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In this contribution, the nuclear modification factor and azimuthal
anisotropy of prompt charm mesons and baryons in Pb–Pb collisions at√
sNN = 5.02 TeV by the ALICE Collaboration are presented. Heavy

quarks are a very suitable probe to investigate the quark–gluon plasma
(QGP) produced in heavy-ion collisions, since they are mainly produced in
hard-scattering processes and hence in shorter timescales compared to the
QGP. Measurements of charm-hadron production in nucleus–nucleus colli-
sions are therefore useful to study the properties of the in-medium charm-
quark energy loss via the comparison with theoretical models. Models
describing the heavy-flavour transport and energy loss in a hydrodynam-
ically expanding QGP require also a precise modelling of the in-medium
hadronisation of heavy quarks, which is investigated via the measurement
of prompt D+

s mesons and Λ+
c baryons.

1. Introduction

In ultra-relativistic heavy-ion collisions, a phase transition of nuclear
matter to a colour-deconfined medium is predicted, the so-called quark–
gluon plasma (QGP) [1]. Heavy quarks (charm and beauty) are predom-
inantly produced in the early stages of such collisions via hard-scattering
processes. Due to the very short time scales characterising heavy-quark
production, which are shorter than the QGP formation time (approximate
0.1 and 0.03 fm/c for charm and beauty quarks [2], and between 0.3 and
1.5 fm/c for the QGP [3]), heavy quarks experience the full evolution of the
medium. Once produced, these quarks traverse the medium and interact via
inelastic and elastic processes with its constituents. They are therefore an
effective probe to study several aspects of the medium, like the properties
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of the energy loss mechanisms, the relevance of quark recombination in the
hadronisation of the QGP, and the initial conditions of the system.

In this contribution, the most recent measurements of open-charm meson
and baryon production by the ALICE Collaboration in the latest LHC Pb–
Pb run at

√
sNN = 5.02 TeV (from 2018) are discussed [4, 5, 6, 7]. In

particular, i) the nuclear modification factor (RAA), defined as the ratio
of the production yield in Pb–Pb collisions and the cross section in pp
collisions scaled by the average nuclear overlap function TAA, ii) the elliptic
flow (v2), which is the second harmonic Fourier coefficient of the azimuthal
anisotropies in the production of heavy-flavour hadrons, and iii) the baryon-
to-meson production yield ratios will be presented. The first two observables
are especially sensitive to the interactions of the heavy quarks with the
QGP, while the hadron relative abundances provide information regarding
possible modifications of the hadronisation mechanisms in presence of such
a deconfined QCD medium [8].

Open charm hadrons are measured by ALICE at midrapidity (|y| < 0.5)
via the decay channels D0 → K−π+, D+ → K−π+π+, D∗+ → D0π+,
D+

s → φπ+ → K+K−π+, Λ+
c → pK0

s → pπ+π−, Λ+
c → pK−π+, and their

charge conjugates. Topological and particle-identification selections are
used to enhance the signal-to-background ratio, either via so-called rectan-
gular selections or using machine-learning algorithms [9]. The raw charm-
hadron yields are extracted via invariant-mass analyses and corrected for the
reconstruction and selection efficiency (estimated using Monte Carlo simula-
tions) and the prompt fraction (based on a theory-driven method [4, 7]). The
measurements of the D-meson elliptic flow are performed with the scalar-
product method [10].

2. Results

In Fig. 1, the nuclear modification factor in central Pb–Pb collisions and
the elliptic flow in mid-central Pb–Pb collisions for prompt non-strange D
mesons (average of D0, D+, and D∗+) are shown [4, 5]. The RAA, mea-
sured for the first time down to pT = 0, shows a suppression of a factor
5 with respect to the binary-scaled pp reference, with a minimum value at
pT ≈ 7 GeV/c. The measured v2 is found to be significantly larger than
zero in the 2 < pT < 24 GeV/c interval. The measurements are compared
to various predictions from models implementing charm-quark transport in
a hydrodynamically expanding medium [11]. The main differences between
these models are i) the use of solely collisional or collisional and radiative
interaction processes, ii) the inclusion of initial-state effects by using nuclear
parton distribution functions, and iii) the way hadronisation via quark re-
combination (in addition to charm-quark fragmentation) is implemented.
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Fig. 1. The average RAA (left) and v2 (right) of prompt D0, D+, and D∗+ mesons in,

respectively, the 0–10% and 30–50% centrality classes [4] compared with predictions

of charm-quark transport models [11].

Most of the models capture the magnitude and pT trend of the RAA for
pT > 6 GeV/c, while there are significant deviations at lower pT. The
models describe reasonably well the v2, even though they tend to slightly
underestimate the data in the 2 < pT < 6 GeV/c interval. By considering
the few models that are in fair agreement with both the nuclear modification
factor and the elliptic flow (based on a χ2/ndf < 5 and < 2 requirement, re-
spectively), the heavy-quark spatial diffusion coefficient, Ds, was estimated
to be in the range 1.5 < 2πDsTc < 4.5 at the pseudocritical temperature
Tpc = 155 MeV [4]. The extended data-to-model comparisons in Ref. [4]
further show the importance of recombination and radiative energy loss to
describe the production of non-strange charm mesons.

Figure 2 shows the elliptic flow for the strange D+
s meson compared to

the one of the non-strange D mesons in mid-central Pb–Pb collisions. The
measured D+

s -meson v2 is positive in the 2 < pT < 8 GeV/c interval with
a significance of 6.4σ [6]. As argued in Ref. [12], the comparison of the v2
between the strange and non-strange D mesons provide sensitivity to the
transport properties of the hadronic phase, since the D+

s meson is expected
to decouple earlier from the hadron gas due to its strange-quark content.
Within the current uncertainties, it is, however, not possible to conclude
about such a possible difference. The D+

s nuclear modification factor and
strange-to-non-strange D+

s /D
0 yield ratio are presented as well in Ref. [6],

indicating the importance of charm-quark hadronisation via recombination
to “pick up” the enhanced abundance of strange quarks in the QGP medium.
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Fig. 2. The v2 of prompt D+
s in the 30–50% centrality interval [6] compared with

that of non-strange D mesons [5]. The systematic uncertainty due to the feed-down

subtraction is shown separately as shaded boxes.

In the left panel of Fig. 3, the pT-differential Λ+
c /D

0 baryon-to-meson
yield ratios in central and mid-central Pb–Pb collisions are shown [7]. Com-
pared to the same ratio in pp collisions, which showed already a surprising
enhancement with respect to the same ratio in e+e− collisions [13], the mid-
central and central Pb–Pb ratios are further enhanced by 2.0σ and 3.7σ in
the 4 < pT < 8 GeV/c interval, respectively. This, and the theory compar-
isons shown in Ref. [7], indicate once more the importance of hadronisation
via recombination for the description of charm-hadron production. To in-
vestigate if this enhancement is an overall enhancement of Λ+

c production
relative to the D0 one, as proposed by recombination models including light
diquark states [14], the Λ+

c yields are extrapolated to pT = 0. The corre-
sponding pT-integrated Λ+

c /D
0 ratios as function of multiplicity are shown

in the right panel of Fig. 3. The ratio values for Pb–Pb collisions are com-
patible with the ones at pp and p–Pb multiplicities [13] within one standard
deviation of the combined uncertainties, disfavouring the models expecting
an overall enhancement of baryon production [14]. The measured enhance-
ment at intermediate pT may instead be caused by altered pT distributions
of baryons and mesons due to the quark’s phase-space distribution.

3. Conclusion

The ALICE Collaboration performed precision measurements of charm-
hadron production in Pb–Pb collisions with the Run 2 data sample. The
non-strange D-meson yield was measured for the first time down to pT = 0,
and the precision and pT reach of the charm-strange meson and charm
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Fig. 3. Left: the Λ+
c /D

0 yield ratio in central and mid-central Pb–Pb collisions [7]

compared with the result from pp collisions [13]. Right: The pT-integrated Λ+
c /D

0

ratios as function of multiplicity in pp, p–Pb, Au–Au, and Pb–Pb collisions [7, 13,

15] compared with theoretical predictions [16].

baryon results was significantly improved with respect to previous measure-
ments. The results point to charm-quark interactions with the medium con-
stituents via collisional and radiative processes, indicate that low-pT charm
quarks thermalise with the medium and thus participate in the collective
motion, and show the importance of the recombination process to describe
charm-quark hadronisation. The upgraded ALICE detector for the LHC
Runs 3 and 4 will allow for even more precise measurements and stronger
constraints on model calculations thanks to the improved precision of the
upgraded detectors and the larger data samples [17].
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