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Abstract

We present a systematic phenomenological analysis of the tests of CPT

symmetry that are possible within an open quantum-mechanical description of

the neutral kaon system that is motivated by arguments based on quantum

gravity and string theory. We develop a perturbative expansion in terms of the

three small CPT-violating parameters admitted in this description, and provide

expressions for a complete set of K ! 2�; 3� and �`� decay observables to

second order in these small parameters. We also illustrate the new tests of CPT

symmetry and quantum mechanics that are possible in this formalism using a

regenerator. Indications are that experimental data from the CPLEAR and

previous experiments could be used to establish upper bounds on the CPT-

violating parameters that are of order 10�19 GeV, approaching the order of

magnitude that may be attainable in quantum theories of gravity.
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1 Introduction

The neutral kaon system has long served as a penetrating probe of fundamental
physics. It has revealed or illuminated many new areas of fundamental physics,
including parity violation, CP violation, 
avour-changing neutral interactions, and
charm. It remains the most sensitive test of fundamental symmetries, being the only
place where CP violation has been observed, namely at the level of 10�18 GeV in
the imaginary part of the e�ective mass matrix for neutral kaons, and providing the
most stringent microscopic check of CPT symmetry within the framework of quantum
mechanics, namely j(mK0 �m �K0)=mK0j < 9� 10�19 [1].

It is well known that CPT symmetry is a fundamental theorem of quantum �eld
theory, which follows from locality, unitarity, and Lorentz invariance [2]. However, the
topic of CPT violation has recently attracted increased attention, drawn in part by the
prospect of higher-precision tests by CPLEAR [3] and at DA�NE [4], and in part by
the renewed theoretical interest in quantum gravity motivated by recent developments
in string theory. Some of the phenomenological discussion has been in the context of
quantum mechanics [5], abandoning implicitly or explicitly the derivation of quantum
mechanics from quantum �eld theory, in which CPT is sacrosanct. Instead, we have
followed the approach of Ref. [6], in which a parametrization of CPT-violating e�ects
is introduced via a deviation from conventional quantum mechanics [6, 7] believed
to re
ect the loss of quantum coherence expected in some approaches to quantum
gravity [8], notably one based on a non-critical formulation of string theory [9].

The suggestion that quantum coherence might be lost at the microscopic level
was made in Ref. [8], which suggested that asymptotic scattering should be described
in terms of a superscattering operator S= , relating initial (�in) and �nal (�out) density
matrices, that does not factorize as a product of S- and Sy-matrix elements:

�out = S= �in : S= 6= SSy : (1)

The loss of quantum coherence was thought to be a consequence of microscopic
quantum-gravitational 
uctuations in the space-time background. Model calculations
supporting this suggestion were presented [8] and contested [10]. Ref. [6] pointed out
that if Eq. (1) is correct for asymptotic scattering, there should be a correspond-
ing e�ect in the quantum Liouville equation that describes the time-evolution of the
dentity matrix �(t):

@�(t)

@t
= i[�;H] + i�H= � ; (2)

which is characteristic of an open quantum-mechanical system. Ref. [6] parametrized
the non-Hamiltonian term in the case of a simple two-state system such as theK0� �K0

system, presented a �rst analysis of its phenomenological consequences, and gave
experimental bounds on the non-quantum-mechanical parameters.

The question of microscopic quantum coherence has recently been addressed in
the context of string theory using a variety of approaches [11]. In particular, we have
analyzed this question using non-critical string theory [12], with criticality restored
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by non-trivial dynamics for a time-like Liouville �eld [12, 13], which we identify with
the world-sheet cuto� and the target time variable [7, 9]. This approach leads to
an equation of the form (2), in which probability and energy are conserved, and the
possible magnitude of the extra term j�H= j = O(E2=MP l), where E is a typical energy
scale of the system under discussion. The details of this approach are not essential
for the phenomenological discussion of this paper, but it is interesting to note that
the experimental sensitivity may approach this theoretical magnitude.

It has been pointed out [14] that at least the strong version of the CPT the-
orem must be violated in any theory described by a non-factorizing superscattering
matrix S= (1), which leads to a loss of quantum coherence. This is also true of the
parametrization proposed by Ref. [6], which violates CPT in an intrinsically non-
quantum-mechanical way. More detailed descriptions of phenomenological implica-
tions and improved experimental bounds were presented in Ref. [15]. These results
were based on an analysis of KL and KS decays, and did not consider the additional
constraints obtainable from an analysis of intermediate-time data. A systematic ap-
proach to the time evolution of the density matrix for the neutral kaon system was
proposed in Ref. [16], and preliminary estimates of the improved experimental con-
straints on the non-quantum-mechanical parameters were presented. Similar results
were presented later in Ref. [17], which also discussed correlation measurements pos-
sible at a � factory such as DA�NE.

The main focus of this paper is to present detailed formulae for the time
dependences of several decay asymmetries that can be measured by the CPLEAR
and DA�NE experiments, using the systematic approach proposed in Ref. [16] and
described in Section 3. In particular, we discuss in Section 4 the asymmetries known as
A2�; A3�; AT; ACPT and A�m, whose de�nitions are reviewed in Section 2. We show in
Section 5 that experiments with a regenerator can provide useful new measurements of
the non-quantum-mechanical CPT-violating parameters. Then, in Section 6 we derive
illustrative bounds on the non-quantum-mechanical parameters from all presently
available data. Section 7 contains a brief discussion of the extension of the formalism
of Ref. [6] to the correlation measurements possible at � factories such as DA�NE.We
emphasize the need to consider a general parametrization of the two-particle density
matrix, that cannot be expressed simply in terms of the previously-introduced single-
particle density matrix parameters, and enables energy conservation to be maintained,
as we have demonstrated [7, 9] in our non-critical string theory approach to the
loss of quantum coherence. In Section 8 we review our conclusions and discuss the
prospects for future experimental and theoretical work. Formulae for the CPLEAR
observables in the context of standard quantum-mechanical CPT violation [5] are
collected in Appendix A, where bounds on the corresponding parameters are also
obtained. Lastly, complete formulae for the second-order contributions to the density
matrix in our quantum-mechanical-violating framework are collected in Appendix B.
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2 Formalism and Relevant Observables

In this section we �rst review aspects of the modi�cations (2) of quantum mechanics
believed to be induced by quantum gravity [6], as argued speci�cally in the context of
a non-critical string analysis [7, 9]. This provides a speci�c form for the modi�cation
(2) of the quantum Liouville equation for the temporal evolution of the density matrix
of observable matter [7, 9]

@

@t
� = i[�;H] + i�H=� ; �H= � _giGij [g

i; �] (3)

where the coordinates fgig parametrize the space of possible string models and the
extra term �H= is such that the time evolution has the following basic properties:

(i) The total probability is conserved in time

@

@t
Tr � = 0 (4)

(ii) The energy E is conserved on the average

@

@t
Tr (E�) = 0 (5)

as a result of the renormalizability of the world-sheet �-model speci�ed by the
parameters gi which describe string propagation in a string space-time foam
background.

(iii) The von Neumann entropy S � �kBTr � ln � increases monotonically with time

@

@t
S � 0 (6)

which vanishes only if one restricts one's attention to critical (conformal) strings,
in which case there is no arrow of time [7, 9]. However, we argue that quantum

uctuations in the background space time should be treated by including non-
critical (Liouville) strings [12, 13], in which case (6) becomes a strict inequality.
This latter property also implies that the statistical entropy Sst � Tr �2 is also
monotonically increasing with time, pure states evolve into mixed ones and
there is an arrow of time in this picture [7].

(iv) Correspondingly, the superscattering matrix S= , which is de�ned by its action
on asymptotic density matrices

�out = S= �in (7)

cannot be factorised into the usual product of the Heisenberg scattering matrix
and its hermitian conjugate

S= 6= SSy ; S = e�iHt (8)

with H the Hamiltonian operator of the system. In particular this property
implies that S= has no inverse, which is also expected from the property (iii).
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(v) The absence of an inverse for S= implies that strong CPT invariance of the low-
energy subsystem is lost, according to the general analysis of [14, 9].

It should be stressed that, although for the purposes of the present work we
keep the microscopic origin of the quantum-mechanics-violating terms unspeci�ed, it
is only in the non-critical string model of Ref. [7] - and the associated approach to
the nature of time - that a concrete microscopic model guaranteeing the properties
(i)-(v) has so far emerged naturally. Within this framework, we expect that the string
�-model coordinates gi obey renormalization-group equations of the general form

_gi = �iMP l : j�ij = O
 
E2

M2
P l

!
(9)

where the dot denotes di�erentiation with respect to the target time, measured in
string (M�1

P l ) units, and E is a typical energy scale in the observable matter system.
Since Gij and gi are themselves dimensionless numbers of order unity, we expect that

j�H= j = O
 
E2

MP l

!
(10)

in general. However, it should be emphasized that there are expected to be system-
dependent numerical factors that depend on the underlying string model, and that
j�H= j might be suppressed by further (E=MP l)-dependent factors, or even vanish.
Nevertheless, (10) gives us an order of magnitude to aim for in the neutral kaon
system, namely O((�QCD or ms)2=MP l) � 10�19 GeV.

In the formalism of Ref. [6], the extra (non-Hamiltonian) term in the Liouville
equation for � can be parametrized by a 4�4 matrix �H= ��, where the indices �; �; : : :
enumerate the Hermitian �-matrices �0;1;2;3, which we represent in the K1;2 basis. We
refer the reader to the literature [6, 15] and Appendix A for details of this description,
noting here the following forms for the neutral kaon Hamiltonian

H =

 
M � i

2
� � ReM12 +

i

2
Re�12

1
2
�M � i

4
��� iImM12 � 1

2
Im�12

1
2
�M � i

4
�� + iImM12 � 1

2
Im�12 M � i

2
� + ReM12 � i

2
Re�12

!
(11)

in the K1;2 basis, or

H�� =

0BBB@
�� �1

2
�� �Im�12 �Re�12

�1
2
�� �� �2ReM12 �2ImM12

�Im�12 2ReM12 �� ��M
�Re�12 �2ImM12 �M ��

1CCCA (12)

in the �-matrix basis. As discussed in Ref. [6], we assume that the dominant violations
of quantum mechanics conserve strangeness, so that �H= 1� = 0, and that �H= 0� = 0
so as to conserve probability. Since �H= �� is a symmetric matrix, it follows that also
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�H= �0 = �H= �1 = 0. Thus, we arrive at the general parametrization

�H= �� =

0BBB@
0 0 0 0
0 0 0 0
0 0 �2� �2�
0 0 �2� �2


1CCCA (13)

where, as a result of the positivity of the hermitian density matrix � [6]

�; 
 > 0; �
 > �2 : (14)

We recall [15] that the CPT transformation can be expressed as a linear com-
bination of �2;3 in the K1;2 basis : CPT = �3 cos �+�2 sin �, for some choice of phase
�. It is apparent that none of the non-zero terms / �; �; 
 in �H= �� (13) commutes
with the CPT transformation. In other words, each of the three parameters �, �, 

violates CPT, leading to a richer phenomenology than in conventional quantum me-
chanics. This is because the symmetric �H= matrix has three parameters in its bottom
right-hand 2 � 2 submatrix, whereas the h matrix appearing in the time evolution
within quantum mechanics [5] has only one complex CPT-violating parameter �,

� = �1
2

1
2
�� + i�M

1
2
j��j+ i�m

; (15)

where �M and �� violate CPT, but do not induce any mixing in the time evolution of
pure state vectors[15]. The parameters �m = ML �MS and j��j = �S ��L are the
usual di�erences between mass and decay widths, respectively, of KL and KS states.
A brief review of the quantum-mechanical formalism is given in Appendix A. For
more details we refer the reader to the literature [15]. The above results imply that
the experimental constraints [1] on CPT violation have to be rethought. As we shall
discuss later on, there are essential di�erences between quantum-mechanical CPT
violation and the non-quantum-mechanical CPT violation induced by the e�ective
parameters �; �; 
 [6].

Useful observables are associated with the decays of neutral kaons to 2� or 3�
�nal states, or semileptonic decays to �l�. In the density-matrix formalism introduced
above, their values are given by expressions of the form [6]

hOii = Tr [Oi�] ; (16)

where the observables Oi are represented by 2�2 hermitian matrices. For future use,
we give their expressions in the K1;2 basis

O2� =

 
0 0
0 1

!
; O3� /

 
1 0
0 0

!
; (17)

O��l+� =

 
1 1
1 1

!
; O�+l��� =

 
1 �1

�1 1

!
: (18)
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which constitute a complete hermitian set. As we discuss in more detail later, it is
possible to measure the interference between K1;2 decays into �+���0 �nal states
with di�erent CP properties, by restricting one's attention to part of the phase space

, e.g., �nal states with m(�+�0) > m(���0). In order to separate this interference
from that due to KS;L decays into �nal states with identical CP properties, due to
CP violation in the K1;2 mass matrix or in decay amplitudes, we consider [18] the
di�erence between �nal states with m(�+�0) > m(���0) and m(�+�0) < m(���0).
This observable is represented by the matrix

Oint
3� =

 
0 K
K� 0

!
(19)

where

K �

hR
m(�+�0)>m(���0) d
 �

R
m(�+�0)<m(���0) d


i
A2(I3� = 2)A1(I3� = 1)R

d
jA1(I3� = 1)j2 (20)

where K is expected to be essentially real, so that the Oint
3� observable provides essen-

tially the same information as O��l+� �O�+l�� .
In this formalism, pure K0 or �K0 states, such as the ones used as initial

conditions in the CPLEAR experiment [3], are described by the following density
matrices

�K0 = 1
2

 
1 1
1 1

!
; � �K0 = 1

2

 
1 �1

�1 1

!
: (21)

We note the similarity of the above density matrices (21) to the semileptonic decay
observables in (18), which is due to the strange quark (s) content of the kaon K0 3
�s! �ul+�; �K0 3 s! ul���, and our assumption of the validity of the �S = �Q rule.

In this paper we shall apply the above formalism to compute the time evolution
of certain experimentally-observed quantities that are of relevance to the CPLEAR
experiment [3]. These are asymmetries associated with decays of an initial K0 beam
as compared to corresponding decays of an initial �K0 beam

A(t) =
R( �K0

t=0 ! �f)�R(K0
t=0 ! f)

R( �K0
t=0 ! �f ) +R(K0

t=0 ! f)
; (22)

where R(K0 ! f) � Tr [Of�(t)], denotes the decay rate into the �nal state f , given
that one starts from a pure K0 at t = 0, whose density matrix is given in (21), and
R( �K0 ! �f) � Tr [O �f ��(t)] denotes the decay rate into the conjugate state �f , given
that one starts from a pure �K0 at t = 0.

Let us illustrate the above formalism by two examples. We may compute the
asymmetry for the case where there are identical �nal states f = �f = 2�, in which
case the observable is given in (17). We obtain

A2� =
Tr [O2� ��(t)]� Tr [O2��(t)]

Tr [O2���(t)] + Tr [O2��(t)]
=

Tr [O2���(t)]

Tr [O2���(t)]
; (23)
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where we have de�ned: ��(t) � ��(t) � �(t) and ��(t) � ��(t) + �(t). We note that
in the above formalism we make no distinction between neutral and charged two-
pion �nal states. This is because we neglect, for simplicity, the e�ects of �0. Since
j�0=�j <� 10�3, this implies that our analysis of the new quantum-mechanics-violating
parameters must be re�ned if magnitudes <� �0j��j ' 10�6j��j are to be studied.

In a similar spirit to the identical �nal state case, one can compute the asym-
metry AT for the semileptonic decay case, where f = �+l��� 6= �f = ��l+�. The
formula for this observable is

AT(t) =
Tr [O��l+� ��(t)]� Tr [O�+l����(t)]

Tr [O��l+� ��(t)] + Tr [O�+l����(t)]
: (24)

Other observables are discussed in Section 4.
To determine the temporal evolution of the above observables, which is cru-

cial for experimental �ts, it is necessary to know the equations of motion for the
components of � in the K1;2 basis. These are [6, 15]1

_�11 = ��L�11 + 
�22 � 2Re [(ImM12 � i�)�12] ; (25)

_�12 = �(� + i�m)�12� 2i�Im�12 + (ImM12 � i�)(�11 � �22) ; (26)

_�22 = ��S�22 + 
�11 + 2Re [(ImM12 � i�)�12] ; (27)

where for instance � may represent �� or ��, de�ned by the initial conditions

��(0) =

 
0 �1
�1 0

!
; ��(0) =

 
1 0
0 1

!
: (28)

In these equations �L = (5:17�10�8 s)�1 and �S = (0:8922�10�10 s)�1 are the inverse
KL and KS lifetimes, � � (�S+�L)=2, j��j � �S��L = (7:364�0:016)�10�15 GeV,
and �m = 0:5351 � 1010 s�1 = 3:522 � 10�15GeV is the KL �KS mass di�erence.
Also, the CP impurity parameter � is given by

� =
ImM12

1
2
j��j+ i�m

; (29)

which leads to the relations

ImM12 =
1
2

j��jj�j
cos�

; � = j�je�i� : tan � =
�m
1
2
j��j ; (30)

with j�j � 2:2� 10�3 and � � 45� the \superweak" phase.
These equations are to be compared with the corresponding quantum-mechanical

equations of Ref. [5, 15] which are reviewed in Appendix A. The parameters �M
and � play similar roles, although they appear with di�erent relative signs in di�er-
ent places, because of the symmetry of �H= as opposed to the antisymmetry of the

1Since we neglect �0 e�ects and assume the validity of the �S = �Q rule, in what follows we also

consistently neglect Im�12 [4].
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quantum-mechanical evolution matrix H. These di�erences are important for the
asymptotic limits of the density matrix, and its impurity. In our approach, one can
readily show that, at large t, � decays exponentially to [15]

�L �
 

1 (j�j+ i2 b� cos�)ei�
(j�j � i2 b� cos �)e�i� j�j2 + b
 � 4 b�2 cos2 �� 4 b�j�j sin�

!
; (31)

where we have de�ned the following scaled variables

b� = �=j��j; b� = �=j��j; b
 = 
=j��j: (32)

Conversely, if we look in the short-time limit for a solution of the equations (25) to
(27) with �11 � �12 � �22, we �nd [15]

�S �
 
j�j2 + b
 � 4 b�2 cos2 �+ 4 b�j�j sin� (j�j+ i2 b� cos �)e�i�

(j�j � i2 b� cos �)ei� 1

!
: (33)

These results are to be contrasted with those obtained within conventional quantum
mechanics

�L �
 
1 ��

� j�j2
!

; �S �
 
j�j2 �

�� 1

!
; (34)

which, as can be seen from their vanishing determinant,2 correspond to pure KL and
KS states respectively. In contrast, �L; �S in Eqns. (31,33) describe mixed states. As
mentioned in the Introduction, the maximum possible order of magnitude for j�j; j�j
or j
j that we could expect theoretically is O(E2=MP l) � O((�QCD or ms)2=MP l) �
10�19GeV in the neutral kaon system.

To make a consistent phenomenological study of the various quantities dis-
cussed above, it is essential to solve the coupled system of equations (25) to (27) for
intermediate times. This requires approximations in order to get analytic results [16],
as we discuss in the next section.

3 Perturbation Theory

The coupled set of di�erential equations (25) to (27) can be solved numerically to any
desired degree of accuracy. However, it is instructive and adequate for our purposes
to solve these equations in perturbation theory in b�; b�; b
 and j�j, so as to obtain
convenient analytical approximations [16]. Writing

�ij(t) = �
(0)
ij (t) + �

(1)
ij (t) + �

(2)
ij (t) + � � � (35)

2A pure state will remain pure as long as Tr�2 = (Tr �)2 [6]. In the case of 2 � 2 matrices

Tr �2 = (Tr �)2 � 2 det �, and therefore the purity condition is equivalently expressed as det � = 0.
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where �
(n)
ij (t) is proportional to b�p� b�p� b
p
 j�jp�, with p� + p� + p
 + p� = n, we obtain

a set of di�erential equations at each order in perturbation theory. To zeroth order
we get

�
(0)
11 (t) = �11(0) e

��Lt ; (36)

�
(0)
22 (t) = �22(0) e

��S t ; (37)

�
(0)
12 (t) = �12(0) e

�(�+i�mt) ; (38)

where, in the interest of generality, we have left the initial conditions unspeci�ed. At
higher orders the di�erential equations are of the form

_�(n)ij (t) = �A�
(n)
ij (t) +

X
i0j0

0�
(n�1)
i0j0 (t) (39)

where
P0 excludes the �ij term. Multiplying by the integrating factor eAt one obtains

d

dt

h
eAt�

(n)
ij (t)

i
= eAt

X
i0j0

0�
(n�1)
i0j0 (t) (40)

which can be integrated in terms of the known functions at the (n� 1)-th order, and

the initial condition �
(n)
ij (0) = 0, for n � 1, i.e.,

�
(n)
ij (t) = e�At

Z t

0
dt0 eAt

0
X
i0j0

0�
(n�1)
i0j0 (t0) : (41)

Following this straightforward (but tedious) procedure we obtain the following
set of �rst-order expressions

�
(1)
11 (t) = �22(0)b
 he��Lt � e��St

i
+

2j�j
cos ��

j�12(0)j
h
e��t cos(�mt+ �� ��� �12)

�e��Lt cos(�� ��� �12)
i
(42)

�
(1)
22 (t) = �11(0)b
 he��Lt � e��St

i
+

2j�j
cos ��

j�12(0)j
h
e��t cos(�mt� �� ��� �12)

�e��St cos(�+ ��+ �12)
i
(43)

�
(1)
12 (t) =

2b�
tan �

j�12(0)je��t
h
e�i�12 sin(�mt)� (�mt)e�i�mt+i�12

i
+

j�j
cos ��

(
�11(0)e

i(����)
h
e��Lt � e�(�+i�m)t

i
+�22(0)e

i(��+�)
h
e��S t � e�(�+i�m)t

i)
(44)

In these expressions �12 = Arg [�12(0)], and we have de�ned

tan �� = �2 b� cos �
j�j : (45)
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Note that generically all three parameters (b�; b�; b
) appear to �rst order. However, in
the speci�c observables to be discussed below this is not necessarily the case because of
the particular initial conditions that may be involved. Thus, these general expressions
may be useful in the design of experiments that seek to maximize the sensitivity to
the CPT-violating parameters. To obtain the expressions for �� and ��, one simply
needs to insert the appropriate set of initial conditions (Eq. (28)). Through �rst order
we obtain the following ready-to-use expressions:

��
(0+1)
11 (t) =

2j�j
cos ��

h
�e��t cos(�mt+ �� ��) + e��Lt cos(�� ��)

i
(46)

��(0+1)22 (t) =
2j�j
cos ��

h
�e��t cos(�mt� �� ��) + e��St cos(�+ ��)

i
(47)

��(0+1)12 (t) = �e�(�+i�m)t � 2b�
tan �

e��t
h
sin(�mt)� (�mt)e�i�mt

i
(48)

��
(0+1)
11 (t) = e��Lt + b
 he��Lt � e��St

i
(49)

��
(0+1)
22 (t) = e��St + b
 he��Lt � e��St

i
(50)

��(0+1)12 (t) =
j�j

cos ��

(
ei(����)

h
e��Lt � e�(�+i�m)t

i
+ ei(��+�)

h
e��St � e�(�+i�m)t

i)
(51)

For most purposes, �rst-order approximations su�ce. However, in the case of
the A2� and R2� observables some second-order terms in the expression for �22 are re-

quired. For example, ��(2)22 introduces the �rst � dependence in the numerator of A2�,

whereas ��(2)22 cuts o� the otherwise exponential growth with time of the numerator.
The complete second-order expressions for �11;22;12 are collected in Appendix B.

4 Analytical Results

We now proceed to give explicit expressions for the temporal evolution of the asym-
metries A2�; A3�; AT; ACPT, and A�m that are possible objects of experimental study,
in particular by the CPLEAR collaboration [3].

4.1 A2�

Following the discussion in section 2, one obtains for this asymmetry

A2�(t) =
��22(t)

��22(t)
; (52)

with ��22 and ��22 given through �rst order in Eqs. (47,50); second-order contribu-
tions can be obtained from Eq. (222). The result for the asymmetry, to second order
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in the small parameters, can be written most concisely as

A2�(t) =

("
2j�jcos(�+ ��)

cos ��
+�X1

#
+ e(�S��L)t�X2

�e 12 (�S��L)t
"

2j�j
cos ��

cos(�mt� �� ��) + �X3

#)
=
n
[1� b
 + �X1] + e(�S��L)t [b
 + �X2]� e

1

2
(�S��L)t�X3

o
; (53)

where the second-order coe�cients �X1;2;3 and �X1;2;3 are given by

�X1 = 2j�jb
 cos(�+ ��)

cos ��
� 8b�j�j sin� cos�sin(�+ ��)

cos ��
(54)

�X2 = 2j�jb
 cos(�� ��)

cos ��
(55)

�X3 = 4j�jb
 cos �

cos ��
cos(�mt� ��) +

4j�jb�
tan �

sin(�mt� �)

�4j�jb� cos �

cos ��

"
tj��j
2 cos �

cos(�mt� �� ��)� cos(�mt� 2� � ��)

#
(56)

�X1 = �b
2 + 2j�j2
cos2 ��

"
cos(2��) + cos(2�+ 2��)� cos(�� 2��)

2 cos �

#

+tj��j
"
�b
2 + j�j2cos(�+ 2��)

cos � cos2 ��

#
(57)

�X2 = b
2 + j�j2cos(�� 2��)

cos � cos2 ��
(58)

�X3 =
2j�j2
cos2 ��

[cos(�mt� 2��) + cos(�mt� 2�� 2��)] (59)

This form is useful when b� � j�j, since then �� � 0. In the usual case (i.e., b� = b� =b
 = 0) we obtain

A2�(t) =
2j�j cos �� 2j�j e 12 (�S��L)t cos(�mt� �)

[1 + �Xu
1 ] + e(�S��L)t�Xu

2 � e
1

2
(�S��L)t�Xu

3

; (60)

with

�Xu
1 = j�j2 [1 + 2 cos(2�) + tj��j] (61)

�Xu
2 = j�j2 (62)

�Xu
3 = 4j�j2 cos � cos(�mt� �) (63)

Comparing the two cases we note the following:

1. The second line in Eq. (53) shows that (to �rst order) �� 6= 0 changes the size
of the interference pattern and shifts it.

11



2. The denominator in Eq. (53) shows that necessarily b
 <� �X2 � j�j2, or else
the interference pattern would be damped too soon. In fact, because of this
upper limit one can in practice neglect all terms proportional to b
 that appear
formally at second order, since they are in practice third order.

3. The e�ect of b� is felt only at second order, through �X1 and �X3, although it
is of some relevance only in the interference pattern (�X3).

Some of the terms in Eq. (53) can be written in a less concise way which shows the

e�ect of b� more explicitly instead of it being buried inside ��. To �rst order, although
keeping the important second-order terms in �X2, we can write

A2�(t) �
(
2j�j cos �+ 4 b� sin� cos �� 2

q
j�j2 + 4 b�2 cos2 � e 12 (�S��L)t cos(�mt� �� ��)

)
=
n
1 + e(�S��L)t

hb
 + j�j2 � 4 b�2 cos2 �� 4 b�j�j sin�io : (64)

In this form one can readily see whether CP violation can in fact vanish, with its e�ects
mimicked by non-quantum-mechanical CPT violation. Setting j�j = 0 one needs to
reproduce the interference pattern and also the denominator. To reproduce the overall
coe�cient of the interference pattern requires 2 b� cos�! �j�j. The denominator then

becomes b
�4 b�2 cos2 �! b
�j�j2 and we also require b
 ! 2j�j2. The fatal problem is

that ��! �sgn( b�)�
2
and the interference pattern is shifted signi�cantly. This means

that the e�ects seen in the neutral kaon system, and conventionally interpreted as
CP violation, indeed cannot be due to the CPT violation [16, 17].

Figure 1 shows the e�ects on A2�(t) of varying (a) b�, (b) b�, and (c) b
. We see
that the intermediate-time region 5 <� t=�s <� 20 is particularly sensitive to non-zero
values of these parameters. The sensitivity to b� in Fig. 1(a) is considerably less than

that to b� in Fig. 1(b) and b
 in Fig. 1(c), which is re
ected in the magnitudes of the
indicative numerical bounds reported in section 6.

4.2 A3�

Analogously, the formula for the 3� asymmetry is

A3�(t) =
Tr[O3� ��(t)]� Tr[O3� �(t)]

Tr[O3� ��(t)] + Tr[O3� �(t)]
; O3� /

 
1 0
0 0

!
; (65)

from which one immediately obtains

A3�(t) =
��11(t)

��11(t)
: (66)

To �rst order in the small parameters, ��11 and ��11 are given in Eqns. (46,49). This
asymmetry can therefore be expressed as

A3�(t) =
2j�j cos(����)

cos ��
� 2j�j

cos ��
e�

1
2
(�S��L)t cos(�mt+ �� ��)

1 + b
 � b
e�(�S��L)t (67)
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�
h
2j�j cos�� 4 b� sin� cos �i� 2e�

1

2
(�S��L)t [Re�3� cos�mt� Im�3� sin�mt] ;

where, to facilitate contact with experiment, in the second form we have neglected
the b
 contribution, expressed �� in terms of b� (45), and de�ned

Re�3� = j�j cos�� 2 b� sin� cos �; Im�3� = j�j sin�+ 2 b� cos2 � : (68)

In the CPLEAR experiment, the time-dependent decay asymmetry into �0�+�� is
measured [3], and the data is �t to obtain the best values for Re�3� and Im�3�. It
would appear particularly useful to determine the ratio of these two parameters, so
that a good fraction of the experimental uncertainties drops out. In the standard
CP-violating scenario, the ratio is Im�3�=Re�3� = tan � � 1, whereas in our scenario
it is

Im�3�
Re�3�

=
j�j sin�+ 2 b� cos2 �

j�j cos�� 2 b� sin� cos � = tan(�� ��) : (69)

It is apparent from the above formulae that A3� is much more sensitive to b� that tob� or b
. This sensitivity of A3� to b� is shown in Fig. 2(a), and that of (Im �3�=Re �3�)
in Fig. 2(b).

As already mentioned in Sec. 2, additional information may be obtained from
�+���0 decays by observing the di�erence between the rates for �+���0 decays with
m(�+�0) > m(���0) and m(�+�0) < m(���0) [18], represented by Oint

3� (19,20). This
division of the �nal-state phase space into two halves is not CP-invariant, and hence
enables one to measure interference between the CP-even I3� = 2 and CP-odd I3� = 1
�nal states. De�ning

Aint
3� =

Tr[Oint
3��(t)]� Tr[Oint

3��(t)]

Tr[Oint
3� �(t)] + Tr[Oint

3� �(t)]
; (70)

we obtain the formula

Aint
3� =

Re��12
Re��12

: (71)

To �rst order in small parameters, we �nd

Aint
3� =

�e��t
h
cos�mt+ 2b�

tan�
(sin�mt� (�mt) cos�mt)

i
j�j

cos ��
[cos(�� ��)e��Lt + cos(�+ ��)e��St � 2 cos �e��t cos(�mt� ��)]

(72)
Note that Aint

3� !1 for t! 0. In the CPT-conserving case this observable becomes

Aint
3� !

�e��t cos�mt

j�j cos � [e��Lt + e��S t � 2e��t cos�mt]
(73)

We see that this observable is sensitive to b� (see the numerator of (72)), and to b� via
��. The sensitivity to b� may supplement usefully the information obtainable from
the A�m measurement discussed in section 4.5.
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4.3 AT

The formula for this asymmetry, as obtained by applying the formalism of section 2,
assumes the form

AT =
��11 +��22 + 2Re��12
��11 + ��22 + 2Re��12

; (74)

with the �rst-order expressions for ��11;22;12 and ��11;22;12 given in Eqns. (46){(51).
In the usual non-CPT-violating case one �nds, to �rst order, the following exactly
time-independent result

AT = 4j�j cos� ; (75)

as expected [3]. In the CPT-violating case, to �rst order, one �nds a time-dependent
expression

AT =
4j�j
cos ��8<: e��Lt cos(�� ��) + e��St cos(�+ ��)� 2e��t cos(�mt� ��) cos�

e��Lt(1 + 2b
) + e��St(1� 2b
)� 2e��t[cos�mt+ 2b�
tan�

(sin�mt��mt cos�mt)]

9=;
(76)

which aymptotes to

AT !
4j�j cos(�� ��)

cos ��(1 + 2b
) =
4j�j cos �� 8 b� sin� cos �

1 + 2b
 : (77)

The sensitivity of AT to b� and b� are illustrated in Fig. 3(a) and Fig. 3(b), respectively.

We see that the sensitivity to b� is again less than that to b�, and is restricted to
t=�s <� 15, whereas the greater sensitivity to b� persists to large t, as in Eq. (77),
where the corresponding (utterly negligible) sensitivity to b
 can be inferred.

4.4 ACPT

Following the discussion in section 2, the formula for this observable, as de�ned by
the CPLEAR Collaboration [3], is given by Eq. (22) with f = ��l+� and �f = �+l���.
We obtain

ACPT =
��11 +��22 � 2Re��12
��11 + ��22 � 2Re��12

: (78)

To �rst order, in both the CPT-conserving and CPT-violating cases, we �nd

ACPT = 0 : (79)

To second order, the terms in the numerator of Eq. (78) can be written most succinctly
in the long-time limit. With the help of the expressions in Appendix B we obtain

��
(2)
11 ! �2j�jb
 cos �+ 8j�jb� cos � sin2 �+ 4 b�b
 sin� cos �+ 16b� b� sin � cos3 �

��(2)22 ! 2j�jb
 cos �� 4 b�b
 sin� cos � (80)

Re��
(2)
12 ! 4j�jb� cos� sin2 �+ 8b� b� sin� cos3 �
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which show that in the long-time limit ACPT = 0 also to second order. In fact, some
algebra shows that ACPT = 0 through second order for all values of t. This result
implies that jACPTj <� 10�6 and thus is unobservably small.

We point out that this result is a quite distinctive signature of the modi�cations
of the quantum mechanics proposed in Ref. [6, 15], since in the case of quantum-
mechanical violation of CPT symmetry [5] there is a non-trivial change in ACPT,
proportional to the CPT-violating parameters �M and ��. Indeed, in Appendix A
we obtain the following �rst-order asymptotic result

A
QM
CPT ! 4 sin� cos � d�M + 2 cos2 � c�� ; (81)

written in terms of the scaled variables. Part of the reason for this di�erence is the
di�erent role played by �M as compared to the � parameter in the formalism of
Ref. [6], as discussed in detail in Ref. [15]. In particular, there are important sign
di�erences between the ways that �M and � appear in the two formalisms, that cause
the suppression to second order of any quantum-mechanical-violating e�ects in ACPT,
as opposed to the conventional quantum mechanics case.

4.5 A�m

Following Ref. [3], one can de�ne A�m as

A�m =
R(K0 ! �+) +R( �K0 ! ��)�R( �K0 ! �+)�R(K0 ! ��)

R(K0 ! �+) +R( �K0 ! ��) +R( �K0 ! �+) +R(K0 ! ��)
(82)

in an obvious short-hand notation for the �nal states of the semileptonic decays,
where only the pion content is shown explicitly. In the formalism of section 2, this
expression becomes

A�m =
2Re��12

��11 + ��22
: (83)

The �rst-order expression in the usual non-CPT violating case is

A�m = �2e��t cos�mt

e��Lt + e��S t
; (84)

as obtained in Ref. [3]. In the CPT-violating case to �rst order, as Eqs. (48,49,50)

show, neither j�j nor b� come in, and we obtain

A�m = �
2e��t

h
cos�mt+ 2b�

tan�
(sin�mt��mt cos�mt)

i
e��Lt(1 + 2b
) + e��St(1 � 2b
) : (85)

Since b
 is negligible, this observable provides an exclusive test of b�.
In the case of no CPT violation, the observable A�m has a minimum for

tan�mt = ��=�m � �1
2
j��j=�m = �1= tan �. Since tan � � 1, the minimum

occurs for (t=�s)min � 3�=2. In the CPT-violating case, Eq. (85) can be rewritten as

A�m = � 2e��tC�m cos(�mt� ��m)

e��Lt(1 + 2b
) + e��St(1 � 2b
) : (86)
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with

tan ��m =
2b�= tan �
1� b�tj��j ; C�m =

1� b�tj��j
cos��m

: (87)

Since the minimum occurs for tj��j � 5, for small values of b� one can neglect the
time-dependent pieces in ��m and C�m. The new minimum condition for A�m is
then modi�ed to tan(�mt� ��m) � �1= tan �, and thus the minimum is shifted to

(t=�s)min � 3�
2
+ 4b� ; (88)

for small values of b�. A similar test for b� was proposed in Ref. [16], where it was
based on the traditional semileptonic decay charge asymmetry parameter �(t) [15].

However, to �rst order that observable depends also on j�j and b�, and as such it
is not a direct test of b�, as opposed to the one proposed here. Figure 4 exhibits
the sensitivity of A�m to b�, including (a) the general dependence in the interference
region and (b) the detailed location of the minimum as b� is varied.

5 Regeneration

5.1 Simpli�ed Thin-Regenerator Case

Regeneration involves the coherent scattering of aK0 or �K0 o� a nuclear target, which
we assume can be described using the normal framework of quantum �eld theory and
quantum mechanics. Thus we describe it by an e�ective Hamiltonian which takes the
form

�H =

 
T 0
0 T

!
(89)

in the (K0; �K0) basis, where

T =
2�N

mK

M ; T =
2�N

mK

M (90)

withM = hK0jAjK0i the forward K0-nucleus scattering amplitude (and analogously
for M), and N is the nuclear regenerator density. We can rewrite �H (89) in the
K1;2 basis as

�H =

 
T + T T � T

T � T T + T

!
; (91)

which can in principle be included as a contribution to H in the density matrix
equation:

@t� = �i[H; �] + i�H=� ; (92)

where �H= represents the possible CPT- and QM-violating term.
It may be adequate as a �rst approximation to treat the regenerator as very

thin, in which case we may use the impulse approximation, and the regenerator
changes � by an amount

�� = �i[�H; �] ; (93)
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where

�H =
Z
dt�H : (94)

Writing

� =

 
�11 ��12
�12 �22

!
; (95)

in this approximation we obtain

�� = �i�T
 

2iIm�12 ��11 + �22
�11 � �22 �2iIm�12

!
; (96)

where

�T �
Z
dt(T � T ) : (97)

This change in � enables the possible CPT- and QM-violating terms in (92) to be
probed in a new way. Consider the idealization that the neutral K beam is already
in a KL state (Eq. (31)):

� = �L �
 

1 �� +B�

�+B j�j2 + C

!
(98)

where
B = �i2 b� cos � e�i� ; C = b
 � 4 b�2 cos2 �� 4 b�j�j sin� (99)

Substituting Eqs. (98,99) into Eq. (96), we �nd that in the joint large-t and impulse
approximations

� + �� =

 
1 + 2�T Im(�+B) �� +B� + i(1� j�j2 � C)�T

�+B � i(1� j�j2 � C)�T j�j2 + C � 2�T Im(�+B)

!
: (100)

We see that the usual semileptonic decay asymmetry observable

O��l+� �O�+l��� =

 
0 2
2 0

!
; (101)

which measures Re(�+B) in the case without the regenerator, receives no contribution
from the regenerator (i.e., �T cancels out in the sum of the o�-diagonal elements).
On the other hand, there is a new contribution to the value of R2� = R(KL ! 2�) =
Tr[O2��] = �22, namely

R2� = j�j2 + b
 � 4 b�2 cos2 �� 4 b�j�j sin�� 2�T Im(�+B) : (102)

The quantity Im(� + B) was not accessible directly to the observable R2� in the
absence of a regenerator. Theoretically, the phases of � and B (99) are �xed, i.e.,

Im(�+B) = �j�jsin(�� ��)

cos ��
= �j�j sin�� 2 b� cos2 � : (103)
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Nevertheless, this phase prediction should be checked, so the regenerator makes a
useful addition to the physics programme.

The above analysis is oversimpli�ed, since the impulse approximation may
not be su�ciently precise, and the neutral K beam is not exactly in a KL state.
Moreover, the result in Eq. (100) is valid only at the time the beam emerges from
the regenerator. However, this simple example may serve to illustrate the physics
interest of measurements using a regenerator. We next generalize the analysis to
include a general neutral K beam encountering a thin regenerator, with the full time
dependence after leaving the regenerator.

5.2 Detailed Regenerator Tests

To make contact with the overall discussion in this paper, we envision the following
scenario:

(i) Pure K0; �K0 beams are produced at time t = 0, corresponding to initial density
matrices �0 and ��0, respectively.

(ii) These beams are described by density matrices �(t) and ��(t), and evolve with
time as described in Section 2, until a time t = tr where they are described by
�(tr) and ��(tr).

(iii) At t = tr a thin regenerator is encountered.3 In our thin-regenerator approx-
imation (described in the previous subsection), at t = tr suddenly the den-
sity matrices receive an additional contribution ��(tr) and ���(tr), according to
Eq. (96).

(iv) For � = t � tr � 0, the beams are described by density matrices �r(� ) and
��r(� ), which again evolve as described in Section 2, but this time with initial
conditions �r(0) = �(tr) + ��(tr) and ��r(0) = ��(tr) + ���(tr).

In this context, we consider two kinds of tests. In a CPLEAR-like scenario, the iden-
tity of the beam is known irrespective of the presence of the regenerator, and thus
a measurement of Ar

2�(� ), i.e., A2� after the thin regenerator is traversed, appears
feasible. The second test is reminiscent of the Fermilab experiments, where the ex-
perimental setup is such that tr � �S , and the beam is in a KL state. After the
regenerator is traversed one then measures R2� in the interference region.

Before embarking on elaborate calculations, we should perhaps quantify our
\thin-regenerator" criterion. For the impulse approximation to be valid, �� in Eq. (96)
should not change � by too much. Since the entries in � are typically O(10�3) or

3For simplicity we assume that the regenerator is encountered at the same �t = tr after produc-

tion for all beam particles. In speci�c experimental setups our expressions would need to be folded

with appropriate geometrical functions.
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smaller, we should demand that �T be a reasonably small number. Let us estimate
�T =

R
dt(T � �T ). AssumingM�M� 1=m� and relativistic kaons we obtain

�T � 1
30
thickness [cm] density [g=cm3] ; (104)

and thus a \thin" regenerator should have a thickness <� O(1 cm). This estimate
appears reasonable when considering that in the 2 ns or so that the beams are usually
observed (about 20�S), they travel � 60 cm. Such a regenerator could conceivably
be installed in an upgraded CPLEAR experiment. In the Fermilab E731 [19] and
E773 [20, 21] experiments the regenerators used are much thicker, and the validity of
our approximation is unclear.

5.2.1 Ar
2�

We start withAr
2� = ��r22=��

r
22, where e.g., ��

r
22(� ) is given by �22(� ) in Eqns. (37,43)

with �(0)! ��r(0) = ��(tr)+ �(��)(tr), and �(��) given in Eq. (96) with �! ��.
We obtain

��r22(� ) =

(
[��22(tr)� 2�T Im��12(tr)]� b
 [��11(tr) + 2�T Im��12(tr)]

�2j�j cos(�+ ��+��12)

cos ��
j��r12(0)j

)
e��S�

+b
 [��11(tr) + 2�T Im��12(tr)]e
��L�

+
2j�j

cos ��
j��r12(0)je��� cos(�m� � �� �����12) ; (105)

��r22(� ) =

(
[��22(tr)� 2�T Im��12(tr)]� b
 [��11(tr) + 2�T Im��12(tr)]

�2j�j cos(�+ ��+ ��12)

cos ��
j��r12(0)j

)
e��S�

+b
 [��11(tr) + 2�T Im��12(tr)]e
��L�

+
2j�j

cos ��
j��r12(0)je��� cos(�m� � �� ��� ��12) ; (106)

where we have de�ned the phases ��12 and ��12 through

��r12(0) = j��12(tr)� i�T [��11(tr)���22(tr)]j ei��12 ; (107)

��r12(0) = j��12(tr)� i�T [��11(tr)���22(tr)]j ei��12 : (108)

In these expressions, the \initial-condition" input matrices ��(tr) and ��(tr) are
obtained from Eqns. (46){(51) by inserting t = tr. We obtain a rather complicated
result, which, in addition to the CPT-violating parameters, also depends on �T and
tr. To illustrate the behavior of Ar

2� let us consider two limiting cases: tr � �S
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and tr � �S . For a regenerator very close to the origin (tr � �S) we basically have
��(tr) � ��(0) and ��(tr) � ��(0), as in Eq. (28), and we obtain

��r22(� ) ! 2j�j cos(�+ ��)

cos ��
e��S� � 2j�j

cos ��
e��� cos(�m� � �� ��) ; (109)

��r22(� ) ! (1 � b
)e��S� + b
e��L� : (110)

Neglecting b
 we �nd

Ar
2�(� )!

2j�j
cos ��

n
cos(�+ ��)� e

1

2
(�S��L)� cos(�m� � �� ��)

o
(111)

Thus, when the regenerator is placed near the production point the e�ects of �T
drop out, and the result without a regenerator is recovered (see Eq. (53) dropping b

and all second-order terms).

Of more interest is the case of a regenerator placed in the asymptotic region
(tr � �S). In this case the expressions for ��(tr) and ��(tr) simplify considerably,
through �rst order:

��11(tr)! 2j�j cos(����)
cos ��

��11(tr)! 1 + b
 � 1

��22(tr)! 0 ��22(tr)! b
 � 0

��12(tr)! 0 ��12(tr)! j�j
cos ��

ei(����)
(112)

Inserting these limiting expressions (and taking b
 = 0) we obtain

��r22(� ) ! �2j�j cos(�+ ��+��12)

cos ��
j��r12(0)je��S�

+
2j�j
cos ��

j��r12(0)je��� cos(�m� � �� �����12) ; (113)

��r22(� ) !
(
2�T j�jsin(�� ��)

cos ��
� 2j�j cos(�+ ��+ ��12)

cos ��
j��r12(0)j

)
e��S�

+
2j�j
cos ��

j��r12(0)je��� cos(�m� � �� �����12) ; (114)

and thus

Ar
2�(� ) ! j��r12(0)j

j��r12(0)j
n
� cos(�+ ��+��12) + e

1

2
(�S��L)� cos(�m� � �� �����12)

o
=

("
�T

j��r12(0)j
sin(�� ��)� cos(�+ ��+ ��12)

#

+e
1

2
(�S��L)� cos(�m� � �� ��� ��12)

)
(115)
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with

��r12(0) !
������i�T 2j�j cos(�� ��)

cos ��

����� ei��12 ) ��12 = ��

2
; (116)

��r12(0) !
����� j�j
cos ��

ei(����) � i�T

����� ei��12 : (117)

The result in Eq. (115) reveals a large shift (��12 = ��

2
) in the interference pattern

relative to the case of no regenerator. According to our estimate of �T in Eq. (104),
it would appear that �T � j�j is a case of interest to consider. In this limit, �T
drops out from the Ar

2� observable, ��12 = ��12 = ��

2
, and

Ar
2�(� )! 2j�jcos(�� ��)

cos ��

sin(�+ ��) + e
1

2
(�S��L)� sin(�m� � �� ��)

sin(�+ ��)� sin(�� ��) + e
1

2
(�S��L)� sin(�m� � �� ��)

(118)
The time-dependence of Ar

2�(� ) is shown in Fig. 5 from which it is apparent that
Ar
2�(� ) is basically 
at except for values of � for which sin(�m� � �� ��) = 0. This

occurs for (�=�S)0 � 2(n� + �

4
+ ��), a result which is plotted against b� (for n = 0)

also in Fig. 5. We note that for increasingly larger values of n, the structure in the
curves becomes narrower and therefore much less sensitive to b�, with the �rst zero
(n = 0) possibly being the only observable one.

5.2.2 R2�

The observable R2� = R(K ! 2�) has traditionally been the focus of CP violation
studies. Because the detector is physically located a distance away from the source
of the neutral kaons, most of the KS component of the beam decays away, and one is
basically sensitive only to the KL ! 2� decays. To study also the interesting inter-
ference region, a regenerator is inserted in the path of the KL particles right before
they reach the detector, so that KS particles are regenerated and interference studies
are possible. Unfortunately, the regenerator complicates the physics somewhat. To
simplify the problem, let us �rst consider the case of a pure K0 beam whose decay
products can be detected from the instant of production (not unlike in the CPLEAR
experiment). We will address the e�ect of the regenerator in the next subsection.

In our formalism, the R2� observable corresponds to the operator O2� in (17),
which gives

R2�(t) = �22(t) : (119)

Through second order, the corresponding expression is obtained from Eqs. (37,43,222)
by inserting �11(0) = �22(0) = �12(0) = 1. In the case of standard quantum-
mechanical CP violation, one obtains

R2�(t) = cS e
��S t + cL e

��Lt + 2cI e
��t cos(�mt� �) ; (120)
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where to second order the cS ; cL; cI coe�cients are given by:

cS = 1 � 2j�j cos�+ j�j2(1 + 2 cos 2�+ tj��j) (121)

cL = j�j2 (122)

cI = j�j � 2j�j2 cos � (123)

It is then apparent that to the order calculated: c2I = cScL = j�j2. Violations of this
relation would indicate departures from standard quantum mechanics, which can be
parametrized by [22]

� = 1 � cIp
cScL

: (124)

In our quantum-mechanical-violating framework we expect � 6= 0. Indeed, we obtain

cS = 1� b
 � 2j�jcos(�+ ��)

cos ��
(125)

cL = b
 + b
2 + j�j2cos(�� 2��)

cos� cos2 ��
� 2j�jb
 cos(�� ��)

cos ��
(126)

cI =
j�j

cos ��
(127)

where only terms relevant to the computation of � to second order have been kept
(note that b� does not contribute to � to the order calculated). Also, in this case the
general relation in Eq. (120) gets modi�ed by a phase shift in the interference term
�! �+ ��. Using these expressions we obtain4

c2I
cScL

=
j�j2= cos2 ��b
(1� 4j�j cos �) + j�j2 cos(��2��)

cos� cos2 ��

� 1b

j�j2

+ cos(��2��)
cos�

(128)

and thus

� � 1

2

241 � 1b

j�j2

+ cos(��2��)
cos�

35 � b

2j�j2 �

2 b�
j�j sin � ; (129)

where the second form holds for small values of b
=j�j2 and �� � �2 b� cos�=j�j. The
parameter � has been measured to be �exp = 0:03 � 0:02 [23]. Setting b� = 0 one

obtains b
 � (3 � 2) � 10�7 [22]. More generally, the dependence of � on b� and b
 is
shown in Fig. 6, along with the present experimental limits on �.

4Note that in the scenario discussed in Sec. 4.1, where CPT violation accounts for the observed

CP violation (i.e., j�j = 0, 2b� cos � ! �j�j, b
 ! 2j�j2) one obtains c2I=(cScL) ! 1 , � = 0. (This

result was implicitly obtained in Ref. [15].) Such result is not enough to validate the scenario, since

as discussed above, this scenario is fatally 
awed by the large phase shift in the interference term.
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5.2.3 Rr
2�

Let us now turn to the Rr
2� = �r22(� ) observable in the presence of a thin regenerator.

Here �r22(� ) is given to �rst order by Eqns. (37,43) with �(0)! �r(0) = �(tr)+��(tr),
and �� given in Eqn. (96). We obtain

Rr
2�(� ) =

(
[�22(tr)� 2�T Im�12(tr)]� b
 [�11(tr) + 2�T Im�12(tr)]

�2j�j cos(�+ ��+ �12)

cos ��
j�r12(0)j

)
e��S�

+b
 [�11(tr) + 2�T Im�12(tr)]e
��L�

+
2j�j
cos ��

j�r12(0)je��� cos(�m� � �� ��� �12) ; (130)

where
�r12(0) = j�12(tr)� i�T [�11(tr)� �22(tr)]j ei�12 : (131)

As we discussed above, the initial condition matrix �(tr) is simply �L, namely

�(tr) =

 
1 + b
 � 2j�j cos �+ 4 b� sin� cos � (j�j+ i2 b� cos �)ei�

(j�j � i2 b� cos �)e�i� j�j2 + b
 � 4 b�2 cos2 �� 4 b�j�j sin�
!

:

(132)
Note that at the instant the beam leaves the regenerator (� = 0), we obtain Rr

2�(0) =
�r22(0) = �22(tr) � 2�T Im�12(tr) which, after inserting �(tr) from Eq. (132), agrees
with the result derived above in Eq. (102) where no time dependence after leaving
the regenerator was considered.

In the interference region the expression for R2� simpli�es considerably: we
keep only the term proportional to e��� ,

Rint
2� (� ) =

2j�j
cos ��

j�r12(0)je��� cos(�m� � �� ��� �12) ; (133)

with

�r12(0) �
����� j�j
cos ��

ei(����) � i�T

����� ei�12 : (134)

In this case we again see that the regenerator introduces a shift in the interference
pattern and modi�es its overall magnitude, even in the absence of CPT violation. In
the limit in which �T � j�j, j�r12(0)j ! �T , �12 !��

2
and

Rint
2� (� )!

2j�j�T
cos ��

e��� cos(�m� � �� ��+ �

2
) ; (135)

which exhibits a large phase shift and a distinctive linear dependence on �T , which
is a nice signature. Moreover, the result still allows a determination of the CPT-
violating parameter �, through �� (45).
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We now address the � parameter in the presence of a regenerator. Let us �rst
start with the case of standard quantum mechanics, where we expect � to vanish.
Looking back at Eqs. (121,122,123), we see that (to the order calculated) the � = 0

relation amounts to [c
(1)
I ]2 = c

(0)
S c

(2)
2 , where the orders at which the relevant contribu-

tions appear have been indicated. In the case of a regenerator, the time dependence
of �r22(� ) is the same as that of �22(t), the only di�erence being in the coe�cients
which depend on di�erent initial-condition matrices (�r(0) versus �(0)). To make
our result more general, we will keep this initial-condition matrix unspeci�ed. Using
Eqns. (37,43,222) we then get

c
(0)
S = �22(0) (136)

c
(2)
L = �11(0)j�j2 (137)

c
(1)
I = j�12(0)jj�j (138)

and therefore

�QM = 1 � cIp
cScL

= 1� j�12(0)jq
�11(0)�22(0)

= 0 ; (139)

where we have used the fact that a pure quantum-mechanical (2�2) density matrix has
zero determinant (det �(0) = �11(0)�22(0)�j�12(0)j2). This result applies immediately
to the regenerator case where a particular form of �(0) is used, namely: �r11(0) �
1, �r22(0) � j�j2 + 2�T j�j sin�, j�r12(0)j2 � j�j2 + 2�T j�j sin�, which indeed satisfy
det �r(0) = 0.

We now repeat the exercise in our quantum-mechanics-violating framework,
where we obtain

c
(0+1)
S = �22(0)� �11(0)b
 � 2j�jj�12(0)j

cos(�+ ��+ �12)

cos ��
(140)

c
(1+2)
L = �11(0)b
 + �22(0)b
2 + �11(0)j�j2

cos(�� 2��)

cos� cos2 ��
� 2j�jb
j�12(0)j cos(�� ��� �12)

cos ��

(141)

c
(1)
I =

j�j
cos ��

j�12(0)j (142)

which entail

c2I
cScL

=
j�j2

cos2 ��
j�12(0)j2

=

(
�11(0)�22(0)b
 + [�222(0) � �211(0)]b
2 + �11(0)�22(0)j�j2

cos(�� 2��)

cos � cos2 ��

� 2j�jb

cos ��

j�12(0)j[�22(0) cos(�� ��� �12) + �11(0) cos(�+ ��+ �12)]

)
(143)
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This expression can be most easily interpreted in the limit of interest, �T � j�j,
where the initial condition matrix �r(0) reduces to

�r11(0) � 1 ; (144)

�r22(0) � b
 + 2�T j�j sin(�� ��)

cos ��
+ j�j2 cos(�� 2��)

cos� cos2 ��
; (145)

j�r12(0)j2 � 2�T j�j sin(�� ��)

cos ��
+

j�j2
cos2 ��

: (146)

Note that the source of quantum mechanical decoherence is given by

det �r(0) � b
 � 2j�j2 sin(�� ��) sin ��

cos� cos2 ��
� b
 : (147)

With these expressions for �r(0) one obtains for the numerator and denominator of
Eq. (143)

c2I � j�j2
cos2 ��

"
2�T j�j sin(�� ��)

cos ��

#
(148)

cScL � 2�T j�j sin(�� ��)

cos ��

"b
 + j�j2 cos(�� 2��)

cos� cos2 ��

#
(149)

and thus the regenerator e�ects (�T ) drop out, and the expressions without a re-
generator in Eqs. (128,129) are recovered, i.e., �r = �. This result also implies that
the experimental limits on � that are derived in the presence of a regenerator can be
directly applied to our expression for �, as assumed in the previous subsection.

We note that, although the study of � alone, in tests using a regenerator
[22], does not seem to add anything to the discussion of the possible breakdown of
quantum-mechanical coherence within our framework, individual terms in the ex-
pression (130) for Rr

2�(� ) depend linearly on the regenerator density via �T , and
the dependence on the non-quantum-mechanical parameters is di�erent from the no-
regenerator case, so the regenerator is able to provide interesting new probes of our
framework. In this respect, experimental tests of CPT-symmetry within quantum
mechanics suggested earlier [24], using arrays of regenerators, �nd also a natural
application within our quantum-mechanics-violating framework.

5.2.4 Ar
CPT

In Sec. 4.4 we showed that there is no contribution to the ACPT observable up to
second order. One may wonder whether the introduction of a regenerator could
change this result. To this end we compute Ar

CPT, which is de�ned as in Eq. (78)
but with the ��;�� matrices replaced by the ��r;��r matrices. Expressions for the
latter are complicated, as exhibited explicitly in the previous subsections. However,
the expression for Ar

CPT simpli�es considerably when calculated consistently through
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�rst order only, since many of the entries in the input matrices ��(tr);��(tr) need
to be evaluated only to zeroth order. After some algebra we obtain

Ar
CPT(� ) = 2�T

[e��tr sin(�mtr)](e��L� � e��S� ) + [e��Ltr � e��Str ]e��� sin�(m� )

e��Ltr e��L� + e��Str e��S� + 2e��tr e��� cos(�m� +�mtr)
;

(150)
which for � � �S asymptotes to

Ar
CPT(� )! 2�T e[�

1

2
(�S��L)tr] sin(�mtr) : (151)

Thus we see that all dependence on the CP- (j�j) and CPT- (�; �; 
) violating pa-
rameters drops out, which con�rms the result obtained without a regenerator. The
novelty is that Ar

CPT is nonetheless non-zero, and proportional to �T . This result
is interesting, but not unexpected since the matter in the regenerator scatters K0

di�erently from �K0 (90). Formally, this is expressed by the fact that the regenera-
tor Hamiltonian in Eq. (91) is proportional to �1, therefore does not commute with
the CPT operator, and so violates CPT. That is, the regenerator is a CPT-violating
environment, although completely within standard quantum mechanics.

6 Indicative Bounds on CPT-Violating Parameters

The formulae derived above are ready to be used in �ts to the experimental data. A
complete analysis requires a detailed understanding of all the statistical and system-
atic errors, and their correlations, which goes beyond the scope of this paper [25].
Here we restrict ourselves to indications of the magnitudes of the bounds that are
likely to be obtained from such an analysis.

The parameter b� can be constrained by observing that the overall size of the
interference term in A2� (53) does not di�er signi�cantly from the standard result [see
also Fig. 1(a)]. The relevant dependence on b� comes at second order through �X3,
which is given in Eq. (56). From this expression we can see that the dominant term
is the third one, i.e., (�2j�jb�= cos ��)tj��j cos(�mt � � � ��), which is enhanced
relative to the other terms because of the tj��j factor. The dominant interference
term through second order is then

� 2j�j
cos ��

[1 + b�tj��j] e 12 (�S��L)t cos(�mt� �� ��) : (152)

For our indicative purposes, we assume that the size of the interference term is within
5% of the standard result for observations in the range t=�S <� 10. Since b� > 0 and
the overall factor (1= cos ��) � 1 (see below), we require b�tj��j <� 0:05 [16], i.e.,

b� <� 5:0� 10�3 ; � <� 3:7 � 10�17GeV : (153)

This is to be compared to the order of magnitudeO((�QCD orms)2=MP l) <� 10�19GeV
which is of theoretical interest in the neutral kaon system.
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The simplest way to constrain the parameter b� involves the observables R2�

and A2�, which di�er from the standard results at �rst order in b�, as seen in Fig. 1(b).
This new contribution can a�ect the overall size of the interference pattern and shift
its phase relative to the superweak phase �, as seen in equations (53) and (133). It is
easy to check that the shift in phase �� is su�ciently small for any possible change in
the overall size of the interference pattern (due to ��) to be negligible, e.g., j��j < 2�

implies a change in the size by < 6 � 10�4. There are two independent sets of data
that give information on �� : (i) the Particle Data Group compilation [1] which �ts
NA31, E731 and earlier data, and (ii) more recent data from the E773 Collaboration
[20, 21]. New data from the CPLEAR collaboration are discussed elsewhere [25]. In
each case, both the superweak phase � and the K ! �+�� interference phase �+�
are measured, and the corresponding values of �� = �+� � � are extracted :

�� = (�0:71� 0:95)� [1]; �� = (�0:84� 1:42)� [20] : (154)

Combining these independent measurements in quadrature, we �nd �� = (�0:75 �
0:79)�, corresponding to

b� = (2:0 � 2:2) � 10�5 ; � = (1:5� 1:6) � 10�19GeV ; (155)

to be compared with the earlier bound j b�j <� 6 � 10�5 obtained in ref. [16] by de-

manding j��j <� 2�. As expected from Fig. 1, the indicative bound (155) on j b�j is
considerably more restrictive than that (153) on jb�j. Alternatively, one may boundb� by considering the relationship (see e.g., [21])

jmK0 �m �K0j � 2�m
j�+�j
sin�sw

j�+� � �sw +
1
3
��j ; (156)

where �� = �00 � �+�. In our framework, up to �0=� e�ects, �� = 0, �sw = �,
�+� = �+ ��, j�+�j = j�j= cos �� � j�j, and thus

jmK0 �m �K0 j � 2�m
j�jj��j
sin�

� 2j�j : (157)

The E773 Collaboration has determined that [21] jmK0 �m �K0j=mK0 < 7:5� 10�19 at

the 90% CL, and thus it follows that j b�j < 2:6 � 10�5, j�j < 1:9 � 10�19GeV. This
result is consistent with that in Eq. (155).

The b
 parameter has the peculiar property of appearing in the observables at
�rst order, but without being accompanied by a similar �rst-order term proportional
to j�j (as is the case for b�). In fact, if corresponding terms exist, they are proportional
to j�j2. This means that large deviations from the usual results would occur unlessb
 <� j�j2. This result is exempli�ed in Fig. 1(c), from which we conclude that b
 < 10�5.
In Ref. [16] b
 <� 0:1j�j2 was obtained. However, since j�0=�j � 10�3 e�ects have been
neglected, we conclude conservatively that

b
 <�
������0�
����� j�j � 10�6 ; 
 <� 7� 10�20GeV : (158)
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Table 1: Compilation of indicative bounds on CPT-violating parameters and their
source.

Source Indicative bound
R2�; A2� b� < 5:0� 10�3

R2�; A2�
b� = (2:0� 2:2)� 10�5

jmK0 �m �K0j b� < 2:6� 10�5

R2� b
 <� 5 � 10�7

� b

2j�j2 �

2b�
j�j
sin� = 0:03� 0:02

Positivity b� > b�2=b
max � (103 b�)2

We can also study the combined e�ects of b� and b
 on the � parameter in
Eq. (129), which reads

b

2j�j2 �

2 b�
j�j sin� = 0:03 � 0:02 : (159)

The combined bounds on both parameters can be read o� Fig. 6, which makes clearly
the point that a combined �t is essential to obtain the true bounds on the CPT-
violating parameters. Note that the bounds on b� (155) and b
 (158) derived above
are consistent with those that follow from Eq. (159) (see Fig. 6).

Let us close this section with a remark concerning the positivity constraints
in Eq. (14): � > 0; 
 > 0, and �
 > �2. The data are not yet su�cient to conclude
anything about the sign of the � and 
 parameters. The third constraint implies

b� >
b�2b
 >

b�2b
max

� (103 b�)2 : (160)

Thus, if � is observable, say b� � 10�5, then b� > 10�4 should be observable too. A
compilation of all these indicative bounds and their sources is given in Table 1.

7 Comment on Two-Particle Decay Correlations

Interesting further tests of quantum mechanics and CPT symmetry can be devised
by exploiting initial-state correlations due to the production of a pair of neutral kaons
in a pure quantum-mechanical state, e.g., via e+e� ! � ! K0 �K0. In this case, the
initial state may be represented by [26]

jk ; �ki = 1p
2

h���K0(k) ; �K0(�k)
E
�
��� �K0(k) ; K0(�k)

Ei
(161)

At subsequent times t = t1 for particle 1 and t = t2 for particle 2, the joint probability
amplitude is given in conventional quantum mechanics by

jk; t1 ; �k; t2i � e�iH(k)t1e�iH(�k)t2 jk ; �ki (162)
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Thus the temporal evolution of the two-particle state is completely determined by
the one-particle variables (OPV) contained in H.

Tests of quantum mechanics and CPT symmetry in � decays have recently
been discussed [17] in a conjectured extension of the formalism of [6, 15], in which the
density matrix of the two-particle system was hypothesized to be described completely
in terms of such one-particle variables (OPV): namelyH and (�; �; 
). It was pointed
out that this OPV hypothesis had several striking consequences, including apparent
violations of energy conservation and angular momentum.

As we have discussed above [27], the only known theoretical framework in
which eq. (2) has been derived is that of a non-critical string approach to string
theory, in which (i) energy is conserved in the mean as a consequence of the renor-
malizability of the world-sheet �-model, but (ii) angular momentum is not necessarily
conserved [15, 9], as this is not guaranteed by renormalizability and is known to be
violated in some toy backgrounds [27], though we cannot exclude the possibility that
it may be conserved in some particular backgrounds. Therefore, we are not concerned
that [17] �nd angular momentum non-conservation in their hypothesized OPV ap-
proach. However, the absence of energy conservation in their approach leads us to
the conclusion that irreducible two-particle parameters must be introduced into the
evolution of the two-particle density matrix. The appearance of such non-local pa-
rameters does not concern us, as the string is intrinsically non-local in target space,
and this fact plays a key role in our model calculations of contributions to �H= . The
justi�cation and parametrization of such irreducible two-particle e�ects goes beyond
the scope of this paper, and we plan to study this subject in more detail in due course.

8 Conclusions

We have derived in this paper approximate expressions for a complete set of neutral
kaon decay observables (2�; 3�; �`�) which can be used to constrain parameters char-
acterising CPT violation in a formalism, motivated by ideas about quantum gravity
and string theory, that incorporates a possible microscopic loss of quantum coherence
by treating the neutral kaon as an open quantum-mechanical system. Our explicit
expressions are to second order in the small CPT-violating parameters �; �; 
, and
our systematic procedure for constructing analytic approximations may be extended
to any desired level of accuracy. Our formulae may be used to obtain indicative upper
bounds

� <� 4 � 10�17GeV ; j�j <� 3 � 10�19GeV ; 
 <� 7� 10�20GeV ; (163)

which are comparable with the order of magnitude � 10�19GeV which theory indi-
cates might be attained by such CPT- and quantum-mechanics- violating parameters.
Detailed �ts to recent CPLEAR experimental data are reported elsewhere [25].

We have not presented explicit expressions for the case where the deviation
j�0=�j <� 10�3 from pure superweak CP violation is non-negligible, but our methods
can easily be extended to this case. They can also be used to obtain more speci�c
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Table 2: Qualitative comparison of predictions for various observables in CPT-
violating theories beyond (QMV) and within (QM) quantum mechanics. Predictions
either di�er (6=) or agree (=) with the results obtained in conventional quantum-
mechanical CP violation. Note that these frameworks can be qualitatively distin-
guished via their predictions for AT, ACPT, A�m, and �.

Process QMV QM
A2� 6= 6=
A3� 6= 6=
AT 6= =
ACPT = 6=
A�m 6= =
� 6= =

expressions for experiments with a regenerator, if desired. The extension of the
formalism of Ref. [6] to correlated K0 �K0 systems produced in � decay, as at DA�NE
[4], involves the introduction of two-particle variables, which lies beyond the scope of
this paper.

As mentioned in the main text, in Appendix A we have obtained formulae for
all observables in the case of CPT violation within standard quantum mechanics. In
the case of AQM

2� and AQM
3� one can \mimic" the results from standard CP violation

with suitable choices of the CPT-violating parameters (�M = 0, c��! �2j�j= cos �).
However, this possibility is experimentally excluded because of the large value it
entails for the ACPT observable. In passing we showed that the � parameter vanishes
since no violations of quantum mechanics are allowed. In analogy with Sec. 6, we also
obtained indicative bounds on the CPT-violating parameters. In Table 2 we list all
the observables and make a qualitative comparison between them and conventional
quantum-mechanical CP violation. We see that the quantum-mechanical (QM) and
quantum-mechanics-violating (QMV) CPT-violating frameworks can be qualitatively
distinguished by their predictions for AT, ACPT, A�m, and �.

We close by reiterating that the neutral kaon system is the best microscopic
laboratory for testing quantum mechanics and CPT symmetry. We believe that vio-
lations of these two fundamental principles, if present at all, are likely to be linked,
and have proposed a formalism that can be used to explore systematically this hy-
pothesis, which is motivated by ideas about quantum gravity and string theory. Our
understanding of these di�cult issues is so incomplete that we cannot calculate the
sensitivity which would be required to reveal modi�cations of quantum mechanics or
a violation of CPT. Hence we cannot promise success in any experimental search for
such phenomena. However, we believe that both the theoretical and experimental
communities should be open to their possible appearance.
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A CPT Violation in the Quantum-Mechanical Den-

sity Matrix Formalism for Neutral Kaons

In this appendix we review the density matrix formalism for neutral kaons and CPT
violation within the conventional quantum-mechanical framework [5, 15]. The time
evolution of a generic density matrix is determined in this case by the usual quantum
Liouville equation

@t� = �i(H�� �Hy) : (164)

The conventional phenomenological Hamiltonian for the neutral kaon system contains
hermitian (mass) and antihermitian (decay) components:

H =

 
(M + 1

2
�M)� 1

2
i(� + 1

2
��) M�

12 � 1
2
i��

12

M12 � 1
2
i�12 (M � 1

2
�M)� 1

2
i(�� 1

2
��)

!
; (165)

in the (K0, �K0) basis. The �M and �� terms violate CPT [5]. As in Ref. [6], we
de�ne components of � and H by

� � 1
2
���� ; H � 1

2
h��� ; � = 0; 1; 2; 3 (166)

in a Pauli �-matrix representation : the �� are real, but the h� are complex. The
CPT transformation is represented by

CPT
���K0

E
= ei�

��� �K0
E
; CPT

��� �K0
E
= e�i�

���K0
E
; (167)

for some phase �, which is represented in our matrix formalism by

CPT �
 

0 ei�

e�i� 0

!
: (168)

Since this matrix is a linear combination of �1;2, CPT invariance of the phenomeno-
logical Hamiltonian, H = (CPT)�1H(CPT), clearly requires that H contain no term
proportional to �3, i.e., h3 = 0 so that �M = �� = 0.

Conventional quantum-mechanical evolution is represented by @t�� = H����,
where, in the (K0, �K0) basis and allowing for the possibility of CPT violation,

H�� �

0BBB@
Imh0 Imh1 Imh2 Imh3
Imh1 Imh0 �Reh3 Reh2
Imh2 Reh3 Imh0 �Reh1
Imh3 �Reh2 Reh1 Imh0

1CCCA : (169)

We note that the real parts of the matrix h are antisymmetric, whilst its imaginary
parts are symmetric. Now is an appropriate time to transform to the K1;2 =

1p
2
(K0�

�K0) basis, corresponding to �1 $ �3, �2 $��2, in which H�� becomes

H�� =

0BBB@
�� �1

2
�� �Im�12 �Re�12

�1
2
�� �� �2ReM12 �2ImM12

�Im�12 2ReM12 �� ��M
�Re�12 �2ImM12 �M ��

1CCCA : (170)
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The corresponding equations of motion for the components of � in the K1;2 basis are
[as above we neglect Im�12 contributions]

_�11 = ��L�11 � 2Re [(ImM12 +
1
4
�� + i

2
�M)�12] ; (171)

_�12 = �(� + i�m)�12 + (ImM12 � 1
4
��� i

2
�M)�11 � (ImM12 +

1
4
��� i

2
�M)�22;

(172)

_�22 = ��S�22 + 2Re [(ImM12 � 1
4
�� + i

2
�M)�12] : (173)

One can readily verify that � decays at large t to

� � e��Lt
 

1 �� + ��

�+ � j�+ �j2
!

; (174)

which has a vanishing determinant, thus corresponding to a pure long-lived mass
eigenstate KL. The CP-violating parameter � and the CPT-violating parameter � are
given as above, namely

� =
ImM12

1
2
j��j+ i�m

; � = �1
2

1
2
�� + i�M

1
2
j��j+ i�m

: (175)

Conversely, in the short-t limit a KS state is represented by

� � e��St
 
j�� �j2 �� �

�� � �� 1

!
; (176)

which also has zero determinant. Note that the relative signs of the � terms have re-
versed: this is the signature of CPT violation in the conventional quantum-mechanical
formalism. Note that the density matrices (174,176) correspond to the state vectors

jKLi / (1 + �� �)
���K0

E
� (1� �+ �)

��� �K0
E

(177)

jKSi / (1 + �+ �)
���K0

E
+ (1� �� �)

��� �K0
E

(178)

and are both pure, as should be expected in conventional quantum mechanics, even
if CPT is violated.

As above, we solve the di�erential equations in perturbation theory in j�j and
the new parameters d�M � �M

j��j ;
c�� � ��

j��j : (179)

The zeroth order results for the �ij are the same as those in Eqs. (36,37,38), namely

�
(0)
11 (t) = �11(0) e

��Lt ; (180)

�
(0)
22 (t) = �22(0) e

��S t ; (181)

�
(0)
12 (t) = �12(0) e

�(�+i�mt) : (182)
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The �rst-order results for the density matrix elements are:

�
(1)
11 = �2jX 0jj�12(0)j

h
e��Lt cos(�� �X 0 � �12)� e��t cos(�mt+ �� �X 0 � �12)

i
(183)

�
(1)
22 = �2jXjj�12(0)j

h
e��St cos(�+ �X + �12)� e��t cos(�mt� �� �X � �12)

i
(184)

�
(1)
12 = �11(0)jXje�i(�+�X)

h
e��Lt � e�(�+i�m)t

i
+ �22(0)jX 0jei(���X0)

h
e��St � e�(�+i�m)t

i
(185)

where the two complex constants X and X 0 are de�ned by:

X = j�j � 1
2
cos � c�� + i cos� d�M ; tan �X =

cos � d�M
j�j � 1

2
cos � c�� ; (186)

X 0 = j�j+ 1
2
cos � c�� + i cos � d�M ; tan �X 0 =

cos � d�M
j�j+ 1

2
cos� c�� : (187)

For future reference, we note the special case that occurs when �M = 0 and j�j = 0,
namely

�� > 0 : �X = �; �X 0 = 0 ; (188)

�� < 0 : �X = 0; �X 0 = � : (189)

With the results for � through �rst order, and inserting the appropriate ini-
tial conditions (28), we can immediately write down the expressions for the various
observables discussed in Sec. 4. For A2� we obtain

AQM
2� (t) =

2jXj cos(�+ �X)� 2jXje 12 (�S��L)t cos(�mt� �� �X)

1 + e(�S��L)t jXj2
; (190)

where in the denominator we have also included the non-negligible second-order con-

tributions to ��(2)22 . From this expression it is interesting to note that one can mimic

the standard CP-violating result for A2� in Eq. (60) by setting j�j ! 0 and making
the following choices for the CPT-violating parameters

mimic CP violation : �M = 0; c��!� 2j�j
cos �

; (191)

which give jXj ! j�j and �X = 0. For the A3� observable we �nd

A
QM
3� (t) = 2jX 0j cos(���X 0)�2e�

1

2
(�S��L)t [Re�3� cos�mt� Im�3� sin�mt] ; (192)

with
Re�3� = jX 0j cos(�� �X 0); Im�3� = jX 0j sin(�� �X 0) ; (193)

that is
Im�3�
Re�3�

= tan(�� �X 0) : (194)
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Here we also note that the standard CP-violating result is obtained for the choices of
parameters in Eq. (191) which give jX 0j ! j�j and �X 0 = �, since tan(���) = tan �.

For the observable AT, we obtain the following exactly time-independent �rst-
order expression

A
QM
T = 2jX 0j cos(�� �X 0) + 2jXj cos(�+ �X) = 4j�j cos � ; (195)

which is identical to the case of no CPT violation. In the case of ACPT we �nd

A
QM
CPT(t) =

A1(e��Lt � e��S t)� 2e��tA2 sin�mt

e��Lt + e��S t � 2e��t cos�mt
; (196)

with

A1 = 2jX 0j cos(�� �X 0)� 2jXj cos(�+ �X) = 4 sin � cos � d�M + 2 cos2 � c�� (197)

A2 = �2jX 0j sin(�� �X 0) + 2jXj sin(�+ �X) = 4 cos2 � d�M � 2 sin � cos � c�� (198)

Note that j�j drops out of the expression for ACPT as it should. In the long-time limit
we obtain

AQM
CPT ! 4 sin � cos� d�M + 2 cos2 � c�� : (199)

Since the dynamical equations determining the density matrix do not manifestly pos-
sess the mimicking symmetry in Eq. (191), one expects this mimicking phenomenon
to break down in some observables. This is the case of ACPT where we �nd the
following asymptotic \mimic" result

ACPT ! �4j�j cos� � �6 � 10�3 ; (200)

to be contrasted with the standard result of ACPT = 0. Experimentally, the CPLEAR
Collaboration has measured this parameter to be Aexp

CPT = (�0:4�2:0�2:0�1:5)�10�3
[3]. Comparing the prediction in Eq. (200) with the experimental data, we see that
the \mimic" result appears disfavored by the ACPT measurement.

Finally, since ��(1)12 = ��(1)11 = ��(1)22 = 0, the A�m observable has the same
�rst-order expression as in standard CP violation, namely

AQM
�m(t) = �

2e��t cos�mt

e��Lt + e��St
: (201)

Since in this mechanism of CPT violation quantum mechanics is not violated,
from the discussion in subsection 5.2.2 we expect the parameter � to vanish. Indeed,
using the above expressions for �22 we �nd

c
(0)
S = �22(0) (202)

c
(2)
L = �11(0)jXj2 (203)

c
(1)
I = j�12(0)j jXj (204)
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where we have also calculated the needed second-order (long-lived) terms in �22.
Moreover, the generic expression (120) gets modi�ed in the interference term by the
replacement: � ! � + �X + �12. It then immediately follows that c2I=(cScL) =
j�12(0)j2=[�11(0)�22(0)] = 1, where we have made use of the det �(0) = 0 property.
Therefore, as expected � = 0.

As in Sec. 6, we can derive indicative bounds on the CPT-violating parameters.
The coe�cient of the interference term in A

QM
2� (190) can be expressed as: jXj =

jj�j � 1
2
cos�c��j= cos �X . Demanding that this amplitude di�er by less than 5% from

the usual case, and with the a priori knowledge that �X should be small (as we

demonstrate below), we obtain 1
2
cos�jc��j=j�j < 0:05, i.e.,

jc��j < 3 � 10�4 ; j��j < 2� 10�18GeV : (205)

We can obtain a bound on d�M by noticing the correspondence �M $ �2� that
follows from Eqs. (45,186) when the bound in Eq. (205) holds. From Eq. (155) we
then �ndd�M = (�4:0� 4:4)� 10�5 ; �M = (�3:0� 3:2) � 10�19GeV : (206)

Alternatively, the analogue of Eq. (157) is jmK0�m �K0j � j�M j, which entails j�M j <
3:7� 10�19GeV, once the 90%CL upper bound from E773 [21] is inserted.

B Second-Order Contributions to the Density Matrix

The second-order contributions to the density matrix in our quantum-mechanical-
violating framework can be obtained by using Eq. (41) with the �rst-order inputs

�
(1)
11;22;12 given in Eqs. (42,43,44).5 We obtain:

�
(2)
11 =

7X
k=1

c
[11]
k R

[11]
k (t) ; (207)

where the time-dependent R[11]
k (t) functions are given by:

R
[11]
1 (t) = e��Lt � e��St (208)

R
[11]
2 (t) = tj��je��Lt (209)

R
[11]
3 (t) = �e��t cos(�mt� ��� �12) + e��Lt cos(��+ �12) (210)

R
[11]
4 (t) = �e��t sin(�mt+ �) + e��Lt sin� (211)

R
[11]
5 (t) = �e��t

"
j��jt
2 cos �

cos(�mt+ �� ��� �12) + cos(�mt+ 2� � ��� �12)

#
+e��Lt cos(2�� ��� �12) (212)

R
[11]
6 (t) = �e��t cos(�mt+ 2�� 2��) + e��Lt cos(2�� 2��) (213)

R
[11]
7 (t) = �e��t cos(�mt� 2��) + e��Lt cos(2��) (214)

5Expressions for �
(2)
22;12 valid for a particular choice of initial conditions were given in Ref. [16].
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and the c
[11]
k coe�cients are:

c
[11]
1 = ��11(0)b
2 � �22(0)j�j2

cos(�+ 2��)

cos � cos2 ��
� 2j�12(0)jj�jb
 cos(�+ ��+ �12)

cos ��

(215)

c
[11]
2 =

"b
2 � j�j2 cos(�� 2��)

cos� cos2 ��

#
�11(0) (216)

c
[11]
3 = 4j�jb
 cos�

cos ��
j�12(0)j (217)

c
[11]
4 = �4b�j�j

tan�

cos(��� �12)

cos ��
j�12(0)j (218)

c
[11]
5 = 4b�j�j cos �

cos ��
j�12(0)j (219)

c
[11]
6 =

2j�j2
cos2 ��

�11(0) (220)

c
[11]
7 =

2j�j2
cos2 ��

�22(0) (221)

Analogously,

�
(2)
22 =

7X
k=1

c
[22]
k R

[22]
k (t) ; (222)

where the time-dependent R[22]
k (t) functions are given by:

R
[22]
1 (t) = e��Lt � e��St (223)

R
[22]
2 (t) = tj��je��St (224)

R
[22]
3 (t) = e��t cos(�mt� ��� �12)� e��St cos(��+ �12) (225)

R
[22]
4 (t) = e��t sin(�mt� �) + e��St sin � (226)

R
[22]
5 (t) = e��t

"
j��jt
2 cos �

cos(�mt� �� ��� �12)� cos(�mt� 2�� ��� �12)

#
+e��St cos(2�+ ��+ �12) (227)

R
[22]
6 (t) = �e��t cos(�mt� 2��) + e��St cos(2��) (228)

R
[22]
7 (t) = �e��t cos(�mt� 2�� 2��) + e��St cos(2�+ 2��) (229)

and the c[22]k coe�cients are:

c
[22]
1 = �22(0)b
2 + �11(0)j�j2

cos(�� 2��)

cos� cos2 ��
� 2j�12(0)jj�jb
 cos(�� ��� �12)

cos ��

(230)

c
[22]
2 =

"
�b
2 + j�j2 cos(�+ 2��)

cos� cos2 ��

#
�22(0) (231)
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c
[22]
3 = 4j�jb
 cos �

cos ��
j�12(0)j (232)

c
[22]
4 =

4b�j�j
tan �

cos(��� �12)

cos ��
j�12(0)j (233)

c
[22]
5 = �4b�j�j cos �

cos ��
j�12(0)j (234)

c
[22]
6 =

2j�j2
cos2 ��

�11(0) (235)

c
[22]
7 =

2j�j2
cos2 ��

�22(0) (236)

Finally,

�
(2)
12 =

2b�
tan �

(
2b�
tan�

j�12(0)j sin �12R[12]
1 (t; 0)� 4ib�

tan �
j�12(0)jR[12]

2 (t)

� j�j
cos ��

[�11(0)R
[12]
1 (t; �� ��) + �22(0)R

[12]
1 (t;��� ��)]

+
2ij�j sin�
cos ��

[�11(0) sin(�� ��)R
[12]
3 (t) + �22(0) sin(�+ ��)R

[12]
4 (t)]

)

+
j�jei��
cos ��

(b
[�22(0)� �11(0)] [R
[12]
3 (t) +R

[12]
4 (t)]

+
2j�j
cos ��

j�12(0)j[iR[12]
1 (t;���� �12)

� cos(�� ��� �12)R
[12]
3 (t)� cos(�+ ��+ �12)R

[12]
4 (t)]

)
(237)

where the time-dependent functions R
[12]
k (t) are given by

R
[12]
1 (t; a) = e��t [eia sin�mt� (�mt)e�i�mt�ia] (238)

R
[12]
2 (t) = 1

4
e��t

n
e�i�12[sin�mt� (�mt)ei�mt] + i(�mt)2 e�i�mt+i�12

o
(239)

R
[12]
3 (t) = e�i� [e��Lt � e�(�+i�m)t] (240)

R
[12]
4 (t) = ei� [e��St � e�(�+i�m)t] (241)
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Figure 1: The time-dependent asymmetry A2� for various choices of the CPT-
violating parameters: (a) dependence on b�, (b) dependence on b�, (c) dependence
on b
. The unspeci�ed parameters are set to zero. The curve with no labels corre-
sponds to the standard case (b� = b� = b
 = 0).
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Figure 2: The time-dependent asymmetry A3� for representative choices of b� (A3�

depends very weakly on b�; b
). The top curve corresponds to the standard case. Also
shown is the ratio Im�3�=Re�3� = tan(�� ��) as a function of b�.
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indicates the location of the minimum as b� is varied.
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Figure 5: The time-dependent asymmetryAr
2�(� ) in the presence of a thin regenerator

placed far from the production point, as a function of the time � after leaving the
regenerator, for representative choices of b� (Ar

2�(� ) is rather insensitive to b�; b
, which
are set to zero). The right-most curve corresponds to the standard case. Also shown
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