond states, and chiral topological states. Physical Review X,

8(1):011006, 2018.

[61] Mohammad H Amin, Evgeny Andriyash, Jason Rolfe, Bohdan Kulchytskyy, and Roger Melko.

Quantum boltzmann machine. Physical Review X, 8(2):021050, 2018.

[62] Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria Spiropulu. Solving a higgs

optimization problem with quantum annealing for machine learning. Nature, 550:375–379, 10



Quantum Machine Learning in High Energy Physics 25

2017.

[63] Alexander Zlokapa, Alex Mott, Joshua Job, Jean-Roch Vlimant, Daniel Lidar, and Maria

Spiropulu. Quantum adiabatic machine learning with zooming, 2019.

[64] João Caldeira, Joshua Job, Steven H. Adachi, Brian Nord, and Gabriel N. Perdue. Restricted

Boltzmann Machines for galaxy morphology classification with a quantum annealer. 11 2019.

[65] S. Chatrchyan et al. Observation of a new boson at a mass of 125 gev with the cms experiment

at the lhc. Physics Letters B, 716(1):30 – 61, 2012.

[66] G. Aad et al. Observation of a new particle in the search for the standard model higgs boson

with the atlas detector at the lhc. Physics Letters B, 716(1):1 – 29, 2012.

[67] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220(4598):671–680, 1983.

[68] Helmut G Katzgraber, Simon Trebst, David A Huse, and Matthias Troyer. Feedback-optimized

parallel tempering monte carlo. Journal of Statistical Mechanics: Theory and Experiment,

2006(03):P03018–P03018, mar 2006.

[69] Geoffrey E. Hinton. Training products of experts by minimizing contrastive divergence. Neural

Computation, 14(8):1771–1800, 2002.

[70] Steven H. Adachi and Maxwell P. Henderson. Application of quantum annealing to training of

deep neural networks, 2015.

[71] Steven H. Adachi and Maxwell P. Henderson. Application of quantum annealing to training of

deep neural networks. arXiv e-print, 2015.

[72] B. Dermikoz D. Dobos F. Fracas K. Novotny K. Potamianos S. Vallecorsa J. Vlimant C. Tuysuz,

F. Carminati. Particle track reconstruction with quantum algorithms, 2020.

[73] Jay Chan, Wen Guan, Shaojun Sun, Alex Zeng Wang, Sau Lan Wu, Chen Zhou, Miron Livny,

Federico Carminati, and Alberto Di Meglio. Application of quantum machine learning to

high energy physics analysis at lhc using ibm quantum computer simulators and ibm quantum

computer hardware. PoS, LeptonPhoton2019:049, 2019.

[74] Koji Terashi, Michiru Kaneda, Tomoe Kishimoto, Masahiko Saito, Ryu Sawada, and Junichi

Tanaka. Event classification with quantum machine learning in high-energy physics, 2020.

[75] T. Nakamoto L. Rossi G. Apollinari, O. Bruening. High luminosity large hadron collider hl-lhc,

2017.

[76] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid

Stojevic, Andrew G. Green, and Simone Severini. Hierarchical quantum classifiers. npj

Quantum Information, 4(1):17–19, 2018.

[77] C Gumpert, A Salzburger, M Kiehn, J Hrdinka, and N Calace and. ACTS: from ATLAS software

towards a common track reconstruction software. Journal of Physics: Conference Series,

898:042011, oct 2017.

[78] Fast Track Reconstruction for HL-LHC. Technical Report ATL-PHYS-PUB-2019-041, CERN,

Geneva, Oct 2019.

[79] Summers, Sioni and Rose, Andrew. Kalman filter track reconstruction on fpgas for acceleration

of the high level trigger of the cms experiment at the hl-lhc. EPJ Web Conf., 214:01003, 2019.

[80] Farrell, Steven, Anderson, Dustin, Calafiura, Paolo, Cerati, Giuseppe, Gray, Lindsey,

Kowalkowski, Jim, Mudigonda, Mayur, Prabhat, Spentzouris, Panagiotis, Spiropoulou, Maria,

Tsaris, Aristeidis, Vlimant, Jean-Roch, and Zheng, Stephan. The hep.trkx project: deep neural

networks for hl-lhc online and offline tracking. EPJ Web Conf., 150:00003, 2017.

[81] Sabrina Amrouche, Laurent Basara, Paolo Calafiura, Victor Estrade, Steven Farrell, Diogo R.

Ferreira, Liam Finnie, Nicole Finnie, Cécile Germain, Vladimir Vava Gligorov, and et al. The

tracking machine learning challenge: Accuracy phase. The Springer Series on Challenges in

Machine Learning, page 231–264, Nov 2019.

[82] Steven Farrell, Paolo Calafiura, Mayur Mudigonda, Prabhat, Dustin Anderson, Jean-Roch

Vlimant, Stephan Zheng, Josh Bendavid, Maria Spiropulu, Giuseppe Cerati, Lindsey Gray,

Jim Kowalkowski, Panagiotis Spentzouris, and Aristeidis Tsaris. Novel deep learning methods



Quantum Machine Learning in High Energy Physics 26

for track reconstruction, 2018.

[83] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.

Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,

Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,

Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek
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